6932852 PANASONIC INDL. ELECTRONIC マイクロコンピュータ(4-Bit)

72C 05681 D7-49-04
MN1400 Family

MN1400 Family

4 ビット・1 チップ・マイクロコンピュータ 4-Bit Single-Chip Microcomputers

■ MN1400 ファミリ製品系列/Series in MN1400 Family

MN1400	分 類	シリーズ名	プロセス	機能・用途	Function · Use	
Family No.	Category	Series	Process			
	汎 用 General Purpose	MN1400	NMOS			
3		MN1430	PMOS	汎用タイプ	General Purpose	
		MN1450	CMOS			
1		MN1420	NMOS	LED 駆動タイプ	LED Driver Type	
		MN1460		低電圧タイプ	Low Voltage Type	
		MN1456A	смоѕ	デュアルタイプ	Dual Type	
		MN14531	[家電用複合タイプ	For House Appliance	
	蛍光表示管駆動用	MN1450B	CMOS	高耐圧タイプ	High Voltage Type	
2	FLT Driver			一		
	TV 電子選局用	MN1410	NMOS	テレビ,ビデオチューナ用	For TV, VTR Tuner	
3	TV Electronic Tuning System	MN1480	CMOS	/ / / C, C / / / X - / //	101 11, 111 14101	
	ラジオ電子チューナ用	MAN 407	CMOS	オーディオチューナ用	For Audio Tuner	
4	Radio Synthesizer Tuner	MN1427	CMOS	オー/イオ/エ・/用		

■ 概 要

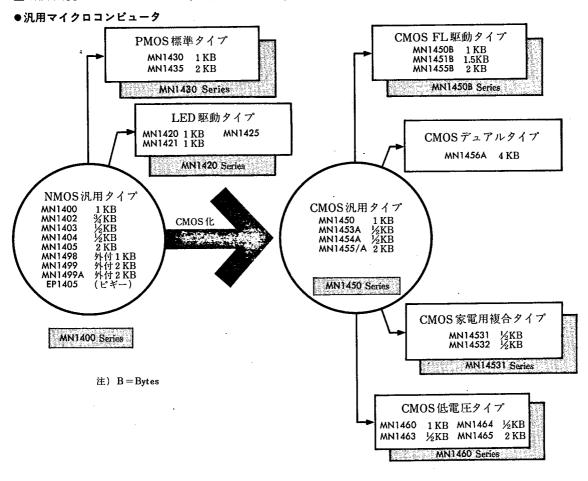
MN1400 ファミリは、4 ビット並列 ALU, ROM, RAM, I/O ポートなどを 1 チップに集積した 4 ビット・1 チップ・マイクロコンピュータのファミリで、NMOS、PMOS、CMOS 標準タイプ、低電圧タイプ、電子選局専用タイプなど、豊富な品種レンジが準備されており、各種の制御に最適なマイクロコンピュータを選択できます。

■ Description

The MN1400 family are 4-bit single-chip microcomputers with a 4-bit ALU, a ROM, a RAM, I/O ports, etc. on a single semiconductor chip. Various versions of microcomputers including NMOS, PMOS and CMOS standard versions, and dedicated versions for tuning systems are supported, making the MN1400 family suitable for a wide variety of control functions.

■特徴

- 品種レンジが豊富で、最適なマイクロコンピュータの 選択が可能
- Nチャンネルタイプは,LOCOS E/D MOS で高速
- Pチャンネルタイプは、LOCOS E/D MOS で高電圧
- ●CMOSタイプは、CMOS LOCOSで低消費電力
- ●単一 + 5 V (N チャンネル, CMOS タイプ), -15 V (Pチャンネルタイプ)電源動作で、あらゆる機器への応用に有利
- ●動作温度範囲が広い:-30~+70°C
- Nチャンネル, CMOS タイプは, TTL/CMOS コンパ チブル
- Pチャンネルタイプは、蛍光表示管直接駆動
- ●強力な入出力機能
- プログラマブル 8 ビットカウンタ内蔵
- ●標準75種類の使いやすい豊富なインストラクション

