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Preface

Scope of this Document

This document presents information supporting hardware design and sys-
tems programming with Exponential Techology’s X704. Note that this docu-
ment is in progress and is subject to change at any time. Presently, it
consists of eight chapters and an appendix, as follows:

• Chapter  1, “Processor Overview,” describes basic features of the X704

and provides an overview of the processor’s organization and architec-
ture.

• Chapter  2, “PowerPC Architecture Compliance,” contrasts the imple-
mentation of the X704 to the Apple-IBM-Motorola specification for
PowerPC architecture. It provides details of features specific to the X704

implementation.

• Chapter  3, “Processor Operation,” provides a detailed look at the X704

hardware features that are of particular interest to systems program-
mers.

• Chapter  4, “Instruction Execution,” provides details on the operation of
the instruction pipelines. It will benefit software engineers working to
predict processor performance or to optimize software.

• Chapter  5, “Signal Descriptions,” presents details on the X704 hardware
interface.

• Chapter  6, “Processor Interface,” summarizes aspects of the hardware
interface that are unique to the X704.

• Chapter  7, “Test Interface,” presents details on X704 testability.

• Chapter  8, “Package Description,” provides a physical and mechanical
description of the X704.

• Appendix A, “Sample TLB Interrupt Handlers,” provides code examples.
1



Documentation Conventions and Definitions

This document follows the notation conventions used in the PowerPC
Architecture Specification referenced on page 3. In addition, the following
notation is used:

• 0bnnnn indicates a number expressed in binary format; 0xnnnn indi-
cates a number expressed in hexadecimal format (for example, 0x4F00).

• Instruction mnemonics appear in lowercase, bold italic typefaces (for
example, sync, tlbsync).

• Bits are numbered from left to right, starting with the lower numbered
bit. 

• Ranges of bits are specified in parentheses with starting and ending
numbers separated by a colon. For example, (5:7) denotes bits five
through seven.

• Register names, fields of instructions, fields of special purpose regis-
ters, and macro names appear in uppercase (for example, MSR, BO, RA,
and VSID).

• REG[FIELD] indicates a specific field within a register (for example,
FPSCR[NI]).

• REG(p) or REG(p:q) indicates a specific bit or range of bits, respectively,
within a register (for example, BO(2)).

• (x) indicates the contents of register x, when x is an instruction field
name. For example, (RA) means the contents of register RA, and (FRA)
means the contents of register FRA, where RA and FRA are instruction
fields. 

• (RA|0) indicates the contents of register RA where RA has the value of
1-31, or the value 0 when RA contains 0.

• ACTIVE_HIGH signals appear in uppercase text (for example, SCAN_EN
and SCAN_SER).

• ACTIVE_LOW signals appear in uppercase text with an overbar (for
example, ABB and DBB).

• SIG0–SIG7 indicates a group of signals from SIG0 to SIG7.

• The term power-endian is used to refer to the pseudo-little-endian mode
defined for the PowerPC.
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Applicable Documents

The X704 is compatible with the PowerPC architecture as specified in the
following documents:

• IBM, PowerPC User Instruction Set Architecture (Book I ), Morgan
Kaufmann, San Francisco, CA, second edition, December 13, 1994.

• IBM, PowerPC Virtual Environment Architecture (Book II–AIM), Morgan
Kaufmann, San Francisco, CA, second edition, December 13, 1994.

• IBM, PowerPC Operating Environment Architecture (Book III– AIM),
Morgan Kaufmann, San Francisco, CA, second edition, December 13,
1994.

These documents are collectively referred to as the PowerPC Architecture
Specification, PowerPC architecture, or simply as the architecture specifica-
tion and are individually referred to as Book I, Book II, and Book III. Readers
of this document should be familiar with these books.

The X704 bus interface is compatible with the interface described in:

• Motorola: PowerPC 604 Microprocessor Interface Specification,
March 28, 1994.

This document is referred to as the bus specification.

The X704 supports a test interface compatible with the IEEE 1149.1 stan-
dard described in:

• IEEE, New York, NY: IEEE Standard Test Access Port and Boundary-Scan
Architecture, IEEE Standard 1149.1, May, 1990
3
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1. Processor Overview

This document describes the X704 implementation of the PowerPC 
architecture.

1.1 Processor Features

The Exponential Technology X704 is a single-chip implementation of the 32-
bit PowerPC architecture that conforms fully to the PowerPC Architecture
Specification. The X704 processor features:

• separate integer, load/store, branch, and floating-point units

• up to three instructions issued each cycle

• separate level 1 data and instruction caches

• unified data and instruction level 2 cache

• on-chip translation lookaside buffer (TLB)

Integer Unit

• executes all arithmetic, logical, compare, rotate, and shift instructions
except multiply and divide in a single cycle

• executes multiply instructions in 3 to 6 cycles

• bypasses results to following instructions with no delay

Load/Store Unit

• supports issue of a load or store each cycle

• handles all big-endian mode misaligned loads and stores in hardware

• supports power-endian mode, including some misaligned accesses

• forwards load data to the integer unit with no load-use penalty
P R O C E S S O R  O V E R V I E W 5



Branch Unit

• supports issue of a branch or condition register logical instruction
each cycle

• maintains 2-bit dynamic branch prediction in hardware

• supports prediction through both PC-relative and indirect branches

• no penalty for following correctly predicted branches

• recovers quickly from mispredicted branches

Floating-Point Unit

• complies with IEEE-754 single-precision and double-precision arith-
metic standard

• implements optional fsel and stfiwx instructions

• supports denormalized numbers in hardware

Caches

• 2-level cache hierarchy

• 2KB direct-mapped instruction cache with 32-byte blocks

• 2KB direct-mapped write through data cache with 32-byte blocks

• 32KB 8-way set-associative unified level 2 cache with 32-byte blocks

• supports write through and copy back protocols (level 2 cache)

• supports all PowerPC cache operations

• physically indexed and physically tagged caches

• features 4-doubleword store queue between load/store unit and
data/level 2 caches

• features software disables

• maps out damaged blocks and columns (level 2 cache)

Memory Management Unit

• contains 128-entry, 4-way set-associative TLB with hardware-
assisted software refill

• contains four-entry, fully associative instruction TLB with hardware
refill from main TLB

• supports block address translation for four instruction blocks and
four data blocks
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MultiProcessing Support

• supports MESI cache coherency protocol

• supports lwarx and stwcx. memory synchronization instructions for
atomic updates

• broadcast synchronization of cache operations and serialization

• broadcast TLB invalidates

Bus Interface

• supports standard 64-bit data, 32-bit address 60x bus

• supports data streaming with optional fast L2 mode

• supports pipelined and split transactions

• supports processor clock that is an integral multiple of bus clock

Test Interface

• features JTAG TAP controller with boundary scan

• proprietary scan access to all internal flip flops

• supports scan access to all internal RAM structures

• supports instruction-level access to all internal RAM structures

• performs at-speed fault testing

1.2 Processor Organization

This section presents a high-level view of the X704 processor. See Chapter 3
for detailed descriptions of the X704 micro-architecture and implementation. 

The major functional blocks of the X704 include the following:

• instruction fetch unit, including the instruction cache

• decode unit

• integer execution unit

• load/store unit, including the data cache and TLB

• floating-point execution unit

• level 2 cache

• bus interface unit
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The block diagram in Figure 1 depicts an overview of the X704 data paths.

Figure 1: Data Path Simplified Block Diagram

1.2.1 Instruction Fetch Unit

The instruction fetch unit contains the instruction cache, the instruction TLB
and the IBAT registers, a branch prediction RAM known as the finder, and a
6-word instruction buffer. The instruction buffer consists of a four-entry
decode buffer and a two-entry fetch buffer. Figure 2 shows a simplified
block diagram of the instruction fetch unit.

As the decode unit empties the decode buffer, the fetch unit continually
reads instructions from the instruction cache and places them in the instruc-
tion buffer. Instructions not consumed by the decode unit are moved to the
front of the decode buffer. An aligned doubleword can be read from the
instruction cache on each cycle. The instruction cache is not read during an
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instruction TLB miss, during an instruction cache miss, or when the fetch
buffer is not empty. Only one instruction can be placed in the decode buffer
after the instruction stream branches to an instruction on an odd word
address. Instructions are placed directly in the decode buffer portion of the
instruction buffer if it is not full; the fetch buffer holds any overflow.

The fetch unit maintains its own copy of the program counter, called the
fetch PC, that is updated in one of three ways: 

• If the finder indicates that the instruction being read is not a branch or is
a branch that is predicted to be not taken, the fetch unit increments the
counter.

• If the finder predicts that a branch will be taken, the fetch unit sets the
counter to the branch target address. 

• If the decode unit indicates that a previous branch was predicted incor-
rectly, the fetch unit sets the counter to the correct branch target
address provided by the decode unit.

Figure 2: Instruction Fetch Unit Simplified Block Diagram
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FINDER ICACHE
Incrementer

FETCH PC

Fetch Buffer

L2 Buffer

Decode Buffer

From Level 2 Cache

From Decode Unit
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The fetch unit predicts indirect branches, including return-from-interrupt,
and some interrupts. However, not all branches can be predicted. See
Section 3.8 on page 81 for more information on branch prediction.

1.2.2 Decode Unit

The decode unit examines the contents of the first three entries in the
decode buffer and determines whether the first, the first and the second, or
all three of those instructions can be issued—sent to the appropriate execu-
tion unit—on each cycle. Integer register operands are read from the integer
register file, which is part of the decode unit. The decode unit tracks inter-
instruction interlocks and ensures that all results are correctly bypassed to
any instructions that need them. This unit also processes exceptions.

1.2.3 Branch Unit

The branch unit determines whether branches are taken and computes
branch target addresses. The branch unit tracks all branch predictions made
by the fetch unit and handles mispredicted branches by flushing the pipeline
and sending the correct branch target address back to the fetch unit.

The condition register resides in the branch unit, so all condition register log-
ical instructions are executed here. The branch unit also contains the link
register, count register, XER, MSR, SRR0, SRR1, DEC, TBU, and TBL spe-
cial purpose registers.

1.2.4 Integer Execution Unit

The integer execution unit consists of a single pipe stage that executes
instructions in one of five subunits: an adder unit, a logical operation unit, a
shifter/rotator, a leading-zero counter, and a multiplier. The multiplier takes
multiple cycles and includes two internal registers, MQ1 and MQ2, that
hold intermediate results. Divides use a combination of the adder and the
shifter/rotator. Only one subunit can execute an instruction in any one cycle.
Figure 3 shows a simplified block diagram of the integer execution unit.
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Figure 3: Integer Execution Unit Simplified Block Diagram

1.2.5 Load/Store Unit

In conjunction with the level 2 cache and bus interface unit, the load/store
unit executes load, store, and cache operation instructions. This unit con-
sists of an adder that produces the effective address from the address oper-
ands, the TLB, the data cache, a rotator that handles misaligned data and
performs byte-reversal, and a store queue. Figure 4 on page 13 shows a
simplified block diagram of the load/store unit. A number of SPRs, including
the DAR, DSISR, SDR1, SPRG, and DBATs, and the segment registers,
reside in the load/store unit.

The load/store unit reads the results of load instructions from the data
cache. It then immediately bypasses the results to any execution unit that
may need them as operands for other instructions, even to fixed-point
instructions that are issued in the same cycle as the load. Because of this
intra-cycle bypassing, the load-use penalty for ALU operations on the X704 is
effectively zero cycles. Store instructions do not usually delay the execution
pipeline. Store data is placed in the store queue where it waits for a free
cycle when it can be written to the level 2 cache and possibly to the data
cache. 
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Data in the store queue can be written to both the data cache and the level
2 cache. Store queue entries also hold data sent from the level 2 cache in
response to a data cache miss. The store queue allows subsequent load
instructions to proceed and potentially complete before it writes the store
data to either cache. Stores that miss in the data cache do not cause a data
cache miss; instead, the data is sent directly to the level 2 cache, where a
miss occurs if necessary. This process is known as store-around.

The store queue contains four doubleword entries. Cacheable stores that hit
existing entries in the store queue combine with the existing entry rather
than allocate a new entry. This significantly improves the performance of
consecutive stores, particularly those using the store multiple instruction. In
most cases, data held in the store queue can be bypassed back into the
pipeline when a load instruction hits it; the load need not wait until the store
queue data is written into the data cache.

Cache operations are placed in the store queue and sent to the level 2
cache, which actually performs the operations, without holding up the exe-
cution pipeline. The sync, tlbsync, and eieio synchronization instructions
also execute in the load/store unit and do not complete until all of the appro-
priate entries have been removed from the store queue.
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Figure 4: Load/Store Unit Simplified Block Diagram

1.2.6 Floating-Point Execution Unit

The floating-point execution unit contains the floating-point register file, a
pipelined adder, a pipelined multiplier, and a divider that all support the IEEE-
754 standard for floating-point arithmetic. Figure 5 shows a simplified block
diagram of the floating-point execution unit.

The X704 processor supports IEEE NaNs and denormalized numbers. See
Section 2.1.7.6 on page 24 for more information on denormalized numbers.
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Figure 5: Floating-Point Execution Unit Block Diagram

1.2.7 Level 2 Cache

The level 2 cache moves data between external caches or memory and the
faster instruction and data caches. The level 2 cache controller handles mul-
tiple misses and processes hits from either level 1 cache while satisfying a
miss from one or both of them.

The level 2 cache also executes cache operations such as block touch, block
store, and block zero, maintaining both the storage reservation used by the
stwcx. instruction and cache coherency in a multiprocessor system using
the MESI protocol.

