From WikiChip
Difference between revisions of "cavium/microarchitectures/vulcan"
< cavium

(History)
(Core)
Line 131: Line 131:
  
 
== Core ==
 
== Core ==
{{empty section}}
+
Vulcan is an [[out-of-order]] superscalar with support for up to four simultaneous hardware threads.
 +
=== Front-end ===
 +
Vulcan's front-end is tasked with fetching instructions from a ready thread instruction stream and feeding them into the decode in order to be delivered to the execution units. Since Vulcan supports up to four threads, a thread scheduler determines from which thread's instruction stream to operate on. This determination is done on each cycle with the help of the branch predictor.
 +
==== Fetch ====
 +
[[Instruction fetch]] is done on a 32-byte window or 8 (4-byte) [[ARM]] instructions. The instruction stream is decomposed into its constituent instructions where they are queued to go for the [[instruction decode|decoder]]. The queue is shared by all threads. The size of the queue has not been disclosed.
 +
==== Decoding ====
 +
Each cycle, up to four instructions are sent to the [[instruction decode|decoder]]. In prior design, [[Broadcom]]'s products decoded [[MIPS]] instructions. With Vulcan, the switching to ARM meant the decoder had to be replaced with much more complex logic that decodes the original [[instruction]] and emits [[micro-ops]]. For the most part, there is a 1:1 mapping between instructions and µOP with an average of 15% more µOPs emitted from instructions. The extra complexity has added another pipeline stage to the decode.
 +
==== Loop Buffer ====
 +
Sitting between the [[instruction decode|decoder]] and the scheduler is a [[loop buffer]]. The loop buffer, in conjunction with the [[branch predictor]], will queue recent tight loop operations. The buffer will play back the operations repeatedly until a branch take occurs. When this takes place, the front-end (instruction fetch, decode, etc..) is largely power-gated in order to save power. Although Broadcom originally told us the buffer was had 48-entries, when the product was re-released by [[Cavium]] in late 2018, WikiChip was unable to confirm this number.
 +
 
 
<!--
 
<!--
 
== Die ==
 
== Die ==
Line 143: Line 152:
 
:[[File:cavium vulcan die (annotated).png|600px]]
 
:[[File:cavium vulcan die (annotated).png|600px]]
 
-->
 
-->
 +
 
== All Vulcan Chips ==
 
== All Vulcan Chips ==
 
{{empty section}}
 
{{empty section}}

Revision as of 21:50, 31 May 2018

Edit Values
Vulcan µarch
General Info
Arch TypeCPU
DesignerBroadcomm, Cavium
ManufacturerTSMC
Introduction2018
Process16 nm
Core Configs16, 20, 24, 28, 30, 32
Pipeline
TypeSuperscalar, Superpipeline
OoOEYes
SpeculativeYes
Reg RenamingYes
Stages13-15
Decode4-way
Instructions
ISAARMv8.1
ExtensionsNEON
Cache
L1I Cache32 KiB/core
8-way set associative
L1D Cache32 KiB/core
8-way set associative
L2 Cache256 KiB/core
8-way set associative
L3 Cache1 MiB/core
Succession

Vulcan is a 16 nm high-performance 64-bit ARM microarchitecture designed by Broadcom and later Cavium for the server market.

Introduced in 2018, Vulcan-based microprocessors are branded as part of the ThunderX2 family.

History

Vulcan can trace its roots all the way back to Raza Microelectronics XLR family of MIPS processors from 2006. With the introduction of their XLR family in 2009, Raza (and later NetLogic) moved to a high-performance superscalar design with fine-grained 4-way multithreading support. In 2011, Broadcom acquired NetLogic Microsystems and integrated them Broadcom's Embedded Processor Group.

In 2013, Broadcom announced that they have licensed the ARMv7 and ARMv8 architectures, allowing them to develop their own microarchitectures based on the ISA. Vulcan is the outcome of this effort which involved adopting the ARM ISA instead of MIPS and enhancing the cores in various ways. Vulcan development started in early 2012 and has was expected to enter mass production in mid-2015.

In 2017 Cavium acquired Vulcan from broadcom which was introduced later that year. In early 2018, Vulcan-based microprocessor entered general availability under the ThunderX2 brand.

Architecture

Vulcan builds on the prior MIPS-based XLP II microarchitecture. The design has been substantially improved and changed to execute ARM (based on the ARMv8.1 ISA).