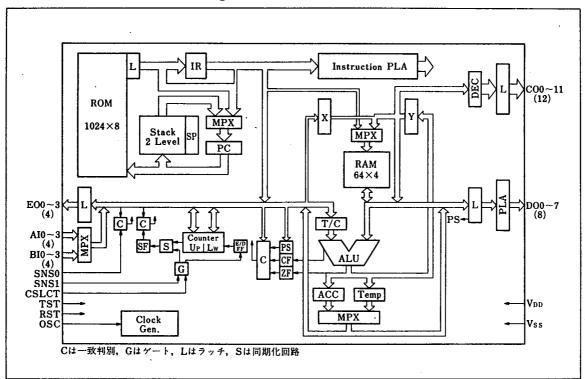


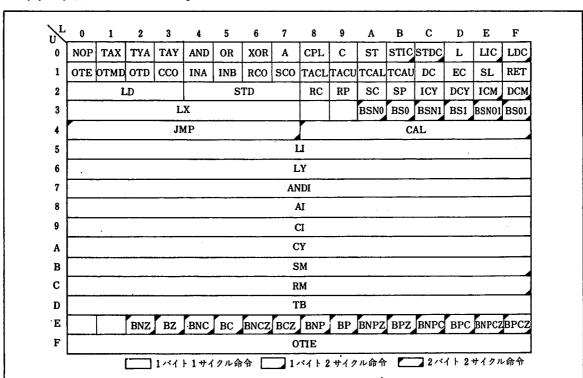
PANASONIC INDL/ELEK {IC} 72 DE 6932852 0005682 3

6932852 PANASONIC INDL. ELECTRONIC マイクロコンピュータ(4-Bit)

DT-49-19-04 72C 05682 MN1400 Family

■ MN 1400ファミリ製品展開図/MN 1400 Family Products Map




6932852 PANASONIC INDL. ELECTRONIC マイクロコンピュータ(4-Bit)

72C 05683 D 7-49-19-04 MN1400 Family

■ 基本ブロック図/Basic Block Diagram

■ 命令マップ/Instruction Map

6932852 PANASONIC INDL. ELECTRONIC 72C 05684 D7-49-19-04 マイクロコンピュータ(4-Bit)

MN1400 Family

■ 機能説明

記 号	ブロック名	機能説明								
ALU	演算論理ユニット	データの各種処理判定を行なう回路。 動作モードには、AND (論理積)、OR (論理和)、 Exclusive OR (排他的論理和)、および ADD (加算) の4モードがある。								
ACC	アキュムレータ	演算装置にある主要な4ビットのレジスタで,動作中に処理されるほとんどのデータを扱う。								
ТЕМР	テンポラリレジスタ	レジスタの一種で、アキュムレータの内容を保存する必要 のある場合に利用される。								
PS	プログラムステータス	プログラム中、任意に用いることができるフラグで、命令 SP、RPによってセット、リセットされる。 フラグは、システムの状態を記憶する1ビットのフリップ フロップ。								
CF	キャリフラグ	データを ALU で処理した結果、最上位ビットからの桁上 げが生じたときにセットされるフラグ。 命令 SC、RC によってもセット、リセットされる。								
ZF	ゼロフラグ	データ処理の結果がゼロの場合セットされるフラグ。								
RAM	ランダムアクセス・メモリ	システムの制御に必要なデータを記憶する書込み、読出し可能なメモリ。 MN1400 には 1 語 4 ビットで 64 語用意され、X レジスタと Y レジスタでアドレスを指定。								
х	X レジスタ	RAM の1語 M (X, Y) のアドレスを指定する X の 値を 保持する 3 ビットのレジスタ。								
Y	Y レジスタ	RAM の1語 M (X, Y) のアドレスを指定する Y の値を保持する 4 ビットのレジスタ。 Y レジスタは、RAM のアドレス指定以外に C 出力ポートの端子も指定。								
PC	プログラムカウンタ	11 ビットのバイナリカウンタで、命令記憶用の ROM を最大 2048 ワード指定可能。								
STACK	スタック	サブルーチン実行時にプログラムカウンタの内容を退避させるためのレジスタで2 レベル各 11 ビットある。								
ROM	リードオンリ・メモリ	命令を記憶し読出し専用に使用されるメモリ。 MN1400 には 1 ワード 8 ビット構成で 1024 ワード用意 されている。								
IR	インストラクションレジスタ	ROM から読み出された命令を命令実行サイクルの間ラッチする8ピットのレジスタ。								
INSTRUCTION インストラクション PLA PLA		命令語をデコードする AND 部と OR 部とからなる PLA								
COUNTR	カウンタ	クロックバルスとは関係なく外部からの信号によってカウントする上下各4ビット計8ビットのパイナリ・リブルスウンタ。								