The level 1 caches must be subsets of the level 2 cache; the level 2 cache
tags record which lines, if any, are present in either level 1 cache. This
allows the level 2 cache to execute most cache operations and process
most snoop requests without interfering with the operation of the level 1
caches.
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1.2.8 Bus Interface Unit

The bus interface unit passes information between the level 2 cache and
the system bus using the basic transfer protocol described in the bus speci-
fication. It contains:

• a 32-byte writeback buffer that stages data being evicted from the level
2 cache

• a 16-byte write buffer that holds write data being sent to the system in
response to a snoop

• address buffers that hold information for up to three read, write, coher-
ency, or synchronization requests and a single incoming snoop request

In a multiprocessor system, the bus interface unit maintains information on
the state of broadcast coherency and synchronization operations.
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2. PowerPC Architecture Compliance

This chapter describes implementation-dependent features of the X704 and
elaborates on general architectural details where necessary.

2.1 X704 User Instruction Set Architecture (UISA)

This section follows the structure of Book I of the PowerPC Architecture
Specification. The reader should be familiar with that book.

2.1.1 Reserved Fields

The PowerPC architecture does not require the implementation of reserved
bits in special purpose registers. For reserved bits, do not assume that a
read returns the last value written when writing software. When the X704

writes zero to a reserved bit, subsequent reads return zero; when the X704

writes one to a reserved bit, subsequent reads return an undefined value.

2.1.2 Classes of Instructions 

The PowerPC architecture defines three instruction classes:

• Defined

• Illegal

• Reserved

The following sections describe the X704’s implementation.

2.1.2.1 Defined Instruction Class

The X704 supports all required instructions defined for 32-bit implementa-
tions of the PowerPC architecture. It also supports the optional fsel,
stfiwx, and tlbie instructions. 
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The X704 does not support the optional fres, frsqrte, fsqrt, fsqrts, tlbia,
eciwx, and ecowx instructions. Attempts to execute these instructions
cause the system illegal instruction error handler to be invoked.

Book I of the architecture defines certain instructions to have preferred
forms. The X704 does not distinguish between preferred forms and other
forms of valid defined instructions. 

The architecture allows invalid forms of defined instructions to cause
boundedly undefined results. The operation of the X704 on invalid forms of
instructions is described for each of the functional units in Section 2.1.4.3
on page 19, Section 2.1.5.2 on page 21, Section 2.1.6.1 on page 22, and
Section 2.1.7.8 on page 25, respectively.

2.1.2.2 Illegal Instruction Class

Attempts to execute instructions in this class cause the system illegal
instruction error handler to be invoked. PowerPC instructions defined only
for 64-bit implementations are treated as illegal instructions.

2.1.2.3 Reserved Instruction Class

The reserved instruction class comprise the following four subclasses: 

• the instruction having primary opcode zero except for the instruction
consisting entirely of zeros

• POWER instructions that were not included in the PowerPC architecture

• implementation-dependent instructions required to conform to the archi-
tecture specification

• other implementation-dependent instructions

The X704 invokes the system illegal instruction error handler on attempts to
execute instructions with primary opcode zero or POWER instructions that
are not included in the PowerPC architecture. See Section G.27 of Book I
for POWER instructions not implemented in the PowerPC architecture.

There are no implementation-dependent instructions required to conform to
the PowerPC Architecture Specification.

The X704 supports two implementation-dependent instructions, lwdx and
stwdx, that provide diagnostic access to the on-chip caches and TLB. See
Section 2.2.4 on page 30.
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The X704 also supports several privileged special purpose registers (SPRs)
that are not defined in the architecture specification. The mfspr and mtspr

instructions provide access to these registers. These implementation-
dependent SPRs are described in Section 2.3.4.3 on page 35.

2.1.3 Exceptions

The X704 supports the standard PowerPC exceptions, including single-step
and branch tracing; it also supports two additional exceptions not described
in the architecture specification: TLB miss and TLB store. These exceptions
handle software reloading and updating of the translation lookaside buffer
(TLB). See Section 2.3.6.2 on page 56 for additional information on these
interrupts.

2.1.4 Branch Processor

The following sections describe the X704 UISA for the branch processor.

2.1.4.1 Instruction Fetching

The X704 prefetches instructions before it determines whether they will
actually execute. Instructions are never fetched from guarded storage
unless they are either in the cache, known to be on the branch path, or are
on the same page as an instruction known to be on the branch path. The
X704 requires software cache operations when a program modifies an
instruction it intends to execute. Software must execute the instruction
sequence described in Section 2.2.6 on page 32 to ensure that the modified
instruction is visible to the fetch unit.

The instruction fetch unit includes an Instruction Address Breakpoint Regis-
ter (IABR) that triggers a trace interrupt when an instruction is fetched from
a specified address. See Section 2.3.4.5 on page 41 for more information on
IABR and its associated interrupt.

2.1.4.2 Branch Prediction

The X704 improves its performance by predicting branch directions and tar-
get addresses using the algorithms described in Section 3.8 on page 81.
The X704 ignores the y bit in the BO field of branch conditional instructions.

2.1.4.3 Invalid Branch Instruction Forms

Attempts to execute invalid forms of the bcctr instruction where BO(2) is
clear will cause the system illegal instruction error handler to be invoked.
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Execution of invalid forms of the mcrf and condition-register logical instruc-
tions with the Rc bit set may cause CR0 to be set to an undefined value.

2.1.5 Fixed-Point Processor

The following sections describe the X704 implementation of the fixed-point
processor.

2.1.5.1 Load/Store Unit

Book I of the architecture specification notes that the load algebraic, load
with byte reversal, and load with update instructions may have greater
latency than other load instructions. On the X704, load algebraic instructions
(lha, lhax, lhau, and lhaux) require an additional cycle before the result
can be used by another instruction, but can still issue at the rate of one per
cycle. Load with byte reversal and load with update instructions, however,
incur no additional latency penalty, although update instructions do prevent
the simultaneous issue of an integer instruction. See Chapter 4 for more
information on instruction latency and performance.

When operating in big-endian mode, the load/store unit supports arbitrary
alignment of halfword, word, floating-point single, and floating-point double
scalar values. In power-endian mode, the load/store unit supports mis-
aligned word and halfword loads and stores that do not cross a doubleword
boundary. Some alignments may incur additional cycles of execution time
as described in Section 4.8 on page 99. Power-endian mode elementary
loads and stores that cross a doubleword boundary, and any lwarx or
stwcx. instruction with a misaligned target address causes the system
alignment error handler to be invoked.

An unaligned access that does not cause the system alignment error han-
dler to be invoked may cross a page boundary. If this happens, the TLB
miss, TLB store fault, or system data storage error handlers can be invoked
with the instruction partially completed, but the RT register will not have
been altered for elementary fixed-point load instructions. Aligned move
assist (lswi, lswx, stswi, and stswx), lmw, and stmw instructions that
cross page boundaries can also cause these handlers to be invoked with the
instruction partially completed. 

The X704 does not support direct-store segments or accesses to direct-store
segments. All attempts to reference data in a direct-store segment cause
either the system data storage error handler or the system alignment error
handler to be invoked.
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2.1.5.2 Invalid Load/Store Instruction Forms

Attempts to execute load with update instructions with RA = RT cause the
system illegal instruction error handler to be invoked.

The execution of load with update or store with update instructions with
RA = 0 performs the storage access with an effective address of the con-
tents of RB (for X-form instructions) or of the displacement (for D-form
instructions). If the access is successful, r0 is set to the effective address.

Execution of the lmw, lswi, and lswx instructions with RA or RB in the
range of target registers, including the RA = 0 case, functions correctly, but
the instructions cannot be restarted reliably if interrupted because the
address value in RA or RB may have been overwritten.

Execution of an lswx instruction specifying a zero-byte transfer causes the
contents of RT to become undefined.

Execution of invalid forms of load/store instructions with the Rc bit set does
not alter CR0.

Execution of the stwcx. instruction with the Rc bit clear sets CR0 as if the
Rc bit were set.

2.1.5.3 Reservation Granularity

The storage reservation granularity established by the lwarx instruction is
32 bytes—the same size as a cache block.

2.1.5.4 Synchronization Instruction

This instruction causes significant performance penalties and should not be
used indiscriminately. See Section 2.2.5 on page 32 for a detailed descrip-
tion of the sync instruction. 

2.1.5.5 Data Breakpoints

The load store unit includes a Data Address Breakpoint Register (DABR) and
a Breakpoint Control register (BPTCTL) that cause a data storage interrupt to
occur when a specified address or address range is referenced. See
Section 2.3.4.5 on page 41 for more information on BPTCTL, DABR, and
breakpoint interrupts.
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2.1.6 Fixed-Point Unit

Book I of the architecture specification notes that instructions with the OE
bit set or those that are defined to set CA can execute slowly or prevent the
execution of subsequent instructions until the operation is complete. With
the X704 processor, instructions that set CA never cause performance penal-
ties. The performance of multiply instructions, however, is affected by set-
ting the OE bit.

On the X704, the mullwo and mullwo. instructions always require six
cycles, as opposed to the three to five cycles required by other fixed-point
multiply instructions. The only other performance penalty that may occur
for fixed-point instructions occurs when recovering from mispredicted
branches based on the value of the SO bit in CR0. In this case, a penalty is
incurred only when the branch issues while the instruction with OE set is
still in the pipeline.

The performance of the mtcrf instruction does not depend on the value of
the FXM field in the instruction.

Execution of mtspr and mfspr instructions with undefined values in the
SPR field triggers either the system privileged instruction handler (if SPR(0)
is set) or the system illegal instruction interrupt handler (if SPR(0) is clear).
The X704 defines additional SPR values beyond those defined in the
PowerPC Architecture Specification.

The X704 does not support the optional EAR special purpose register.
Attempts to reference this register cause the system illegal instruction error
handler to be invoked.

2.1.6.1 Invalid Fixed-Point Instruction Forms

The X704 processor ignores the Rc bit value in compare, trap, mtspr,
mfspr, mcrxr, and mfcr instructions. Execution of those instructions with
the Rc bit set will not cause CR0 to be set to an undefined value.

Execution of the mtcrf instruction with the Rc bit set may cause CR0 to be
set to an undefined value.

Execution of compare instructions with Rc set and with BF not equal to zero
will set CR field BF correctly.

Execution of compare instructions is unaffected by the value of either the L
bit or bit 9 of the instruction.

Execution of instructions such as neg that do not use the RB field is unaf-
fected by the contents of that field.
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2.1.7 Floating-Point Unit

The following sections describe the X704 implementation of the floating-
point unit.

2.1.7.1 Conformance with IEEE Standard

The X704 floating-point unit complies with the IEEE-754 floating-point stan-
dard while the NI bit in the FPSCR is clear. When FPSCR[NI] is set, the
X704 deviates from the standard by replacing denormalized results of
floating-point computational instructions with zeros. The check for a denor-
malized result is made before rounding, so a result that would have been
rounded from the largest denormalized number to the smallest normalized
number is still forced to zero.

Setting the NI bit does not alter either the definitions of other FPSCR fields
or the behavior of floating-point exceptions, including underflow and inex-
act traps resulting from denormalized results that are forced to zero. Appli-
cations that want to suppress all floating-point exceptions should clear all
five exception enable bits in the FPSCR.

2.1.7.2 Floating-Point Load/Store Operations

The floating-point register file stores all operands in double-precision for-
mat. Single-precision loads and stores perform the appropriate conversions
to and from the single-precision memory format. Conversions of single-
precision denormalized values on load instructions cause a performance
penalty. See Section 4.9 on page 101 for more information on floating-
point execution.

2.1.7.3 Floating-Point Arithmetic Instructions

The architecture specification requires operands to single-precision float-
ing-point arithmetic instructions to be representable in single-precision for-
mat. If they are not, the results of single-precision arithmetic instructions
are undefined. On the X704, the results are undefined only when one or
more operands are not representable in single-precision format and the
result is also not representable in single-precision format. The undefined
result may not be representable in single-precision format and therefore
may not be a valid input for subsequent single-precision computational or
store instructions.
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2.1.7.4 Floating-Point Status and Control Register Instructions

The performance of the mtfsf instruction does not depend on the value of
the FLM field in the instruction.

2.1.7.5 Optional Instructions

The X704 implements the optional fsel and stfiwx instructions, but not the
optional fres, frsqrte, fsqrt, and fsqrts instructions. The hardware never
sets FPSCR[VXSQRT] except when one of the floating-point status and con-
trol instructions sets that bit explicitly.

2.1.7.6 Denormalized Numbers

The X704 provides complete support for denormalized values in both single-
and double-precision formats. When the processor is in non-IEEE mode
(FPSCR[NI] is set), denormalized results of floating-point computational
instructions, but not floating-point load instructions, are forced to zero. Con-
version of single-precision denormalized values on load instructions causes
a performance penalty. See Section 4.9 on page 101 for more on floating-
point execution.

2.1.7.7 Floating-Point Exceptions

All floating-point exceptions on the X704 are reported as precise exceptions.
The X704 does not use the imprecise recoverable and imprecise non-recov-
erable exception modes. When a floating-point exception occurs while the
processor is not in floating-point interrupts disabled mode, SRR0 always
points to the instruction that caused the exception, all instructions prior to
that instruction have completed, and no instructions following that instruc-
tion have caused any architecturally visible effects.

Enabling inexact, overflow, and underflow exceptions degrades perfor-
mance more than enabling zero divide and invalid operation exceptions.
Enabling inexact, overflow, and underflow exceptions does not cause the
floating-point operations to take longer, but it does prevent the fixed-point
and branch processors from completing instructions and issuing additional
instructions for an extended period of time. See Section 4.9 on page 101 for
more information.