Key changes from XLP II

  • Converted to ARM ISA (from MIPS)
    • Aarch64, Aarch32
  • 16nm FinFET process (from 28 nm planar)
  • 40% IPC improvement
  • 25% higher clock (2.5 GHz, up from 2 GHz)
  • Core
    • Longer pipeline (15 stages, up from 13)
    • Improved branch predictor
    • Double fetch throughput (4, up from 2)
    • New Decoder
      • Decodes ARMv8.1 (Instead of MIPS64 R5)
      • Decodes to micro-ops
        • Roughly 10-20% more µOPs
    • New loop buffer
    • Execution Engine
      • New scheduler
        • Unified schedule (from distributed)
          • 60 entries
      • Large ROB (180 entries, up from 128)
      • Execution Units
        • New FP Unit (2, up from 1)
        • Wider FP Units (128-bit, up from 64-bit)
    • Memory Subsystem
      • Double load bandwidth (128-bit, up from 64-bit)
      • New Store Data Unit
      • Half L2 Cache Size (256 KiB, down form 512 KiB)
  • Memory Controller
    • DDR3 DDR4
    • 4 8 channels
    • 1600 MT/s 2666 MT/s
    • 47.68 GiB/s 158.9 GiB/s

Block Diagram

Entire Chip

vulcan chip block diagram.svg

Individual Core

vulcan block diagram.svg

Memory Hierarchy

  • Cache
    • L1I Cache
      • 32 KiB, 8-way set associative
    • L1D Cache
      • 32 KiB, 8-way set associative
    • L2 Cache
      • 256 KiB, 8-way set associative
    • L3 Cache
      • 1 MiB/core slice
      • Shared
    • System DRAM
      • 8 Channels
      • DDR4, up to 2666 MT/s
        • 1 DPC and 2 DPC support
        • RDIMM, LRDIMM, NVDIMM-P support
        • Single, Dual and Quad rank modules
      • 8 B/cycle/channel (@ memory clock)
      • ECC
  • TLBs
    • ITLB
      • Dedicated instruction TLB
      • DTLB
        • TLB unit for each LSU
    • STLB
      • 2048-entry
      • 4 KiB - 16 GiB pages

Overview

vulcan overview.svg

Scaled up from prior architectures in all vectors (performance, area, and TDP), Vulcan was designed to be a Xeon-class ARM-based server microprocessor. Vulcan features 32 high-performance custom-designed ARM cores fully compliant with ARMv8.1 along with their accompanying 1 MiB of level 3 cache slice (for a total of 32 MiB of shared last level cache). Since each core supports up to four simultaneous threads, the full configuration can support up to 128 threads. Supporting a large number of cores, are eight DDR4 channels capable of data rates of up to 2,666 MT/s, allowing for 170.7 GB/s of aggregated bandwidth.

The processor comes with 14 fully-configurable PCIe Gen3 controllers with 56 available lanes. The chip also has 2 USB 3 and 2 SATA 3 ports.

Vulcan supports up to two-way multiprocessing through their second-generation Cavium Coherent Processor Interconnect (CCPI2) capable of providing 600 Gbps of aggregated bandwidth.

Core

Vulcan is an out-of-order superscalar with support for up to four simultaneous hardware threads.

Front-end

Vulcan's front-end is tasked with fetching instructions from a ready thread instruction stream and feeding them into the decode in order to be delivered to the execution units. Since Vulcan supports up to four threads, a thread scheduler determines from which thread's instruction stream to operate on. This determination is done on each cycle with the help of the branch predictor.

Fetch

Instruction fetch is done on a 32-byte window or 8 (4-byte) ARM instructions. The instruction stream is decomposed into its constituent instructions where they are queued to go for the decoder. The queue is shared by all threads. The size of the queue has not been disclosed.

Decoding

Each cycle, up to four instructions are sent to the decoder. In prior design, Broadcom's products decoded MIPS instructions. With Vulcan, the switching to ARM meant the decoder had to be replaced with much more complex logic that decodes the original instruction and emits micro-ops. For the most part, there is a 1:1 mapping between instructions and µOP with an average of 15% more µOPs emitted from instructions. The extra complexity has added another pipeline stage to the decode.

Loop Buffer

Sitting between the decoder and the scheduler is a loop buffer. The loop buffer, in conjunction with the branch predictor, will queue recent tight loop operations. The buffer will play back the operations repeatedly until a branch take occurs. When this takes place, the front-end (instruction fetch, decode, etc..) is largely power-gated in order to save power. Although Broadcom originally told us the buffer was had 48-entries, when the product was re-released by Cavium in late 2018, WikiChip was unable to confirm this number.


All Vulcan Chips

New text document.svg This section is empty; you can help add the missing info by editing this page.

References

  • Some information was obtained directly from Broadcom
  • Some information was obtained directly from Cavium

See also

codenameVulcan +
core count16 +, 20 +, 24 +, 28 +, 30 + and 32 +
designerBroadcomm + and Cavium +
first launched2018 +
full page namecavium/microarchitectures/vulcan +
instance ofmicroarchitecture +
instruction set architectureARMv8.1 +
manufacturerTSMC +
microarchitecture typeCPU +
nameVulcan +
pipeline stages (max)15 +
pipeline stages (min)13 +
process16 nm (0.016 μm, 1.6e-5 mm) +