6932852 PANASONIC INDL. ELECTRONIC 72C 05685 D 7-49-/9-04 マイクロコンピュータ(4-Bit)

MN1400 Family

記号	ブロック名	機能説明						
L	ラッチ	データ処理回路とデータ入出力および表示部などの間でデータを保持。 出力ポートは、すべてラッチ付。						
DEC	デコーダ	Y レジスタの内容を C 出力ポートの端子番号に変換して指定。 たとえば、 Y = 5 の場合、CO 5 の端子が指定。						
PLA	プログラマブル・ロジック アレイ	論理素子がアレイ状に配列されている構造の積和論理回路で、プログラム可能。 4 ビットのデータと1つのフラグ (PS) 計5 ビットのデータを24 種の任意の8 ビットデータに変換。						
SP	スタックポイント	スタックのアドレスを指定するレジスタ。						
MPX	マルチプレクサ	単一のデータ通路を、多数のデータ入出力が時分割の方法 で共有し、データ転送のオペレーションを行なう。						
SF	センスフリップフロップ	CSLCTがL レベルのときカウンタの最上位桁が1から0になるとき(あふれたとき) セット。 CSLCT が H レベルのとき SNS 1 端子が H レベルになると SF がセット。 SF の状態 はブランチ命令 (BS 1 など)によって検出可能。						
E/D FF	カウンタイネーブル/ディスエー ブル・フリップフロップ	命令 EC,DC によってセット,リセットされ外部信号を カウントおよびストップの状態にする。						
S	同期化回路	カウンタとカウンタ信号入力の同期をとり SF にセット信号を送る。						
G	ダート	複数個の入力端子と1個の出力端子を有し、ある入力条件 が満足された場合にだけ出力が出る回路。						
С	コンペア	2つのデータを比較判別する回路。 データの入っているメモリやレジスタの内容は変化しない。						
T/C	ツルース/コンプリメント	命令によって,データをそのまま転送したり,または各ビットの1と0を反転させ補数を求める回路。						
CLOCK GEN	クロックゼネレータ	動作に必要なクロック信号発生のための発振回路。 内部タイミング信号は、CP1、CP2、CP3の3相から構成。						
AI0~3	A入力ポート	4 ビット並列の入力ポート。						
BI0~3	B入力ポート	4 ビット並列の入力ポート。						
SNS0	センス入力端子	入力レベルによって条件ジャンプ(ブランチ)を実行。						
SNS1	センス入力端子	CSLCT 端子との組合わせにより、SF への入力端子と、 内蔵カウンタへの入力端子の 2 通りの使い方が可能。						
CSLCT	カウンタセレクト入力端子	SNS1端子の機能を切り換える端子。 L レベルのとき SNS1はカウンタ入力端子,H レベルの とき SNS1はセンス入力端子。						

6932852 PANASONIC INDL. ELECTRONIC 72C 05686 D マイクロコンピュータ(4-Bit) 7-49-/9-04 MN1400 Family

記 号	ブロック名	機能説明
RST	リセット入力端子	L レベルのとき、プログラムカウンタ、すべての出力ラッチ、フラグ、センスフリップフロップ、カウンタイネーブルフリップフロップをクリアあるいはリセット。
RST (Pチャンネル)	リセット入力端子	H レベルのとき、プログラムカウンタ、すべての出力ラッチ、フラグ、センスフリップフロップ、カウンタイネーブル・フリップフロップをクリアあるいはリセット。
osc	オシレータ入力端子	クロック信号発生のための端子で、抵抗、コンデンサ各1個を接続すると、LSI内蔵の発振回路により必要なクロックが得られる。また、外部から約300kHz(200kHz: P-ch)の信号を入力すると、その信号に同期したクロック信号が得られる。
TST (TST)	テスト入力端子	LSIのテスト用端子。使用時は Vss に接続。
V _{DD}	電源入力端子	V _{DD} 電圧を印加 する。(標準+5V)
Vss	電源入力端子	接地する。(通常 0 V)
CO0~11	C出力ポート	12 本の個別出力 (ディスクリート出力)
DO0~7	D出力ポート	プログラム可能な出力デコード回路 (PLA) で,5ビット のデータを任意の8ビットのデータに変換し出力。 8ビット出力データの種類は最大24。
EO0~3	E出力ポート	4 ビット並列の出力ポート。