The X704 processor does not use the floating-point assist interrupt.
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2.1.7.8 Invalid Floating-Point Instruction Forms

The execution of floating-point load with update or floating-point store with
update instructions with RA = 0 performs the storage access with an effec-
tive address of the contents of RB (for X-form instructions) or of the dis-
placement (for D-form instructions). If the access is successful, R0 is set to
the effective address.

Execution of floating-point load and store instructions with the Rc bit set
does not alter CR1.

The X704 processor ignores the value of the Rc bit in fcmpo and fcmpu.
Execution of those instructions with the Rc bit set does not cause CR1 to
be set to an undefined value.

Execution of floating-point compare instructions with Rc set and with BF
not equal to one will set CR field BF correctly.

2.2 X704 Virtual Environment Architecture (VEA)

This section follows the structure of Book II of the PowerPC Architecture
Specification. The reader should be familiar with that book.

2.2.1 Storage Model

The following sections describe the implementation of the storage model
for the X704 processor.

2.2.1.1 Caches

The X704 contains three on-chip caches: level 1 data and instruction caches,
and a unified level 2 cache. In this document, level 1 is used only when
referring to the instruction and data caches as a group; otherwise, those
caches are known simply as the instruction cache and the data cache.

All three caches are made up of 32-byte blocks, are physically addressed,
and have physical tags. Cache validity is maintained on a doubleword basis
in the level 1 caches. A level 2 cache miss requests all 32 bytes from off
chip. This doubleword validity scheme allows partially satisfied level 1 cache
misses to be abandoned when a higher-priority miss occurs. For example, if
the instruction stream executes a branch from the middle of a cache block,
there is no need to supply the remainder of that block to the instruction
cache. Instead, the level 2 cache may immediately begin supplying data
from the target of the branch if that data is not already present in the
instruction cache.
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The instruction and data caches are 2KB direct-mapped caches. The level 2
cache is a 32KB, eight-way set-associative cache. The level 2 cache always
includes any block that is present in either level 1 cache; this is known as
the inclusion property. The level 2 cache uses a modified pseudo-LRU algo-
rithm to manage the blocks in an associativity set: a block marked as
present in either the data cache or the instruction cache is never considered
to be the least-recently-used block and is not replaced in the level 2 cache.

The X704 processor disables the caches when it is reset and must be indi-
vidually enabled by setting the appropriate bits in the L2CTL register. See
Section 2.3.4.6.3 on page 50 and Section 3.10 on page 85.

Level 1 cache blocks can be either valid or invalid. Level 2 cache blocks are
each in one of the four MESI cache line states: invalid (I), exclusive clean (E),
shared clean (S), and exclusive modified (M).

The data cache is a write through cache. The level 2 cache uses the write
through required (W) storage control attribute to determine whether each
individual block is write through or copy back. Blocks are treated as copy
back unless the W bit is set.

Most memory references are either instruction fetches, data loads, or data
stores. When all caches are enabled, those operations have the following
effects:

• Instruction fetches read the target storage block into the level 2 cache if
it is not already present there, and into the instruction cache if it is not
already in that cache.

• Data loads read the target storage block into the level 2 cache if it is not
already present there, and into the data cache if it is not already in that
cache.

• Data stores read the target storage block into the level 2 cache if it is not
already present there. If the block is present in the data cache, the mod-
ified data is written to the data cache; if the block is not present, it is not
brought into the data cache. The X704 always writes modified data into
the level 2 cache, but never to the instruction cache, even if the target
block is present there. 

All other memory references are performed either with cache management
instructions (described in Section 2.2.3 on page 27) or by other processors
referencing coherent storage (described in Section 3.4.6 on page 77). 
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2.2.1.2 Storage Consistency

In order to maintain sequential consistency for memory operations executed
within a single processor, the X704 load/store unit wraps data from the store
queue when a load hits a recent store. Store data is not placed in the cache or
sent off chip until any possible exceptions caused by the store instruction or
any instruction issued before the store instruction have occurred.

2.2.2 Effect of Operand Placement on Performance

The alignment of operands in memory affects the performance of load and
store instructions. In big-endian mode, the X704 handles misaligned accesses
with minimal performance degradation, and then only when the accesses
cross a doubleword boundary. In power-endian mode, misaligned accesses
that cross a doubleword boundary always invoke the system alignment error
handler, resulting in poor performance.

2.2.3 Cache Management Instructions

The X704 implements all cache management instructions described in Book II.

Execution of all of these instructions except isync can update the LRU state
of the TLB and level 2 cache. Management of the PTE Reference and Change
bits is left to the software interrupt handlers, but the handlers should not be
expected to distinguish accesses on behalf of cache management instructions
from other storage accesses.

2.2.3.1 Instruction Cache Block Invalidate (icbi )

Execution of the icbi instruction invokes the TLB miss handler if data address
translation is enabled and no translation for the effective address is found in
the TLB or DBAT. If a translation is found in the TLB, but read permission is not
allowed, the system data storage error handler is invoked. If data address
translation is disabled, or a translation is found and read access is allowed, the
addressed block is removed from the instruction cache if it is present there. If
the addressed storage is in coherence required mode, the operation is then
broadcast on the bus to allow the line to be invalidated in the instruction
caches of other processors.

The icbi instruction never invalidates a block in the level 2 cache.

The effect of this instruction is the same if the instruction cache is disabled.
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2.2.3.2 Instruction Synchronize (isync )

Execution of the isync instruction flushes any subsequent instructions
from the pipeline and causes the fetch unit to invalidate the contents of the
instruction buffer and to re-fetch the instruction following the isync in the
current context. All previously issued instructions complete.

This instruction must be used when changing the processor’s endian mode
(see Section 2.3.3.2 on page 34).

2.2.3.3 Data Cache Block Touch (dcbt )

If data address translation is disabled, or if a translation for the effective
address is found, read access is allowed and the addressed storage is not in
caching inhibited mode, the X704 may read the addressed block into the
level 2 cache. If any of these conditions are not met, if the level 2 cache is
disabled, or if processor resources are busy on higher-priority memory oper-
ations, the dcbt instruction is treated as a nop. 

Because of resource limitations, the X704 generally performs a read for only
the last in a sequence of touch operations. Data references caused by the
dcbt instruction are treated as prefetches. See Section 3.4.7 on page 78 for
more information on prefetching.

2.2.3.4 Data Cache Block Touch for Store (dcbtst )

The dcbtst instruction is treated as a nop when:

• the level 2 cache is disabled

• processor resources are busy on higher-priority memory operations

• data address translation is enabled and no translation for the effective
address is found

• read access is not allowed

• the addressed storage is in caching inhibited mode

If none of these conditions are true, and the addressed storage is marked as
memory coherence required, the addressed block is read into the level 2
cache with a read with intent to modify bus operation and marked as modi-
fied in the cache. If the addressed storage is marked as memory coherence
not required, the block is read into the cache with a simple read operation
and placed in the exclusive state.

This instruction should be used only when there is a high probability that the
target cache block will be modified before it is evicted from the cache. If the
line is very likely to be read, but less likely to be modified, the dcbt instruc-
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tion should be used instead. Because of resource limitations, the X704 gener-
ally performs a read for only the last in a sequence of touch operations. Data
references caused by the dcbtst instruction are treated as prefetches. See
Section 3.4.7 on page 78 for more information on prefetching.

2.2.3.5 Data Cache Block Zero (dcbz )

Execution of the dcbz instruction invokes the TLB miss handler if data
address translation is enabled and no translation for the effective address is
found in the TLB or DBAT. It also invokes the TLB store handler if a matching
TLB entry is found with the C bit clear, and invokes the system data error
handler if a translation is found that does not allow write permission.

If the addressed storage is marked as memory coherence required and not
caching inhibited, dcbz broadcasts an invalidate request that removes the
line from the caches of any other processors.

If the addressed storage is caching allowed, dcbz zeroes the line in the level
2 cache, allocating a cache block if the line is not already present. No read
request will be issued on the bus. If the addressed storage is present in the
data cache, dcbz invalidates the cache block containing that storage.

If the level 2 cache is disabled, or if the storage is marked as either caching
inhibited or write through required, the dcbz instruction sets each byte of
the addressed block in off-chip memory to zero. The PowerPC Architecture
Specification invokes the system alignment error handler in these cases, but
the X704 implementation does not.

2.2.3.6 Data Cache Block Store (dcbst )

Execution of the dcbst instruction invokes the TLB miss handler if data
address translation is enabled and no translation for the effective address is
found in the TLB or DBAT. If a translation is found, but read access is not
allowed, the system data storage error handler is invoked.

If data address translation is disabled, or a translation is found and the
addressed block is marked as modified in the level 2 cache, the contents of
the block are written back to off-chip memory, and the state of the block is
changed to exclusive clean. If the addressed storage is marked as memory
coherence required, the clean operation is broadcast on the bus.

The operation of this instruction is independent of the state of the cache
enables. If the block is not present and modified in any processor’s level 2
cache, the instruction is treated as a nop.
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2.2.3.7 Data Cache Block Flush (dcbf )

Execution of the dcbf instruction invokes the TLB miss handler if data
address translation is enabled and no translation for the effective address is
found in the TLB or DBAT. If a translation is found, but read access is not
allowed, the system data error handler is invoked.

If data address translation is disabled or a translation is found, and the
addressed block is marked as valid in the level 2 cache, the block is invali-
dated in the data cache, the instruction cache, and the level 2 cache. The data
cache block addressed by bits (21:26) of the effective address is invalidated
regardless of whether the addressed storage is present in the cache. If the
addressed block is marked as modified in the level 2 cache, the contents of
the block is written back to main memory. If the addressed storage is marked
as coherence required, the flush operation is broadcast on the bus.

The operation of this instruction is independent of the state of the cache
enables. If the block is not present in any processor’s level 2 cache, the
instruction is treated as a nop.

2.2.4 Additional Diagnostic Instructions

The X704 implements two diagnostic instructions allowing direct access to
the TLB, cache data, cache tags, and other internal processor structures.
These instructions use an alternate address space to reference the struc-
tures. See Section 3.9 on page 84 for a description of the diagnostic address
space. 

In the following instruction descriptions, DIAG(X, Y) refers to the contents of
Y bytes of diagnostic memory at address X in the diagnostic address space.

Load Word Diagnostic Indexed X-Form

lwdx RT, RA, RB

if RA = 0 then b ¬ 0 
else b ¬ (RA) 
a ¬ b + (RB)

RT ¬ DIAG (a, 4)

31

0 5

RT

6 10

RA

11 15

RB

16 20

/

31

0x21E

21 30
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Let the diagnostic address (a) be the sum (RA | 0) + (RB). The word in diag-
nostic memory addressed by a is loaded into RT.

This instruction is privileged, and defined only when the DE bit in the
MODES register is set. An attempt to execute this instruction with
MODES[DE] clear or MSR[PR] set will cause the system illegal instruction
error handler to be invoked. 

If the instruction references an undefined diagnostic address, the system
data storage interrupt handler may be invoked (see Section 3.9 on page 84).
The low two bits of the effective address must be zero or the results of exe-
cuting the instruction are boundedly undefined; this instruction never
causes an alignment interrupt.

Special Registers Altered: None

Store Word Diagnostic Indexed X-Form

stwdx RS, RA, RB

if RA = 0 then b ¬ 0 

else b ¬ (RA) 
a ¬ b + (RB)
DIAG (a, 4) ¬ (RS)

Let the diagnostic address (a) be the sum (RA | 0) + (RB). (RS) is stored into
the word in diagnostic memory addressed by a.

This instruction is privileged, and defined only when the DE bit in the
MODES register is set. An attempt to execute this instruction with
MODES[DE] clear or MSR[PR] set will cause the system illegal instruction
error handler to be invoked. 

If the instruction references an undefined diagnostic address, the system
data storage interrupt handler may be invoked (see Section 3.9 on page 84).
The low two bits of the effective address must be zero or the results of exe-
cuting the instruction are boundedly undefined; this instruction never
causes an alignment interrupt.

Special Registers Altered: None

31

0 5

RS

6 10

RA

11 15

RB

16 20

/

31

0x29E

21 30
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2.2.5 Storage Access Ordering

The X704 implements a weakly consistent storage model. The order in
which stores are visible outside the processor may not be the same order in
which the stores are performed. For example, multiple stores to the same
doubleword can be merged and made visible as a single store operation. If a
particular ordering is required, the eieio and sync instructions can be used
to place barriers in the storage access stream.

The eieio instruction does not complete until all stores have been removed
from the store queue and the level 2 cache has reported that all previous
tlbie and tlbsync operations have been broadcast on the bus. Subsequent
load and store instructions are delayed until after the eieio completes. The
architecture specification defines two sets of operations that are ordered
separately by eieio, but the X704 orders all applicable operations as a single
set. If synchronization of storage and TLB accesses is all that is required,
the eieio instruction is preferable to the sync instruction.

The sync instruction does not complete until the store queue is empty and
the level 2 cache reports that no operations are still in progress.

2.2.6 Executing Modified Code

When a program modifies an instruction stream that it wants to execute,
cache management instructions must be used to ensure that all updates are
visible to the instruction fetch unit. Without the use of these instructions,
the X704 does not guarantee coherency between the instruction cache and
either the data cache, level 2 cache, or off-chip memory. 

After modifying instructions in the block of data addressed by general regis-
ter RX, the program should execute the following instruction sequence:

dcbst RX ! update cache block in main memory

sync ! wait for update to complete

icbi RX ! invalidate block in icache 

sync ! wait for invalidate to complete

isync ! make sure instructions are re-
fetched

Because it appears before the icbi instruction, the first sync instruction
ensures that the fetch unit reads instructions from the modified block after
the updates are visible. The second sync instruction is necessary only on
multiprocessor systems where the block must be flushed from the instruc-
tion caches of all processors before execution continues.
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2.2.7 Atomic Update Primitives

The lwarx and stwcx. instructions function correctly regardless of the
write through required attribute for the addressed storage.

