From WikiChip
Editing 4-bit architecture

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 5: Line 5:
 
Most of the first [[microprocessor]]s during the early 1970s had 4-bit [[word]] sizes. Both the Intel {{intel|4004}}, the first commercial microprocessor, and the {{intel|4040}} had a 4-bit word length, but had {{arch|8}} instructions. Some of the first [[microcontroller]]s such as the {{ti|TMS1000}} made by [[Texas Instruments]] and NEC's {{nec|μPD751}} also had 4-bit words. 4-bit word were proven to be very limiting and by 1974 there was a shift to larger architectures such as {{arch|8|8-}} and {{arch|12|12-}} bit architectures.
 
Most of the first [[microprocessor]]s during the early 1970s had 4-bit [[word]] sizes. Both the Intel {{intel|4004}}, the first commercial microprocessor, and the {{intel|4040}} had a 4-bit word length, but had {{arch|8}} instructions. Some of the first [[microcontroller]]s such as the {{ti|TMS1000}} made by [[Texas Instruments]] and NEC's {{nec|μPD751}} also had 4-bit words. 4-bit word were proven to be very limiting and by 1974 there was a shift to larger architectures such as {{arch|8|8-}} and {{arch|12|12-}} bit architectures.
  
In the [[microcontroller]] domain, the story is a little different. 4-bit microcontrollers found their way into many battery-powered and low power instruments and devices.  Some 4-bit chips such as the {{atmel|MARC4|Atmel MARC4}} continued to be manufactured until very recently (2010s), those devices aimed directly at wireless devices such as RFID-related applications. Other 4-bit MCUs are still made to date such as the [[Epson]]'s {{epson|S1C60}} and {{epson|S1C63}} MCU [[microprocessor family|families]]. Modern 4-bit microprocessors, however, are much different from the first generation microprocessors of the 1970s - in terms of architecture, performance, and overall capabilities.
+
In the [[microcontroller]] domain, the story is a little different. 4-bit microcontrollers found their way into many battery-powered and low power instruments and devices.  Some 4-bit chips such as the {{atmel|MARC4|Atmel MARC4}} continued to be manufactured until very recently (2010s), those devices aimed directly at wireless devices such as RFID-related applications. Other 4-bit MCUs are still made to date such as the [[Epson]]'s {{epson|S1C60}} and {{epson|S1C63}} MCU [[microprocessor family|families]]. Modern 4-bit microprocessors, however, are much different to the first generation microprocessors of the 1970s - in terms of architecture, performance, and overall capabilities.
  
 
== Applications ==
 
== Applications ==

Please note that all contributions to WikiChip may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see WikiChip:Copyrights for details). Do not submit copyrighted work without permission!

Cancel | Editing help (opens in new window)