6932852 PANASONIC INDL, ELECTRONIC マイクロコンピュータ(4-Bit)

72C 05687 D MN1400 Family

■ MN1400ファミリ命令セット/MN1400 Family Instruction Set

T-49-19-04

	· · · · · · · · · · · · · · · · · · ·		命令コード		影響		
		ニーモニック		2 進コード		される フラグ	動作
	L	load	0000	1101	0D	ZF	A←M (X, Y)
	LD	load direct	0010	00 n	2n	ZF	A←M (0, n)
	LI	load immediate	0101	n	5n	ZF	A←n
	LIC	*load increment Y	0000	1110	0E	ZF	$A \leftarrow M(X, Y), Y \leftarrow Y + 1$
	LDC	*load decrement Y	0000	1111	0F	ZF	$A \leftarrow M(X, Y), Y \leftarrow Y - 1$
テ	ST	store	0000	1010	0A		M (X, Y)←A
i	STD	store direct	0010	01 n	2(4+n)		M (0, n)←A
9	STIC	*store increment Y	0000	1011	0B	ZF	$M(X, Y) \leftarrow A, Y \leftarrow Y + 1$
	STDC	*store decrement Y	0000	1100	0C	ZF	$M(X, Y) \leftarrow A, Y \leftarrow Y - 1$
転	LX	load X	0011	0 n	3n		X←n
送	LY	load Y	0110	n	6n		Y←n
命	TAX	transfar A to X	0000	0001	01		X←A
令	TAY	transfer A to Y	0000	0011	03		Y←A
1	TYA	transfer Y to A	0000	0010	02	ZF	A←Y
l	TACU	transfer A to counter upper	0001	1001	19		CU ←A
	TACL	transfer A to counter lower	0001	1000	18		CL←A
	TCAU	transfer counter upper to A	0001	1011	1B	ZF	A←CU
	TCAL	transfer counter lower to A	0001	1010	1A	ZF	A←CL
	NOP	no operation	0000	0000	00		
	AND	and	0000	0100	04	ZF	$A \leftarrow A \wedge M(X, Y)$
	ANDI	and immediate	0111	n	7n	ZF	A←A∧n
1	OR	or .	0000	0101	05	ZF	$A \leftarrow A \lor M(X, Y)$
1	XOR	exclusive or	0000	0110	06 .	ZF	$A \leftarrow A \forall M (X, Y)$
各	A	add	0000	0111	07	CF ZF	$A \leftarrow A + M(X, Y) + CF$
種	AI	add immediate	1000	n	8n	CF ZF	A←A+n
操	CPL	complement	0000	1000	08	ZF.	A←Ā
作	C	compare	0000	1001	09	CF ZF	$\overline{A}+M(X, Y)+1$
	CI	compare immediate	1001	n	9n	CF ZF	A+n+1
命	CY	compare Y	1010	n	An	ZF	Y∀n
令	SL	shift	0001	1110	1E	CF ZF	A←A+A
	ICY	increment Y	0010	1100	2C	ZF	Y ← Y+1
	DCY	decrement Y	0010	1101	2D	ZF	Y ← Y−1
	ICM	*increment memory	0010	1110	2E	CF ZF	$M(X, Y) \leftarrow M(X, Y) + 1$
	DCM	*decrement memory	0010	1111	2F	CF ZF	M(X, Y)-M(X, Y)-1
	SM	*set memory bits	1011	n	Bn		$M(X, Y) \leftarrow M(X, Y) \vee n$
.	RM	*reset memory bits .	1100	n	Cn		$M(X, Y) \leftarrow M(X, Y) \wedge \bar{n}$
	TB	test bits	1101	n	Dn	ZF	A^n

^{* 1}バイト2サイクル命令 (ROM 1バイト使用 実行時間 20 μs(標準))

^{**2}パイト2サイクル命令 (ROM 2パイト使用 実行時間 20 μs (標準))

^{*}または**を付さない命令は ROM 1パイト使用 実行時間 10 µs (標準)

6932852 PANASONIC INDL. ELECTRONIC マイクロコンピュータ(4-Bit)

T-49-19-04

MN1400 Family

∧ 論理積 (AND) ∨ 論理和 (OR) ∀ 排他的論理和 (XOR)