The stwcx. instruction performs a store even if its storage address is not
identical to the storage address used by the most recent lwarx instruction.

There are no causes of reservation loss other than those listed in Book II.
On the X704, the reservation is lost when another processor executes a
dcbtst or dcbi instruction to the reservation granule, but is not lost when
another processor executes a dcbf or dcbst.

2.2.8 Timer Facilities

The X704 maintains the 64-bit time base register in two parts: the lower 32
bits in the TBL register and the upper 32 bits in the TBU register. These reg-
isters can be read separately with the mftb and mftbu instructions. The
X704 is a 32-bit implementation of the PowerPC architecture and thus does
not provide a way to read all 64 bits of the time base in one instruction.

The X704 increments the time base register every four system bus clock
cycles as long as MODES[TBD] is clear. The X704 also implements the 32-bit
decrementer (DEC) register. This register counts down every four system
bus clock cycles.

2.3 X704 Operating Environment Architecture (OEA)

This section follows the structure of Book III of the PowerPC Architecture
Specification. The reader should be familiar with that book.

2.3.1 Reserved Fields in Storage Tables

The X704 hardware does not automatically access the hashed page table
and thus does not alter any reserved fields.

2.3.2 Exceptions

The X704 defines two additional interrupts: TLB miss and TLB store. These
interrupts manage the software refill and update of the TLB. They are
described in detail in Section 2.3.6.2 on page 56.
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2.3.3 Branch Processor

The following sections describe the X704 implementation of the OEA speci-
fication for the branch processor.

2.3.3.1 SRR0 and SRR1

Any instruction fetch when MSR[IR] is set can set SRR0 to the address of
the instruction being fetched, and can set SRR1 as described in
Section 2.3.6.2.13 on page 61.

The execution of any instruction requiring an address translation when
MSR[DR] is set can set SRR0 to the address of the instruction being exe-
cuted, and can set SRR1 as described in Section 2.3.6.2.13 on page 61 or
Section 2.3.6.2.14 on page 62.

2.3.3.2 MSR

The X704 implements the MSR as described in the PowerPC Architecture
Specification, including the tracing functions supported by the Branch Trace
Enable (BE) and Single-Step Trace Enable (SE) bits. When either of these
trace enable bits is set, the processor disables superscalar instruction issue.

Caution: Use of the tracing facilities causes significant performance loss.

The X704 uses MSR(14), formerly called the Implementation-Dependent
Function bit and known as MSR[TW] on the X704, to prevent external TLB
invalidates from interfering with a software page table walk. TLB miss and
TLB store interrupts set MSR[TW], and the rfi instruction clears it. When
the bit is set, the X704 defers processing of TLB invalidates received from
other processors or devices.

The X704 does not use the Power Management Enable (POW) bit. This bit is
treated as a reserved full-function bit. Future implementations that support
power management features may make use of this bit.

In order to ensure that instructions are fetched using the correct address for
the current endian format, care must be taken when altering the MSR[LE]
bit with an mtmsr or rfi instruction. When using an mtmsr instruction, the
change in endian-ness is not guaranteed to take effect until after a subse-
quent isync instruction. The following code sequence should be used to
change endian modes with an mtmsr instruction:

.align 8

mtmsr RX

isync
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When altering MSR[LE] with an rfi instruction using an effective address in
SRR0 that refers to the doubleword containing the rfi instruction, the
results are boundedly undefined.

2.3.4 Fixed-Point Processor

The following sections describe the X704 implementation of the OEA speci-
fication for the fixed-point processor.

2.3.4.1 Software Use SPRs

The X704 provides eight software use SPRs rather than the four specified in
Book III. SPRG0–SPRG7 are addressed by SPR values 272 through 279. The
additional SPRG registers can be used by implementation-dependent inter-
rupt handlers.

2.3.4.2 Processor Version Register

The Version field of the PVR contains 0x60 for the X704 processor. The
Revision field is divided into two bytes: bits (16:23) contain a major version
number and bits (24:31) contain a minor version number. The Revision

field is incremented each time the processor is revised. Table 1 shows the
values of the Revision field for all versions of the X704. 

Important Note: The Version field for the prototype version of the X704 processor 
was 0x54. This value will not be used for any other X704 versions.

2.3.4.3 Additional Special Purpose Registers 

The X704 contains several implementation-dependent special purpose regis-
ters that can be accessed with the mfspr and mtspr instructions.
Accesses to all of these registers are privileged. Table 2 shows all of the
SPRs implemented on the X704, with the implementation-dependent entries
shown in shaded rows.

Table 1: Processor Revision Values

Processor Release PVR.Revision

prototype 0x0100

initial production 0x0101
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Table 2: Special Purpose Registers 

SPR Number Register Name Privileged Unit Defined in Book/Page

Dec. spr5:9 spr0:4

1 00000 00001 XER no Branch Book I

8 00000 01000 LR no Branch Book I

9 00000 01001 CTR no Branch Book I

18 00000 10010 DSISR yes Load/Store Book III

19 00000 10011 DAR yes Load/Store Book III

22 00000 10110 DEC yes Branch Book III

25 00000 11001 SDR1 yes Load/Store Book III

26 00000 11010 SRR0 yes Branch Book III

27 00000 11011 SRR1 yes Branch Book III

272 01000 10000 SPRG0 yes Load/Store Book III

273 01000 10001 SPRG1 yes Load/Store Book III

274 01000 10010 SPRG2 yes Load/Store Book III

275 01000 10011 SPRG3 yes Load/Store Book III

276 01000 10100 SPRG4 yes Load/Store Book III

277 01000 10101 SPRG5 yes Load/Store Book III

278 01000 10110 SPRG6 yes Load/Store Book III

279 01000 10111 SPRG7 yes Load/Store Book III

284 01000 11100 TBL yes Branch Book II

285 01000 11101 TBU yes Branch Book II

287 01000 11111 PVR1 yes Load/Store Book III

528 10000 10000 IBAT0U yes Fetch Book III

529 10000 10001 IBAT0L yes Fetch Book III

530 10000 10010 IBAT1U yes Fetch Book III

531 10000 10011 IBAT1L yes Fetch Book III

532 10000 10100 IBAT2U yes Fetch Book III

533 10000 10101 IBAT2L yes Fetch Book III

534 10000 10110 IBAT3U yes Fetch Book III

535 10000 10111 IBAT3L yes Fetch Book III

536 10000 11000 DBAT0U yes Load/Store Book III

537 10000 11001 DBAT0L yes Load/Store Book III

538 10000 11010 DBAT1U yes Load/Store Book III

539 10000 11011 DBAT1L yes Load/Store Book III

540 10000 11100 DBAT2U yes Load/Store Book III

541 10000 11101 DBAT2L yes Load/Store Book III

542 10000 11110 DBAT3U yes Load/Store Book III
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These registers fall into five major categories:

• hardware aids for TLB miss handlers (MAR, MISR, CMP, HASH1,
HASH2, TLBLRU0, TLBLRU1, and TLBMRF registers)

• scratch registers for TLB miss, TLB store, and instruction emulation han-
dlers (SPRG4–SPRG7)

• debugging (BPTCTL, IABR, DABR, XDABR, and EVENT)

• various processor control functions (CHECK, MODES, L2CTL, and
L2CDR)

• multiprocessor applications (PIR)

The following sections describe these registers in detail.

1. read-only
2. write-only

543 10000 11111 DBAT3L yes Load/Store Book III

953 11101 11001 EVENT yes Branch page 45

954 11101 11010 MODES yes Branch page 47

977 11110 10001 CMP1 yes Load/Store page 39

978 11110 10010 HASH11 yes Load/Store page 40

979 11110 10011 HASH21 yes Load/Store page 40

982 11110 10110 TLBLRU02 yes Load/Store page 40

983 11110 10111 TLBMRF yes Load/Store page 41

985 11110 11001 BPTCTL yes Load/Store page 42

987 11110 11011 TLBLRU12 yes Load/Store page 40

988 11110 11100 MISR yes Load/Store page 39

989 11110 11101 MAR yes Load/Store page 38

1008 11111 10000 CHECK yes Load/Store page 48

1010 11111 10010 IABR yes Fetch page 44

1012 11111 10100 L2CDR yes L2 Cache page 52

1013 11111 10101 DABR yes Load/Store Book III

1014 11111 10110 XDABR yes Load/Store page 44

1019 11111 11011 L2CTL yes L2 Cache page 50

1023 11111 11111 PIR yes Load/Store page 52

Table 2: Special Purpose Registers (Cont.)

SPR Number Register Name Privileged Unit Defined in Book/Page
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2.3.4.4 TLB Miss Registers

The MAR and MISR registers provide information about the address and
type of reference that caused a TLB miss or TLB store interrupt. They are
analogous to the DAR and DSISR registers used to hold information about
the address and reference that caused a data storage or alignment interrupt.

The HASH1, HASH2, and CMP registers return page table access informa-
tion designed to assist TLB miss, TLB store, instruction storage, and data
storage interrupt handlers. The contents of these registers is based on the
current contents of SDR1, MAR, and the segment register referenced by
the effective address saved in MAR, all of which have well-defined values
after TLB interrupts.

The TLB miss and TLB store handlers write the TLBLRU0, TLBLRU1, and
TLBMRF registers to update the contents of the TLB in response to TLB
interrupts. Writes to the TLBLRU0 and TLBLRU1 registers use the current
contents of MAR to select the target TLB entry. The data written depends
on the current contents of MAR and the segment register referenced by the
effective address saved in MAR. The contents and location of the TLB entry
written using the TLBLRU registers may be changed if MAR or the segment
registers are modified. Read and write accesses to the TLBMRF register
use the current contents of the MAR and MISR to select a TLB entry. Modi-
fying either of those registers may change which TLB entry is accessed by a
reference to the TLBMRF register.

In general, interrupt handlers should not modify SDR1, MAR, MISR, or the
segment registers before using the HASH1, HASH2, CMP, TLBLRU0,
TLBLRU1, and TLBMRF registers. Sample TLB miss and TLB store handlers
making use of these registers are shown in Appendix A.

Outside of TLB-related interrupt handlers, software can alter the values in
SDR1, MAR, or the segment registers and subsequently use HASH1,
HASH2, and CMP to assist in other page table accesses. These registers
should be altered only when both data and instruction relocation are dis-
abled, and programs that update them must follow the synchronization
requirements described in Section 2.3.7 on page 64.

2.3.4.4.1 TLB Miss Address Register (MAR)

The MAR register is a 32-bit register used for software TLB management.
When a TLB miss or TLB store interrupt occurs, the MAR is loaded with the
effective address of the faulting reference. For TLB miss interrupts, this
address can be either an instruction address or the effective address of a
data reference.
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The X704 processor uses the contents of this register implicitly in references
to the CMP, HASH1, HASH2, TLBLRU0, TLBLRU1, and TLBLMRF registers.
MAR is both readable and writable.

2.3.4.4.2 TLB Miss Interrupt Status Register (MISR)

The MISR register contains information about the reference that caused a
TLB miss or TLB store interrupt. When a TLB miss or TLB store interrupt
occurs, MISR is loaded as described in Section 2.3.6.2.13 on page 61 and
Section 2.3.6.2.14 on page 62. The MISR register is compatible with the
DSISR register, so that its contents can be copied there when TLB miss
interrupts must be passed to the operating system as page fault or page
protection data storage interrupts. See the sample TLB interrupt handlers in
Appendix A for examples of the use of this register.

2.3.4.4.3 TLB Miss PTE Compare Register (CMP)

The CMP register contains the high word of the PTE search target, made up
of the V, VSID, H, and API fields as defined in the PowerPC Architecture
Specification. TLB miss and TLB store interrupt handlers compare the value
in the CMP register with the high word of PTEs in the system page table to
locate the PTE that matches the reference that caused the interrupt.
Figure 6 depicts the CMP register.

Figure 6: TLB Miss PTE Compare Register

The fields are defined as follows:

V is the valid bit. This bit is always returned as one because the miss handler is
searching for a valid PTE.

VSID is the virtual segment ID copied from the VSID field of the segment register
indexed by bits (0:3) of the MAR register.

H is the hash function identifier. This bit is always returned as zero because the
miss handler begins the search using the primary hash function.

API is the abbreviated page index copied from bits (4:9) of the current contents of
the MAR register.

An instruction that attempts to write CMP is invalid.

VSID

1 24

V

0

H

25

API

26 31
P O W E R P C  A R C H I T E C T U R E  C O M P L I A N C E 3 9



2.3.4.4.4 TLB Miss PTEG Address Hash Registers (HASH1 and HASH2)

The HASH1 register contains the physical address formed by the primary
hash for the address currently in MAR. The HASH2 register contains the
physical address formed by the secondary hash. TLB miss and TLB store
handlers use the contents of these registers to address the two PTEGs that
could contain the page table entry for the reference that caused the inter-
rupt. Figure 7 shows the format of these registers.

Figure 7: TLB Miss PTEG Address Hash Registers

The fields are defined as follows:

HTABORG is bits (0:6) of the HTABORG field of the sdr1 register.

HASH is the output of the primary or secondary hash function as defined in the
PowerPC Architecture Specification. The value in this field depends on the
current contents of MAR, SDR1, and the segment register indexed by the
address in MAR.

An instruction that attempts to write either of these SPRs is invalid.

