From WikiChip
Difference between revisions of "28 nm lithography process"

(28 nm Microarchitectures)
(28 nm Microarchitectures)
 
(6 intermediate revisions by 4 users not shown)
Line 85: Line 85:
 
  | process 3 dram        =  
 
  | process 3 dram        =  
 
  | process 3 dram Δ      =  
 
  | process 3 dram Δ      =  
 +
<!-- SMIC -->
 +
| process 4 fab          = [[SMIC]]
 +
| process 4 name        = 28PS, 28HK, 28HKC+
 +
| process 4 date        = 4Q 2013
 +
| process 4 lith        = &nbsp;
 +
| process 4 immersion    = &nbsp;
 +
| process 4 exposure    = &nbsp;
 +
| process 4 wafer type  = &nbsp;
 +
| process 4 wafer size  = &nbsp;
 +
| process 4 transistor  = &nbsp;
 +
| process 4 volt        = 1.8 V, 2.5 V
 +
| process 4 layers      = &nbsp;
 +
| process 4 delta from  = &nbsp;
 +
| process 4 gate len    = &nbsp;
 +
| process 4 gate len Δ  = &nbsp;
 +
| process 4 cpp          = &nbsp;
 +
| process 4 cpp Δ        = &nbsp;
 +
| process 4 mmp          = &nbsp;
 +
| process 4 mmp Δ        = &nbsp;
 +
| process 4 sram hp      = &nbsp;
 +
| process 4 sram hp Δ    = &nbsp;
 +
| process 4 sram hd      = &nbsp;
 +
| process 4 sram hd Δ    = &nbsp;
 +
| process 4 sram lv      = &nbsp;
 +
| process 4 sram lv Δ    = &nbsp;
 +
| process 4 dram        = &nbsp;
 +
| process 4 dram Δ      = &nbsp;
 
}}
 
}}
  
Line 90: Line 117:
 
* AMD
 
* AMD
 
** {{amd|A8}}
 
** {{amd|A8}}
** {{amd|A10}}
+
** {{amd|A10}}  
 +
**A9
 
* HiSilicon
 
* HiSilicon
 
** {{hisil|Kirin}}
 
** {{hisil|Kirin}}
Line 115: Line 143:
 
* ARM Holdings
 
* ARM Holdings
 
** {{armh|Cortex-A53|l=arch}}
 
** {{armh|Cortex-A53|l=arch}}
* Intel/Nervana
+
* Nervana
 
** {{nervana|Lake Crest|l=arch}}
 
** {{nervana|Lake Crest|l=arch}}
 +
* Movidius
 +
** {{movidius|SHAVE v3.0|l=arch}}
 
* Phytium
 
* Phytium
 
** {{phytium|Xiaomi|l=arch}}
 
** {{phytium|Xiaomi|l=arch}}
 +
** {{phytium|Mars I|l=arch}}
 
* VIA Technologies
 
* VIA Technologies
 
** {{via|Isaiah II|l=arch}}
 
** {{via|Isaiah II|l=arch}}
Line 135: Line 166:
 
* Liang, C. W., et al. "A 28nm poly/SiON CMOS technology for low-power SoC applications." VLSI Technology (VLSIT), 2011 Symposium on. IEEE, 2011.
 
* Liang, C. W., et al. "A 28nm poly/SiON CMOS technology for low-power SoC applications." VLSI Technology (VLSIT), 2011 Symposium on. IEEE, 2011.
 
* James, Dick. "High-k/metal gates in the 2010s." Advanced Semiconductor Manufacturing Conference (ASMC), 2014 25th Annual SEMI. IEEE, 2014.
 
* James, Dick. "High-k/metal gates in the 2010s." Advanced Semiconductor Manufacturing Conference (ASMC), 2014 25th Annual SEMI. IEEE, 2014.
 +
 +
[[category:lithography]]

Latest revision as of 17:01, 26 March 2019

The 28 nanometer (28 nm) lithography process is a half-node semiconductor manufacturing process used as a stopgap between the 32 nm and 22 nm processes. Commercial integrated circuit manufacturing using 28 nm process began in 2011. This technology superseded by commercial 22 nm process.

Industry[edit]

 
Process Name
1st Production
Lithography Lithography
Immersion
Exposure
Wafer Type
Size
Transistor Type
Voltage
Metal Layers
 
Gate Length (Lg)
Contacted Gate Pitch (CPP)
Minimum Metal Pitch (MMP)
SRAM bitcell High-Perf (HP)
High-Density (HD)
Low-Voltage (LV)
DRAM bitcell eDRAM
TSMC Common Platform Alliance UMC SMIC
28LP, 28HPL, 28HP 28LP, 28LPP, 28SLP 28HPC, 28HLP, 28HPC+, 28µLP 28PS, 28HK, 28HKC+
4Q 2011 2014 2013 4Q 2013
193 nm 193 nm 193 nm  
Yes Yes Yes  
DP DP DP  
Bulk Bulk Bulk  
300 mm 300 mm 300 mm  
Planar Planar Planar  
1 V, 0.8 V 1 V, 0.85 V 0.9 V, 1.05 V, 0.7 V 1.8 V, 2.5 V
10 10 10  
Value 32 nm Δ Value 32 nm Δ Value 40 nm Δ Value  
24 nm   28 nm   33 nm      
117 nm   113.4 nm   120 nm      
90 nm   90 nm   90 nm      
    0.152 µm²          
0.127 µm²   0.120 µm²   0.124 µm²      
0.155 µm²   0.197 µm²          
               

28 nm Microprocessors[edit]

This list is incomplete; you can help by expanding it.

28 nm Microarchitectures[edit]

This list is incomplete; you can help by expanding it.

References[edit]

  • Samsung foundry solution for 32 & 28 nm
  • Wu, Shien-Yang, et al. "A highly manufacturable 28nm cmos low power platform technology with fully functional 64mb sram using dual/tripe gate oxide process." VLSI Technology, 2009 Symposium on. IEEE, 2009.
  • Shang, Huiling, et al. "High performance bulk planar 20nm CMOS technology for low power mobile applications." VLSI Technology (VLSIT), 2012 Symposium on. IEEE, 2012.
  • Arnaud, F., et al. "Competitive and cost effective high-k based 28nm CMOS technology for low power applications." Electron Devices Meeting (IEDM), 2009 IEEE International. IEEE, 2009.
  • Yuan, J., et al. "Performance elements for 28nm gate length bulk devices with gate first high-k metal gate." Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on. IEEE, 2010.
  • Liang, C. W., et al. "A 28nm poly/SiON CMOS technology for low-power SoC applications." VLSI Technology (VLSIT), 2011 Symposium on. IEEE, 2011.
  • James, Dick. "High-k/metal gates in the 2010s." Advanced Semiconductor Manufacturing Conference (ASMC), 2014 25th Annual SEMI. IEEE, 2014.