72C 05688

-			論理和(OR) ♥ 辨他的論理和(XOR)				
		ニーモニック	2 准コード 16		ド 16 進 コード	影 響 される フラグ	動 作
	INA	input via A-port	0001	0100	14	ZF	A←A-port
	INB	input via B-port	0001	0101	15	ZF	A←B-port
入	OTD	output to D-port	0001	0010	12		D-port←A, PS
出	ОТМО	output memory to D-port	0001	0001	11		D-port←M(X, Y), PS
カ	OTE	output to E-port	0001	0000	10		E-port←A
命	OTIE	output immediate to E-port	1111	n	Fn		E-port←n
令	RCO	reset C-port	0001	0110	16		C-port(Y)←0
1,	SC0	set C-port	0001	0111	17		C-port(Y)←1
	CCO	-	0001	0011	13		C-port(11~0)←0
		clear C-port					
	RC	reset CF	0010	1000	28	CF	CF←0
	RP	reset PS	0010	1001	29	PS	PS←0
	SC	set CF	0010	1010	2A	CF	CF←1
	SP	set PS	0010 0011	1011 1011	2B 3B mm	PS	PS←1 PC(7~0)←mm if SNS0=1
	BS0	**branch if SNS0=1 **branch if SF=1	0011 0011	m	3D mm		$PC(7\sim0)\leftarrow mm$ if $SF=1$
	BS1 BS01	**branch if SNS0=1 or SF=1	0011	1101 m 1111	3F mm		$PC(7\sim0)\leftarrow mm$ if $SNS0 \lor SF=1$
	BSN0	**branch if SNS0=0	0011 0011	1010	3A mm		$PC(7\sim0)\leftarrow mm \text{ if } SNS0=0$
	BSN1	**branch if SF=0	0011	1100	3C mm		PC(7~0)←mm if SF=0
	BSN01	**branch if SNS0=0 and SF=0	0011	1110	3E mm		$PC(7\sim0)\leftarrow mm$ if $SNS0 \lor SF=0$
_	BP	**branch if PS=1	m	1001	E9 mm		PC(7~0)←mm if PS=1
_	BC	**branch if CF=1	1110 1110	0101	E5 mm		$PC(7\sim0)\leftarrow mm \text{ if } CF=1$
ン	BZ	**branch if ZF=1	1110	0011	E3 mm		PC(7~0)←mm if ZF=1
ŀ	BPC	**branch if PS=1 or CF=1	m 1110	m 1101	EDmm		PC(7~0)←mm if PS∨CF=1
	BPZ	**branch if PS=1 or ZF=1	1110	1011	EB mm		PC(7~0)←mm if PS ∨ ZF=1
_	BCZ	**branch if CF=1 or ZF=1	1110	0111	E7 mm		PC(7~0)←mm if CF ∨ ZF=1
1	BPCZ	**branch if PS=1 or CF=1 or ZF=1	1110 m	1111 m	EF mm		$PC(7\sim0)\leftarrow mm \text{ if } PS \lor CF \lor ZF=1$
ル	BNP	**branch if PS=0	1110	1000	E8 mm		PC(7~0)←mm if PS=0
命	BNC	**branch if CF=0	1110	0100	E4 mm	ļ	PC(7~0)←mm if CF=0
令	BNZ	**branch if ZF=0	1110	0010	E2 mm		$PC(7\sim0)\leftarrow_{mm} \text{ if } ZF=0$
	BNPC	**branch if PS=0 and CF=0	1100 m	1100 m	ECmm		$PC(7\sim0)\leftarrow mm \text{ if } PS \lor CF=0$
	BNPZ	**branch if PS=0 and ZF=0	1110	1010	EAmm		$PC(7\sim0)\leftarrow mm \text{ if } PS \lor ZF=0$
	BNCZ	**branch if CF=0 and ZF=0	1110	0110 m	E6 mm		$PC(7\sim0)\leftarrow mm \text{ if } CF\vee ZF=0$
	BNPCZ	**branch if PS=0, CF=0 and ZF=0	1110 m	1110 m	EEmm		$ PC(7\sim0) \leftarrow mm \text{ if } PS \lor CF \lor ZF=0 $
	JMP	**jump	0100 m	On m	4n mm		PC(10~8)←n, PC(7~0)←mm
	CAL	**call	0100 m	1n m	4(8+n) mm		$\begin{array}{c} STACK \leftarrow PC + 2 \\ PC(10 \sim 8) \leftarrow n, PC(7 \sim 0) \leftarrow mm \end{array}$
	RET	return	0001	1111	1F		PC(10~0)←STACK
	EC	enable counter	0001	1101	1D		
	DC	disable counter	0001	1100	1C		