2.3.4.4.5 TLB Miss Update LRU Registers (TLBLRU0 and TLBLRU1)

The TLBLRU registers are used by TLB miss handlers to create a TLB entry
with a translation for the last address that missed in the TLB. The data writ-
ten to this register contains the RPN, R, C, WIMG, and PP PTE fields and is
formatted as the lower half of a PTE as shown in Figure 8. 

Figure 8: TLBLRU Registers

The remaining information needed to build a translation is taken from the
CMP register and the segment register indexed by bits (0:3) of MAR. The
definitions of the fields in the TLBLRU registers are exactly the same as the
definitions of the corresponding fields in the PTE.

HTABORG

0 6

HASH

7 25

000000

26 31

RPN

0 19

WIMG

25 28

PP

30 31

R

23

C

24

/ / / 
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In order to create a valid TLB entry (see Figure 22 on page 79), the same data
must be written to both TLBLRU0 and TLBLRU1.

When either TLBLRU register is written, the least recently used entry in the
TLB set corresponding to the address saved in MAR is updated with the new
translation. Software that writes TLB entries should always set the R bit in
the corresponding PTE.

An instruction that attempts to read either of these SPRs is invalid.

2.3.4.4.6 TLB Miss Update MRF Register (TLBMRF)

The TLBMRF register is used by the TLB store fault handler to update the C
bit in the TLB entry that caused the most recent fault. The data written to this
register contains the RPN, C, and PAGEIDX TLB fields and is formatted as the
lower half of a TLB entry as shown in Figure 9.

Figure 9: TLB Entry

The TLB entry accessed with this register is the one referenced by MISR(7:8)
in the set indexed by the address saved in MAR. Knowledge of the format of
this register is not usually necessary: the TLB store interrupt handler normally
reads this register, ORs in the C bit, and writes it back. The TLB store inter-
rupt handler should also set the C bit in the corresponding PTE.

2.3.4.5 Debugging Registers

The X704 implements instruction and data address breakpoints through the
use of the IABR, DABR, and BPTCTL registers. Two formats of DABR are
implemented: one that conforms to the definition suggested in Appendix A of
Book III and an extended definition that provides additional functionality.
Accesses to the compatible DABR register affect both the extended XDABR
register and the BPTCTL register.

See Book III for the behavior of data breakpoints if the BPTCTL register is left
as initialized by a hard reset and all accesses to XDABR and BPTCTL are done
through the DABR register.

PAGEIDX

21 31

RPN

0 19

0

V

29

O

1 24

VSID

25 28

WIMG

30 31

PP

C

20
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2.3.4.5.1 Breakpoint Control Register (BPTCTL)

The BPTCTL register contains enables and control information for both
instruction and data breakpoints. The format of this register is shown in
Figure 10.

Figure 10: Breakpoint Control Register

The fields are defined as follows:

MASK selects which of the low 3 bits of xdabr are used in data address breakpoint
comparisons. A ‘0’ bit in MASK(0:2) prevents the corresponding bit in
xdabr(29:31) from participating in the comparison. An address match occurs
if

((EADDR<0:28> == DABR<0:28>) && 
((EADDR<29:31> & MASK) == (DABR<29:31> & MASK)))

If MASK is 7, the effective address and XDABR must match exactly. If MASK
is 0, the effective address and XDABR need only refer to the same double-
word. This field does not affect instruction breakpoints.

SB is the strobe bit. If this bit is set, instruction and data address breakpoints
cause a strobe of a pin instead of an exception. See Section 5.2 on page 109
for a description of the STROBE pin.

PR is the problem state bit. If this bit is set, data address breakpoints occur on
problem state references. This bit does not affect instruction address break-
points.

SU is the supervisor state bit. If this bit is set, data address breakpoints occur on
supervisor state references. This bit does not affect instruction address
breakpoints.

DT is the data translation bit. If this bit is set, data translation must be enabled
in order to trigger a data address breakpoint. If it is clear, data translation
must be disabled in order to trigger a data address breakpoint.

ST is the store enable bit. If this bit is set, data address breakpoints may occur
on stores. If it is clear, stores will not cause data address breakpoints. The
dcbz instruction is considered to be a 32-byte store.

LD is the load enable bit. If this bit is set, data address breakpoints may occur on
loads. If it is clear, loads will not cause data address breakpoints.

Reserved

0 20

LD

31

ST

30

DT

29

SU

28

PR

27

SB

26

MASK

23 25

00

21 22
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A data breakpoint address match occurs if any byte in the reference
matches the breakpoint address in XDABR as modified by the MASK field.
For references which span multiple doublewords, part of the reference may
have completed before the trap is taken. The dcbz instruction is defined to
reference all 32 bytes in a cache block. Cache management instructions
other than dcbz do not cause instruction or data address breakpoints.

A data address breakpoint occurs if all of the following conditions are met:

• The effective address matches the value in XDABR as modified by the
MASK field.

• MSR[DR] has the same value as BPTCTL[DT].

• BPTCTL[PR] and MSR[PR] are both set, or BPTCTL[SU] is set and
MSR[PR] is clear.

• The reference is a load and BPTCTL[LD] is set, or the reference is a
store and BPTCTL[ST] is set.

If neither LD nor ST is set, or if neither PR nor SU is set, the data address
breakpoint is disabled. 

A stwcx. instruction that does not perform a store may still take a data
address breakpoint.

A data address breakpoint with SB clear causes a data storage interrupt with
DSISR(9) set and the address saved in DAR. 

If SB is set and a breakpoint is triggered, no exception occurs. Instead, the
value of the L2CTL.STROBE bit is inverted for one bus cycle before being
placed on the STROBE pin. The elapsed time between the triggering of the
breakpoint and the pulse on the pin is not defined precisely, but will be a
small number of bus cycles. 

Multiple breakpoints triggered in a small number of processor cycles can
appear on the pin as one pulse because of the ratio between processor
cycles and bus cycles. The strobe does not occur unless the exception
would have occurred: a higher-priority trap suppresses the strobe. The SB
bit permits references to be detected without affecting the performance of
the processor in almost all cases. Instruction breakpoint hits occurring near
other instruction fetch traps may cause a slight change in processor timing.

Breakpoint exceptions have lower priority than TLB misses, TLB store faults
and all other data storage interrupts.

In order to ensure that changes to the breakpoint registers take effect, soft-
ware should execute a sync instruction after writing BPTCTL or
XDABR/DABR and before the first data reference that could cause a break-
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point. An isync instruction following the sync is required if a change in
BPTCTL[SB] affects subsequent instruction breakpoints.

2.3.4.5.2 Instruction Address Breakpoint Register (IABR)

The IABR register contains an effective word address that is compared with
the program counter. The format of this register is shown in Figure 11.

Figure 11: Instruction Address Breakpoint Register

The fields are defined as follows:

ADDR is bits (0:29) of the instruction breakpoint address.

IE is the instruction breakpoint enable. If this bit is set, an instruction address
breakpoint occurs when the processor attempts to issue the instruction
fetched from the effective address in the ADDR field and MSR[IR] has the
same value as the IT field.

IT is the instruction translation enabled bit. If this bit is set, instruction transla-
tion must be enabled in order to trigger an instruction address breakpoint. If
it is clear, instruction translation must be disabled in order to trigger an
instruction address breakpoint.

An instruction breakpoint match occurs if the address of the first byte of the
instruction matches the ADDR field and MSR[IR] has the same value as the
IT field. Instruction breakpoint exceptions are taken before the instruction is
executed. An instruction breakpoint exception causes a trace interrupt and
sets SRR1(11).

If instruction breakpoints are being enabled, disabled, or changed, a sync

instruction followed by an isync instruction should be executed after
BPTCTL or IABR writes.

2.3.4.5.3 Extended Data Address Breakpoint Register (XDABR)

The XDABR register contains a 32-bit effective address that is compared
with effective addresses used by loads, stores, and cache operations.
When the two addresses match, and the appropriate enables are set in the
BPTCTL register, a data storage interrupt occurs. See the description of the
BPTCTL register on page 42 for more information on data breakpoints.

ADDR

0 29

IT

31

IE

30
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2.3.4.5.4 Data Address Breakpoint Register (DABR)

This is a PowerPC-compatible version of the DABR register. It accesses
both the XDABR and BPTCTL registers in a way that mimics the behavior of
the data breakpoint register as suggested in Appendix A of Book III. The
DABR is not a separate register from the XDABR; it merely provides an
alternate way of accessing the same data. The format of this register is
shown in Figure 12.

Figure 12: Data Address Breakpoint Register

The fields are defined as follows:

ADDR is bits (0:28) of the doubleword breakpoint address.

DT is the data translation bit. If this bit is set, data translation must be enabled
in order to trigger a data address breakpoint. If it is clear, data translation
must be disabled in order to trigger a data address breakpoint.

ST is the store enable bit. If this bit is set, data address breakpoints occur on
stores to addresses that match XDABR as modified by the MASK field. The
dcbz instruction is considered to be a store.

LD is the load enable bit. If this bit is set, data address breakpoints occur on
loads from addresses that match XDABR as modified by the MASK field.

On writes, the contents of the ADDR field are written to bits (0:28) of
XDABR, and bits (29:31) of XDABR are cleared. The contents of the DT, ST,
and LD fields are written to the corresponding fields in the BPTCTL register.
In addition, writes to DABR also set the PR and SU bits in the BPTCTL regis-
ter to one.

On reads, the contents of XDABR are returned, with bits 29, 30, and 31
replaced by BPTCTL[DT], BPTCTL[ST], and BPTCTL[LD], respectively.

2.3.4.5.5 Event Register (EVENT)

The X704 processor can use the TBU and TBL time base registers to count
the occurrence of performance-related events. The EVENT register controls
which of those events are counted. The format of the EVENT register is
shown in Figure 13.

ADDR

0 28

LD

31

ST

30

DT

29
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Figure 13: Event Register

When the EVENT field contains 0, the TBU and TBL registers form a 64-bit
counter that increments every four bus cycles. Any other setting of this field
causes these registers to count other events and to no longer maintain the
time base value. When the EVENT field contains 1, the TBU and TBL regis-
ters hold their current values. When the field contains a value greater than
1, the TBU register counts instructions completed, and the TBL register
counts the events shown in Table 3 depending on the value of the SET and
EVENT fields.

Table 3: Event Counter Selections 

EVENT SET = 1 SET = 0

0 time base upper time base lower

1 do not count do not count

4 L1 instruction cache accesses L1 instruction cache misses

5 ITLB accesses ITLB misses

8 L1 data cache accesses L1 data cache misses

9 TLB accesses TLB misses

10 L2 cache accesses L2 cache misses

11 snoop accesses snoop misses

16 decode buffer empty memory operand hold

17 multi-step X holds misaligned accesses

18 ALU valid in A ALU valid in C

19 ALU valid in M reserved

20 0 flows issued 0 flows completed

21 1 flow issued 1 flow completed

22 2 flows issued 2 flows completed

23 3 flows issued 3 flows completed

24 branch correctly predicted taken branch incorrectly predicted taken

25 branch correctly predicted not taken branch incorrectly predicted not taken

26 pipe restarts finder invalids

27 traps from tw/twi instructions all other traps

28 mispredicts in A mispredicts in C

Reserved

0 17

EVENT

19 23

SET

18

Reserved

24 31
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Familiarity with the material in Chapter 3 and Chapter 4 on the X704’s pipe-
line structure, performance, and branch prediction is needed for a full under-
standing of most of these events. In particular, the event counters may not
agree with the values expected for a program run using the sequential exe-
cution model because speculative instruction issues and cache accesses
and cache misses may be counted.

The MODES[TBD] bit disables counting only when the EVENT register con-
tains zero.

When the TBU and TBL registers reach their maximum value, they incre-
ment to zero. When gathering performance statistics, they should be read
frequently to ensure that data is not lost. A 32-bit counter incrementing at
500MHz will wrap once in approximately 8.5 seconds.

Important Note: The definition of the EVENT register changed from the
definition used in the prototype version of the X704.

2.3.4.6 Processor Control Registers

The X704 contains several miscellaneous registers that control various pro-
cessor functions such as resource enabling and disabling, error reporting,
and multiprocessor support.

2.3.4.6.1 Modes Register (MODES)

The MODES register, depicted in Figure 14, controls several functions
related to instruction decoding and dispatching.

Figure 14: Modes Register

29 mispredicts in M mispredicts in W

30 processor clocks flows completed

31 processor clocks flows issued

All others reserved reserved

Table 3: Event Counter Selections (Cont.)

EVENT SET = 1 SET = 0

Reserved

0 10

Reserved

16 31

SSE

15

POE

14

DE

13

TBD

12

BPE

11
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The fields are defined as follows:

BPE is the branch prediction enable bit. If this bit is clear, the branch prediction
hardware is ignored and all branches will be predicted to be not taken. If it is
set, the processor predicts branch directions and targets as described in
Section 3.8 on page 81.

TBD is the time base disable bit. If this bit is set, the time base register does not
increment. If it is clear, the time base register increments every fourth bus
clock. This bit controls the time base register increment only while the
EVENT register contains zero.

DE is the diagnostic access enable bit. If this bit is set, the lwdx and stwdx
instructions execute. If it is clear, attempts to execute those instructions will
result in illegal instruction program interrupts.

POE is the pipeline overlap enable bit. If this bit is clear, instructions are issued
only when the execution pipeline is empty. If it is set, instructions are issued
when other instructions are in the pipeline. This bit does not affect supersca-
lar issue or instruction queuing in the fetch unit.

SSE is the superscalar enable bit. If this bit is clear, superscalar issue is disabled
and only one instruction may be issued on each cycle. If it is set, up to three
instructions may be issued on each cycle as described in Section 4.4 on
page 92.

2.3.4.6.2 Machine Check Register (CHECK)

The CHECK register, shown in Figure 15, contains temperature status infor-
mation and the enables for various conditions that can cause machine
checks or checkstop conditions. Not all conditions that cause machine
checks have an enable. If the machine check condition is detected, and that
condition has no enable, or if the enable bit corresponding to the error is set,
a machine check interrupt occurs. If MSR[ME] is set, execution continues at
the machine check trap vector. If MSR[ME] is clear, the processor enters
the checkstop state and halts.

See Section 5.2.3 on page 113 for more information on the processor‘s
operating temperature range and the use of the status bits in the CHECK
register.
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Figure 15: Machine Check Register

The fields are defined as follows:

WT is the warm temperature indication. When this bit is set, the processor is
near the upper end of its operating temperature range.

HT is the over-temperature indication. When this bit is set, the processor has
exceeded its maximum operating temperature. 

R is the reset type bit. This bit is initialized by hardware to one on a hard reset
and zero on a soft reset. It may not be written by software.

IF is the instruction fetch machine check enable. If this bit is set, multiple IBAT
or ITLB hits on the effective address of an issuing instruction are reported as
machine checks.

DC is reserved for future use. The value of this bit is ignored.

L2C is the invalid level 2 state machine check enable. If this bit is set, an invalid
state in a level 2 cache tag is reported as a machine check. This includes
cache LRU state errors and multiple hits in a set for the same address.

L2B is the invalid bus controller state machine check enable. If this bit is set, an
invalid state in the bus controller is reported as a machine check. This
includes detecting invalid snoop types on the bus and errors in filling, push-
ing, or evicting cache blocks.

BP is the bus parity machine check enable. If this bit is set, bus address and data
parity errors are reported as a machine check. Machine checks caused by the
assertion of the TEA or MCP interface signal are always enabled.

TLB is the TLB machine check enable. If this bit is set, an address that matches
multiple TLB entries or multiple DBATs is reported as a machine check.

SW is the software-initiated machine check bit. A single machine check occurs
when software changes the value of this bit from zero to one. If machine
check interrupts are enabled, the interrupt handler should clear this bit in
order to re-enable software machine checks.

Failure to enable a machine check can result in undefined behavior should
the disabled machine check condition occur. For example, a masked parity
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error could result in the use of corrupted data and a reference through an
address that matches multiple TLB or BAT entries could result in referenc-
ing unexpected or non-existent physical memory.

2.3.4.6.3 L2/Bus Control Register (L2CTL)

The L2CTL register controls the behavior of all three on-chip caches and the
bus interface. The format of this register is shown in Figure 16.

Figure 16: L2/Bus Control Register

The fields are defined as follows:

CLOCK is the current ratio between the external (bus) clock and the processor clock.
This value is set from the external PLL_CFG(2:6) pins on power on or hard
reset and cannot be changed by software. See the description of the
PLL_CFG pins in Section 5.2.1 on page 111.

BC is the broadcast cache operations bit. If this bit is clear, cache management
operations are broadcast on the bus and global bus transactions are
snooped. These operations include write kills, dcbf, and dcbi. If this bit is
set, the X704 does not broadcast coherence operations and ignores all incom-
ing snoop transactions. Setting this bit will not prevent broadcasts of kill
operations caused by dcbz instructions.

BS is the broadcast synchronization bit. If this bit is clear, sync instructions are
broadcast on the bus. If it is set, sync instructions are not broadcast, and the
X704 assumes that nothing external to the chip affects the completion of
sync instructions.

BE is the broadcast eieio bit. If this bit is clear, eieio instructions are broadcast
on the bus. If it is set, eieio instructions are not broadcast on the bus.

BT is the broadcast TLB operations bit. If this bit is clear, tlbie and tlbsync
instructions are broadcast on the bus. If it is set, TLB operations are not
broadcast on the bus, and the X704 assumes that nothing external to the chip
affects the completion of tlbsync instructions.
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SB is the strobe bit. The value of this bit is copied to the STROBE pin. Data and
instruction address breakpoints can optionally invert this bit for one bus
cycle. See the discussion of the BPTCTL register in Section 2.3.4.5.1 on
page 42 for more information on the use of the strobe facility by breakpoints.

IE is the instruction cache enable bit. If this bit is set, the instruction cache is
enabled. If it is clear, instruction fetches bypass the instruction cache, and
the level 2 cache does not write data into the instruction cache.

DE is the data cache enable bit. If this bit is set, the data cache is enabled. If it is
clear, load and store accesses bypass the data cache, and the level 2 cache
does not write data into the data cache.

L2E is the level 2 cache enable bit. If this bit is set, the level 2 cache is enabled. If
it is clear, all instruction and data accesses not satisfied by the instruction
and data caches will be satisfied from off-chip memory.

IP is the instruction prefetch enable. If this bit is set, the level 2 cache can
prefetch additional blocks from off-chip into the level 2 cache in response to
instruction cache misses.

DP is the data prefetch enable. If this bit is set, the level 2 cache can prefetch
additional blocks from off-chip into the level 2 cache in response to data
cache misses.

CM is the column mask update enable bit. If this bit is set, updates to the level 2
column disable register (L2CDR) are allowed. If it is clear, writes to that reg-
ister are ignored. See Section 2.3.4.6.4 on page 52 for more information on
the L2CDR register.

TM is the tag block valid update enable bit. If this bit is set, the block valid field
in the level 2 cache use records can be updated with diagnostic stores to the
use records. If it is clear, diagnostic writes to the use records may not alter
the field valid mask. See Section 3.4.3 on page 73 for more information on
use records and the field valid mask.

IC is the instruction cache coherency bit. If this bit is set, the processor ensures
that the instruction cache stays coherent with respect to data stores. If it is
clear, software is responsible for ensuring that updates to the instruction
stream are reflected in the instruction cache by executing an instruction
sequence similar to that shown in Section 2.2.6 on page 32. Setting this bit
degrades the performance of the processor, but may be useful for applica-
tions that emulate instruction execution for other architectures that enforce
instruction cache coherency. 
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The BC, BS, and BT bits should be cleared in multiprocessor systems and
should be set in uniprocessor systems. The BE bit should be cleared in all
multiprocessor systems or in any uniprocessor system with an external
device that is sensitive to the order in which writes are completed.

For more information on prefetching, see Section 3.4.7 on page 78.

2.3.4.6.4 L2 Column Disable Register (L2CDR)

The L2CDR register provides one of two ways to mark damaged cache
RAM entries as unusable. By setting the appropriate bit in this register, an
entire associativity class consisting of 4KB is removed from the level 2
cache. The register is formatted as shown in Figure 17.

Figure 17: L2 Column Disable Register

The fields are defined as follows:

Bn is the block n disable bit. If this bit is set, block n in each set of the level 2
cache is marked as unusable. Any valid data in a cache block marked dis-
abled is lost.

This register can be written only when the CM bit in the L2CTL register is
set. It is intended to be set by a power-on-self-test cache checker when it
discovers multiple failures in a column. Because the level 2 cache data RAM
is 2-way interleaved, physical RAM errors that affect an entire column
require the paired column from the other bank (the paired banks are 0–4,
1–5, 2–6, and 3–7) to be disabled. When a column is disabled, it must also
be marked as recently used in the PLRU field of each level 2 cache use
record. See Section 3.4.3 on page 73 for information on cache use records
and the cache replacement strategy.

Disabling more than four columns may cause level 2 cache controller
machine checks to occur when the level 2 cache is enabled.

2.3.4.7 Processor Identification Register (PIR)

The PIR register is a 32-bit register that can be read or written by privileged
programs. It is neither interpreted nor used by the hardware. Its intended
use is holding a unique processor identification number for each CPU in a
multiprocessor system.
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2.3.5 Storage Control

The X704 provides ordinary storage segments as described in Book III;
direct-store segments are not supported. An attempt to reference data
with a fixed-point load or store instruction through a segment register with
the T bit set causes a data storage interrupt. An attempt to reference data
with a floating-point load or store instruction through a segment register
with the T bit set causes an alignment interrupt. Cache management
instructions that reference direct-store segments are treated as nops.

2.3.5.1 Translation Lookaside Buffer (TLB)

The X704 contains a 128-entry, 4-way set-associative TLB. In addition, the
instruction fetch unit contains a 4-entry, fully associative instruction TLB
(ITLB). When an instruction fetch misses in the ITLB, the X704 attempts to
resolve the miss by searching the main TLB. If it finds a matching entry in
the TLB, it copies translation and protection information into the least
recently used ITLB entry and it marks the TLB entry as the most recently
used entry in its set. The translations present in the ITLB are always a sub-
set of the translations contained in the main TLB.

The hardware does not search the page table or update the TLB if either
the ITLB miss or any data access fails to find a matching TLB entry.
Instead, a TLB miss interrupt occurs and a software handler performs the
page table search and TLB refill.

The hardware also does not update the storage access recording bits in
page table entries. When it places an entry in the TLB, the TLB miss inter-
rupt handler should set the Reference (R) bit in the associated PTE. The
Change (C) bit in the PTE is copied to the TLB entry. When the hardware
detects a store access through a TLB entry with the C bit clear, a TLB store
interrupt occurs. The handler for this interrupt should set the C bit in the
TLB entry and the C bit in the associated PTE before restarting the faulting
instruction.

See Section 2.3.6.2 on page 56 for detailed descriptions of the TLB miss
and TLB store interrupts, and Appendix A for sample handlers.

The TLB miss handler can write either a specific entry or the least recently
used entry in the target set. Writing multiple TLB entries that translate the
same effective address is an error and may cause a machine check or
boundedly undefined results.
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2.3.5.2 Block Address Translation

The X704 implements block address translation as described in Book III of
the PowerPC Architecture Specification. Because the two halves of each
IBAT or DBAT register must be loaded separately, software must ensure
that inconsistencies caused by a partially loaded IBAT or DBAT do not affect
program execution. To do this, load these registers only when the associ-
ated relocation enable bit is clear.

Loading an IBAT or DBAT register with an invalid BL field or with either BEPI
or BRPN fields that are inconsistent with the BL field can cause boundedly
undefined results.

2.3.5.3 Storage Access Modes

When the caching inhibited storage access mode is enabled, the state of
the write through required access mode is assumed to be off. Thus, the
two unsupported access mode combination (WIM = 110 or 111) are treated
as caching inhibited, write through not required storage.

2.3.5.4 Reference and Change Recording

The X704 hardware does not set the PTE Reference and Change bits
directly; they are set by the TLB miss and TLB store interrupt handlers as
discussed in Section 2.3.5.1 on page 53.

Because TLB misses must be satisfied before the hardware can determine
that an access is permitted, it is likely that the PTE Reference bit will be set
in cases where read or write permission is denied and no storage access
occurs. Similarly, a TLB store fault may occur before it is known whether a
stwcx. instruction will succeed. Thus, it is likely that the PTE changed bit
will be set in these circumstances. The TLB store handler is invoked only
when the reference has write permission to the target page.

A TLB miss on an instruction fetch occurs only when that instruction is
required by the sequential execution model and any exceptions related to
previous instructions have been resolved.

2.3.5.5 Storage Control Instructions

The X704 implements all of the storage control instructions specified in Book
III of the PowerPC Architecture Specification except for the optional tlbia

instruction. The tlbia instruction may be emulated by a sequence of tlbie

instructions as described in Section 2.3.5.5.3 on page 55.
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2.3.5.5.1 Data Cache Block Invalidate (dcbi )

Executing the dcbi instruction invokes the TLB miss handler if data transla-
tion is enabled and no translation for the effective address is found in the
TLB or DBAT. If a translation is found, but write access is not allowed, a
data storage interrupt occurs.

If either data address translation is disabled or a translation is found, and
the addressed block is marked as valid in the level 2 cache, the block is
invalidated in the data cache, the instruction cache, and the level 2 cache.
Any modifications to the data in the cache block are discarded. If the stor-
age is marked as coherence required, the kill operation is broadcast on the
bus.

The operation of this instruction is independent of the state of the cache
enables. If the block is not present in the level 2 cache of any processor, the
instruction is treated as a nop. 

2.3.5.5.2 TLB Invalidate Entry (tlbie)

The tlbie instruction invalidates all four TLB entries in the set addressed by
RB(15:19) and flushes the ITLB. The TLB entries are invalidated without
regard to their contents. If the broadcast TLB bit is set in the L2CTL regis-
ter, a TLB invalidate operation is broadcast on the bus to other processors.

In a multiprocessor system, software must guarantee that only one proces-
sor in the system is executing tlbie instructions at any given time, or unde-
fined behavior including a deadlocked system occurs.

2.3.5.5.3 TLB Invalidate All (tlbia)

The tlbia instruction is not implemented on the X704, instead the entire
TLB can be invalidated by executing a sequence of 32 tlbie instructions—
one for each of the 32 sets in the TLB. For example, a subroutine contain-
ing the following loop invalidates all entries in the TLB:

for (addr = 0; addr < 32 * 0x1000; addr += 0x1000)
tlbie (addr);

2.3.5.5.4 TLB Synchronize (tlblsync)

The tlbsync instruction completes only when all tlbie instructions previ-
ously issued by this processor are complete. If the broadcast TLB bit in the
L2CTL register is set, the tlbsync operation is broadcast on the bus and
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the instruction does not complete until all processors have executed all
tlbie instructions issued on this processor before the tlbsync.

In a multiprocessor system, software must guarantee that only one proces-
sor in the system is executing tlbsync instructions at any given time, or
undefined behavior including a deadlocked system occurs.

2.3.6 Interrupts

The following sections discuss the X704 implementation of interrupts.

2.3.6.1 Interrupt Classes

The X704 does not have any imprecise interrupts. All floating-point excep-
tions are precise.

2.3.6.2 Interrupt Definitions

In addition to the interrupt types defined in the PowerPC Architecture Speci-
fication, the X704 implements the TLB miss and TLB store interrupts. The
X704 interrupt vector is shown in Table 4, with implementation-dependent
interrupts shown in shaded rows

Table 4: Interrupt Vector Offsets 

Vector Offset Interrupt Type

0x0000 Reserved

0x0100 System Reset

0x0200 Machine Check

0x0300 Data Storage

0x0400 Instruction Storage

0x0500 External

0x0600 Alignment

0x0700 Program

0x0800 Floating-Point Unavailable

0x0900 Decrementer

0x0A00 Reserved

0x0B00 Reserved

0x0C00 System Call

0x0D00 Trace

0x0E00 Floating-Point Assist
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2.3.6.2.1 System Reset Interrupt

On the X704, the system reset interrupt is caused by the assertion of either
the HRESET or the SRESET input pin. The interrupt handler determines
which pin was asserted by examining the R bit in the CHECK register.

A system reset interrupt always clears SRR1(30), indicating that the inter-
rupt is not recoverable.

2.3.6.2.2 Machine Check Interrupt

A machine check condition occurs when one of the conditions enabled in
the CHECK register is detected or when the TEA interface signal is
asserted. A machine check condition causes a machine check interrupt if
the MSR[ME] bit is set. If MSR[ME] is clear, the processor enters checkstop
mode instead. In checkstop mode, the processor stalls until either the
HRESET or the SRESET external reset pin is asserted. In some circum-
stances, it may not be possible to take a machine check interrupt even
when MSR[ME] is set; instead, the processor enters checkstop mode.

In general, machine check conditions cannot be precisely related to the exe-
cution of any particular instruction and cannot be restarted. A machine
check interrupt can result in corrupted data being placed in general registers
or in any one of the caches.

The following registers are set:

SRR0 Set to the effective address of the last instruction that completed. For some 
machine checks, that instruction may have caused boundedly undefined 
results.

SRR1

1:4 Set to 0.

10 Set to 0.

11:15 Set to a nonzero value according to the following:

00001an invalid level 2 cache tag or use record state was detected.

0x1000 TLB Miss

0x1100 TLB Store

Table 4: Interrupt Vector Offsets (Cont.)

Vector Offset Interrupt Type
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00010an address hit more than one tag in the level 2 cache.

00011the bus controller detected an internal state machine error.

00100an invalid snoop type (TT) was detected.

00101a bus data parity error was detected.

00110a bus address parity error was detected.

00111a qualified assertion of the TEA signal was received.

01001software requested a machine check by writing a one to
CHECK[SW].

01010a multiple DBAT or TLB hit was detected on a single data reference.

10000the external machine check pin (MCP) was asserted.

10100a multiple IBAT or ITLB hit was detected on a single instruction 
reference.

All other nonzero values are reserved. If multiple machine check conditions 
are detected between instruction issues, this field may not be meaningful.

30 Set to zero, indicating that the interrupt is not recoverable.

Others: Loaded from the MSR register.

The machine check interrupt handler should set the MSR[ME] bit so that
additional machine checks that occur while the handler is executing do not
cause the processor to checkstop.

Software that tests for the existence of physical memory by issuing loads
and observing whether a machine check results should adhere to the fol-
lowing guidelines:

• Instruction references should not be used to probe for memory.

• The storage being probed should be marked as caching inhibited, or the
probe references should be executed with caches disabled.

• The probe references should be preceded and followed by sync instruc-
tions.

Warning: Failure to follow these guidelines may result in checkstops
caused by multiple machine checks.

2.3.6.2.3 Data Storage Interrupt

The X704 implements data storage interrupts as described in the PowerPC
Architecture Specification with the following notes:
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• Any attempt to access fixed-point data in a direct-store segment causes
a data storage interrupt with DSISR(0) set and DAR set to the effective
address of the direct-store reference.

• An stwcx. instruction with an effective address for which a normal
store would cause a data storage interrupt causes a data storage inter-
rupt even if the processor does not perform the store.

• Data address breakpoints are supported: DSISR(9) is set for data break-
points and cleared for other data storage interrupts. On a data address
breakpoint, the DAR register may not contain the effective address com-
puted by the instruction that triggered the breakpoint. For load/store
multiple, move assist, or unaligned elementary accesses where the
breakpoint address is not in the same doubleword as the effective
address, DAR contains an address in the doubleword that triggered the
breakpoint.

• An lwarx or stwcx. instruction that addresses a location that is write
through required completes correctly and does not cause a data storage
interrupt.

2.3.6.2.4 Instruction Storage Interrupt

The X704 implements instruction storage interrupts as defined in the archi-
tecture specification.

2.3.6.2.5 External Interrupt

The X704 implements external interrupts as defined in the architecture spec-
ification.

The X704 expects the external interrupt signal (INT) to be asserted until the
external interrupt handler software acknowledges the interrupt to the
device signalling it.
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2.3.6.2.6 Alignment Interrupt

The X704 causes an alignment interrupt when any of the following condi-
tions occur:

• The effective address of a lwarx or stwcx. instruction is not word-
aligned.

• A lswi, lswx, stswi, stswx, lmw, or stmw instruction is executed in
power-endian mode.

• Any unaligned access that crosses a doubleword boundary is attempted
in power-endian mode.

• The effective address of a floating-point load or store instruction refer-
ences a location in a direct-store segment.

The SRR0, SRR1, DAR, and DSISR registers are set as described in the
architecture specification, with the additional note that alignment interrupts
caused by lmw, lswi, and lswx instructions set DSISR(27:31) to the RA
field of the instruction.

2.3.6.2.7 Program Interrupt

The X704 implements program interrupts as defined in the architecture
specification.

2.3.6.2.8 Floating-Point Unavailable

The X704 implements floating-point unavailable interrupts as defined in the
architecture specification.

2.3.6.2.9 Decrementer Interrupt

The X704 implements decrementer interrupts as defined in the architecture
specification.

2.3.6.2.10 System Call Interrupt

The X704 implements system call interrupts as defined in the architecture
specification.

2.3.6.2.11 Trace Interrupt

The X704 implements trace interrupts as shown in Appendix A of Book III.

In addition, instruction address breakpoints cause trace interrupts. See
Section 2.3.4.5 on page 41 for more information on instruction breakpoints.
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When a trace interrupt is taken, SRR1 is set as follows:

1:4 is set to 0.

10 is set to 0.

11 is set to 1 for instruction breakpoints or 0 for single-step or branch trace 
interrupts.

12:15 are set to 0.

Others: are loaded from the MSR register.

2.3.6.2.12 Floating-Point Assist Interrupts

The floating-point assist interrupt is not used by the X704.

2.3.6.2.13 TLB Miss interrupt

The TLB miss interrupt is a X704 implementation-dependent interrupt. The
interrupt vector offset of this trap is 0x1000.

A TLB miss interrupt occurs when MSR[IR] is set and no translation for an
instruction fetch address is present in either an IBAT or the TLB, or when
MSR[DR] is set and no translation for an effective address is present in
either a DBAT or the TLB.

The following registers are set:

MSR

14 is set to 1, blocking system TLB invalidates.

Others: as described in the architecture specification.

SRR0 is set to the effective address of the instruction that caused the interrupt.

SRR1

0:3 are loaded from CR0.

4 is set to 0.

10:15 are set to 0.

Others: are loaded from the MSR register.

MAR is set to the instruction or data effective address that caused the TLB miss 
interrupt.

MISR
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1 is set to 1 for loads or stores, indicating a possible page fault, and is set to 0 
for instruction fetches.

2 is set to 1 for instruction fetches, and set to 0 for loads or stores. 

6 is set to 1 for stores, and set to 0 for loads or instruction fetches.

Others: are set to 0.

A TLB miss interrupt changes the contents of the MAR and MISR registers.
Changes to these registers can alter the contents of the CMP, HASH1, and
HASH2 registers and can change the TLB entry accessed by the TLBLRU0,
TLBLRU1, and TLBMRF registers.

The definition of the MISR allows a common TLB miss handler to handle
both instruction and data TLB misses. If the miss is really a page fault (no
matching PTE is found in either PTEG searched) the handler looks at
MISR(2). If it is clear, the handler copies MAR and MISR to DAR and DSISR
and jumps to the data storage interrupt vector. This works because MISR(1)
and MISR(6) are set correctly for a page fault. If MISR(2) is one, the handler
sets SRR1 to 0x40000000, indicating an instruction page fault, clears the
MSR[TW] bit set by the trap, and then jumps to the instruction storage inter-
rupt vector.

The TLB miss handler should take advantage of the TLB assist SPRs
described in Section 2.3.4.4 on page 38. The handler can safely alter CR0
without first saving it because the hardware has already saved CR0 in
SRR1. General registers must be saved to SPRGs. The handler must restore
the condition register and any altered general registers before exiting. A
handler that exits without executing an rfi instruction must clear MSR[TW],
which was set by the trap. See Appendix A for a sample TLB miss handler.

2.3.6.2.14 TLB Store Interrupt

The TLB store interrupt is a X704 implementation-dependent interrupt. The
interrupt vector offset of this trap is 0x1100.

A TLB store interrupt occurs when a store instruction executes with
MSR[DR] set, a valid TLB entry translates the effective address computed
by that instruction, the PP field of that TLB entry permits the store access,
and the changed (C) bit of that TLB entry is clear.

The following registers are set:

MSR

14 is set to 1, blocking system TLB invalidates.
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Others: as described in the architecture specification.

SRR0 is set to the effective address of the instruction that caused the interrupt.

SRR1

0:3 are loaded from CR0.

4 is set to 0.

10:15 are set to 0.

Others: are loaded from the MSR register.

MAR is set to the effective address of the data referenced by the instruction that 
caused the TLB store interrupt.

MISR

4 is set to 1, indicating a possible protection fault.

6 is set to 1, indicating a fault caused by a store instruction.

7:8 are set to the TLB element number of the entry that translated the access.

Others: are set to 0.

A TLB store interrupt changes the contents of the MAR and MISR registers.
Changes to these registers can alter the contents of the CMP, HASH1, and
HASH2 registers and can change the TLB entry accessed by the TLBLRU0,
TLBLRU1, and TLBMRF registers.

The TLB store handler should take advantage of the TLB assist SPRs
described in Section 2.3.4.4 on page 38. The handler can safely alter CR0
without first saving it because the hardware has already saved CR0 in
SRR1. General registers must be saved to SPRGs. The handler must restore
the condition register and any altered general registers before exiting. A
handler that exits without executing an rfi instruction must clear MSR[TW],
which was set by the trap. See Appendix A for a sample TLB store interrupt
handler.
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2.3.6.3 Exception Ordering

The X704 processor adds the following interrupt priority conditions for imple-
mentation-dependent interrupts:

• Data TLB miss interrupts have a higher priority than TLB store inter-
rupts, and both of those have a higher priority than data storage inter-
rupts, but a lower priority than alignment interrupts.

• Instruction fetch TLB interrupts have a higher priority than instruction
storage interrupts.

• A trace interrupt caused by an instruction breakpoint is of lower priority
than an instruction storage interrupt.

• A single-step or branch trace interrupt occurs before an instruction
breakpoint trace interrupt on the following instruction.

• Data breakpoints are the lowest priority data storage interrupt. 

2.3.7 Synchronization Requirements for Special Registers

Several of the X704’s implementation-dependent SPRs can alter the context
in which addresses are interpreted and in which instructions are executed.
The side effects caused by these context-altering instructions may not
occur in program order, and can require explicit software synchronization.

Table 5 shows the type of synchronization required before and after an
instruction that changes the contents of each SPR. As in Book III, the nota-
tion CSI in the table means any context-synchronizing instruction or any
interrupt other than a non-recoverable reset or machine check. 

Table 5: Synchronization Requirements for Implementation-Dependent SPRs 

Register Required Before Required After

MAR none sync1

MISR none sync1

SPRG none none

EVENT sync2 CSI

TLBLRU0–TLBLRU1 none3 CSI4

TLBMRF none3 CSI4

BPTCTL none sync

IABR none CSI

DABR/XDABR none sync

CHECK none CSI
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Accesses to special purpose registers using stwdx instructions to the diag-
nostic address space are also subject to these synchronization require-
ments. Additional synchronization rules for some MSR bits are given in
Section 2.3.3.2 on page 34.

1. Required only when the write is followed by an access to the TLBLRU0, TLBLRU1, or TLBMRF registers.
2. The sync instruction ensures that all storage-related events are counted before the value of EVENT 

changes.
3. These registers should not be written while address translation is enabled.
4. A context-synchronizing event is required before translation is re-enabled. Accesses to the new transla-

tion should not be made until after the CSI following the instruction that sets MSR.IR or MSR.DR.
5. If the cache line containing the instruction that modifies L2CTL is already in the instruction cache, its 

contents must be the same as the contents of that line in memory. If the two lines differ, the results of 
continued execution are boundedly undefined.

6. This register should not be written while the level 2 cache is enabled.

MODES none CSI

L2CTL[IE] none isync5

L2CTL[L2E] sync isync

L2CTL (other) none sync

L2CDR none6 sync

PIR none none

TLB entries none CSI4

Table 5: Synchronization Requirements for Implementation-Dependent SPRs (Cont.)

Register Required Before Required After
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3. Processor Operation

This chapter presents a detailed description of the X704 microarchitecture
and implementation, including the execution pipeline, caches, TLB, and
branch prediction units.

3.1 Execution Pipeline

The X704 pipeline consists of a fetch stage (F) followed by five execution
stages used by all instructions: decode (D), address generation (A), cache
access (C), tag match (M), and writeback (W). These stages are normally
denoted by the initials F, D, A, C, M, and W. The fetch stage is usually omit-
ted from pipeline diagrams because it does not participate in instruction
interlock or operand bypass operations; however, it is shown in diagrams
including branch mispredicts to demonstrate the cause of the performance
penalty.

The terms group, flow, and step are frequently used in describing the pipe-
line. A group is a set of zero to three instructions that are issued on a single
cycle and travel down the pipeline together. Individual instructions proceed
down the pipeline in flows. Most instructions need only a single flow, but
some complicated instructions require multiple flows. For example, the
move assist and load and store multiple instructions use one flow for each
register transferred, misaligned load accesses require two flows, and mis-
aligned store accesses require three flows. Most flows require a single step
in each pipe stage, but instructions such as integer multiplies and divides
require multiple steps in the ALU.

The following sections describe each pipeline stage. Additional information,
including detailed pipeline diagrams, appears in Chapter 4.
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3.1.1 Fetch Stage (F)

In the fetch stage, the instruction fetch unit reads the instruction cache and
finder and, if the fetch PC hits in the instruction cache, places either one or
two instructions into the six-element instruction buffer.

3.1.2 Decode Stage (D)

In this stage, the decode unit reads instructions from the decode buffer,
determines how many instructions can be issued on this clock, reads any
general registers needed by any instructions on this cycle, and calculates
the branch target address for any branch being issued on this cycle.

3.1.3 Address Generation Stage (A)

In this stage, the decode unit generates the effective address for storage
access instructions.

3.1.4 Cache Access Stage (C)

In this stage, the decode unit presents the effective address for memory
references to the data cache and to the TLB. Cache read data is available at
the end of this stage and can be bypassed to other parts of the pipeline.
This bypassing occurs before the load/store unit determines if the address
hit in the cache.

3.1.5 Tag Match Stage (M)

In this stage, the TLB and data cache determine if memory accesses hit. In
the event of a data cache miss, the pipeline is held until the referenced data
is available. If the TLB misses, an exception is raised. Information on any
other exceptions occurring on any instruction in this stage is combined and
prioritized. If an exception is detected, the instruction causing the exception
and all following instructions in this stage or in the D, A, or C stages are can-
celled.

3.1.6 Writeback Stage (W)

In this stage, instruction results are written back to the register file and
store data is transferred to the store queue. Instructions are considered to
be complete once they reach the W stage.
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3.1.7 ALU Operations

The X704 contains a single ALU that can be used in the A, C, or M pipe
stage. This sliding ALU stage, known as X, is normally located in the A
stage, but will slide out to the C or M stage if an operand is not available in
A. Placing the ALU farther down the pipeline reduces the load-use penalty
but increases the penalty for mispredicted branches; the X704 pipeline
dynamically adjusts to minimize these penalties. 

The relocating X stage also reduces the complexity of the instruction group-
ing logic by eliminating a number of group breaks that would otherwise
need to be detected in the D stage. For example, the instruction dispatcher
need not hold an ALU instruction with an operand that is the target of a load
being issued in the same cycle.

3.1.8 Floating-Point Operations

Although floating-point operations typically take longer than ALU operations,
the floating-point pipeline can be viewed as operating in lock-step with the
integer pipeline. Floating-point exceptions are detected or predicted in or
before the M stage. If an exception cannot be ruled out, the integer and
load/store pipelines stall in M until the exception status of the floating-point
operation is known.

3.2 Instruction Cache

The 2KB instruction cache consists of 64 direct-mapped, 32-byte blocks.
Because the cache size is smaller than the page size, the cache can be
viewed as being either physically or virtually addressed. The tags contain
physical addresses. 

The instruction cache supplies one doubleword of data to the instruction
fetch unit on each cycle. When an instruction cache miss occurs, the cache
is filled at one doubleword per cycle from the level 2 cache in critical-word-
first order. Cache validity is maintained on a doubleword basis, and the level
2 cache might not supply all four doublewords in a block—particularly in the
case where the cache miss occurs in the middle of a block. In that case, the
level 2 cache gives a low priority to the doublewords from the start of the
block through the doubleword before the miss address, and frequently does
not send these doublewords to the instruction cache.

The contents of the instruction cache are a subset of the level 2 cache con-
tents.
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When the instruction cache is disabled (L2CTL.IE is clear), all instruction fetch
requests are handled as if they were targeted at caching-inhibited storage.
When executing with the instruction cache disabled and the level 2 cache
enabled, instruction fetch accesses are not satisfied from the level 2 cache,
and data brought in from off-chip memory in response to instruction fetches is
not placed in the level 2 cache. This mode is intended for use by cache diag-
nostics only. 

Note: Operating in this mode is not recommended.

The instruction cache data and tags can be read and written with the diagnos-
tic access instructions at the addresses shown in Table 7 on page 84. The
instruction cache tags are formatted as shown in Figure 18.

Figure 18: Instruction Cache Tags

The fields are defined as follows:

Tag is physical address bits (0:20) of the entry present in this block.

V0 is the valid bit for the first doubleword in the block. If this bit is set, the double-
word is present in the instruction cache.

V1 is the valid bit for the second doubleword in the block. If this bit is set, the dou-
bleword is present in the instruction cache.

V2 is the valid bit for the third doubleword in the block. If this bit is set, the double-
word is present in the instruction cache.

V3 is the valid bit for the fourth doubleword in the block. If this bit is set, the dou-
bleword is present in the instruction cache.

3.3 Data Cache

The 2KB data cache consists of 64 direct-mapped, 32-byte blocks. Because
the cache size is smaller than the page size, the cache can be viewed as being
either physically or virtually addressed. The tags contain physical addresses.
The data cache is a write through cache.

The data cache can supply or receive up to one doubleword of data to or from
the load/store unit on each cycle. When a data cache miss occurs, the cache

Reserved

25 31

Tag

0 20

V0

21

V1

22

V2

23

V3

24
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is filled from the level 2 cache at one doubleword per cycle in critical-word-
first order. Cache validity is maintained on a doubleword basis, and the level
2 cache might not supply all four doublewords in a block. Data cache fills of
the non-critical word have a higher priority than the low-priority instruction
cache fills described in the previous section.

The contents of the data cache are a subset of the level 2 cache contents.

When the data cache is disabled (L2CTL.DE is clear), all data storage
requests are handled as if they were targeted at caching-inhibited storage.
When executing with the data cache disabled and the level 2 cache
enabled, data accesses are not satisfied from the level 2 cache, and data
brought in from off-chip memory in response to load or store instructions is
not placed in the level 2 cache. This mode is intended for use by cache diag-
nostics only; operating in this mode is not recommended.

The data cache data and tags can be read and written with the diagnostic
access instructions at the addresses shown in Table 7 on page 84. The data
cache tags are formatted as shown in Figure 19.

Figure 19: Data Cache Tags

The fields are defined as follows:

Tag is physical address bits (0:20) of the entry present in this block.

V0 is the valid bit for the first doubleword in the block. If this bit is set, the dou-
bleword is present in the data cache.

V1 is the valid bit for the second doubleword in the block. If this bit is set, the
doubleword is present in the data cache.

V2 is the valid bit for the third doubleword in the block. If this bit is set, the dou-
bleword is present in the data cache.

V3 is the valid bit for the fourth doubleword in the block. If this bit is set, the
doubleword is present in the data cache.

Reserved

25 31

Tag

0 20

V0

21

V1

22

V2

23

V3

24
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3.4 Level 2 Cache

The level 2 cache is a 32 KB unified instruction and data cache organized as
a set-associative cache with 128 sets of eight 32-byte blocks.

The level 2 cache data RAM is arranged as two interleaved banks. Each read
or write has a two-cycle access time, but sequential accesses to alternating
banks allow one operation to be started on every cycle. Up to a doubleword
of data can be written to the level 2 cache from either the bus or the store
queue in one operation. When data is not being written, a doubleword of
data can be read out of the cache in order to load either of the level 1
caches or to supply data to the system bus for cache evictions and snoop
pushes. When satisfying level 1 cache misses, the level 2 cache supplies
the data and tag values to the level 1 caches.

The level 2 cache also implements the multiprocessor MESI cache coher-
ency protocol. It snoops bus operations, updating its cache tags and invali-
dating primary cache blocks as necessary. The level 2 cache also supports
the data cache block store, flush, invalidate, touch, touch for store, and
block zero operations, and the instruction cache block invalidate operation.

In addition to tags recording which blocks it contains, the level 2 cache con-
tains use records (see Figure 20) that record which blocks are present in
either level 1 cache. This allows the cache to determine which coherency
operations on the bus affect the level 1 caches and also allows some cache
operations (data cache block zero, for example) to be implemented almost
entirely in the level 2 cache, preventing them from delaying processor
accesses to the level 1 caches.

The level 2 cache data, tags, and use records may be read and written with
the diagnostic access instructions at the addresses shown in Table 7 on
page 84.

3.4.1 Level 2 Cache Tags

Each cache block has a tag formatted as shown in Figure 20.

Figure 20: Level 2 Cache Tags

Reserved

22 31

Tag

0 19

S

20 21
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The fields are defined as follows:

Tag is physical address bits (0:19) of the entry present in this block.

S is the MESI state for this cache block. The cache state is encoded as shown
in Table 6.

3.4.2 Address Translation and the Level 2 Cache

When data address translation is enabled, bits (0:19) of the effective
address must be translated from virtual to physical addresses. As soon as
the effective address is available, address bits (20:28) are used to index into
the cache. This allows a cache tag lookup to proceed in parallel with the cor-
responding TLB accesses. By the time the high-order physical address bits
are needed to determine if any of the tags in the set matched, the TLB will
have supplied them to the cache.

3.4.3 Level 2 Cache Replacement Policy

Each cache set has a use record containing information about which blocks
have been recently used, which blocks are present in the level 1 caches,
and which blocks are not functional. A use record is formatted as shown in
Figure 21.

Figure 21: L2 Cache Use Record

Table 6: Level 2 Cache Tag MESI State Values

Value Cache Line State

00 Invalid

01 Shared

10 Exclusive

11 Modified

Reserved

20 31

VALID

0 3

PLRU

12 19

DCP

4

ICP

8

D

5 7

I

9 11
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The fields are defined as follows:

VALID is the block valid field. This field can be used by a cache test initialization
program to mark one or more blocks as unusable. This field is encoded as fol-
lows: 

0000 all eight blocks in this set are valid.
1xxx block xxx is invalid and is not used.
0100 blocks 0–3 are invalid and are not used.
0101 blocks 4–7 are invalid and are not used.

All other encodings are reserved.

DCP is the data cache present bit. If this bit is set, one of the blocks in this set can
be present in the data cache.

D is the data cache block field. If the DCP bit is set, this field contains the index
of the block that can be present in the data cache.

ICP is the instruction cache present bit. If this bit is set, one of the blocks in this
set can be present in the instruction cache.

I is the instruction cache block field. If the ICP bit is set, this field contains the
index of the block that can be present in the instruction cache.

PLRU is the pseudo-LRU information field. This field records information on which
blocks have been recently accessed. If bit n of this field is a one, then the
level 2 cache controller considers block n of this cache set to have been
recently used. The contents of this field is updated on all cache accesses and
is used to determine which block should be replaced when a new block is
brought into the cache.

Because of the cache geometry, there are two locations in the level 2 cache
where each level 1 cache block may reside. If a level 1 cache block is
replaced, and the new block comes from a different set than the old block,
the level 2 cache use records for both sets must be updated. The use
record for the replacement block is updated immediately, but there can be
some delay before the use record for the block being removed from the
level 1 cache can be updated, creating a temporary inconsistency where the
D/DCP or I/ICP fields indicate that a block is present in a level 1 cache when
it has already been replaced. It is possible that this use record update is
never made. This may cause some unnecessary level 1 cache invalidates
and subsequent misses, but it never causes incorrect behavior.

The pseudo-LRU algorithm used to select a block to be replaced is deter-
ministic. If the use records are initialized to an identical state before the
level 2 cache is enabled, the same memory reference pattern results in the
same series of cache block replacements. 
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All of the fields in the use record except VALID and PLRU should be initial-
ized to zero at reset time. Diagnostic accesses to the cache data and tags
can be used to identify any bad blocks that must be recorded in the VALID
field. This field is intended to record information about isolated bad blocks. If
an entire column is bad, it can be disabled by using the L2CDR register
described in Section 2.3.4.6.4 on page 52. Any block disabled with the
VALID field must also be marked as recently used by setting the appropri-
ate bit in the PLRU field.

Disabling more than four blocks in a single set can cause level 2 cache con-
troller machine checks to occur on cacheable accesses to that set.

3.4.4 Disabling the Level 2 Cache

When the level 2 cache is disabled (L2CTL.L2E is clear), the processor does
not maintain the level 2 cache tags or use records, and does not act upon or
respond to any snooped requests on the bus. While it is possible to execute
with the level 2 cache disabled and either or both level 1 caches enabled,
storage coherence with other processors is not maintained, and some
cache management instructions do not function correctly. In addition, care
must be taken when re-enabling the level 2 cache. When executing in this
state, level 1 cache misses continue to be satisfied with burst reads from
off-chip memory, but the level 2 cache does not maintain inclusion. Before
enabling the level 2 cache, the contents of the level 1 caches should be
invalidated, synchronizing them with memory, and then the level 1 caches
should be disabled. Finally, both the level 1 and level 2 caches should be
enabled simultaneously.

Disabling an enabled level 2 cache must be done carefully. All prefetching
should be disabled while the level 2 cache is still enabled. The L2CTL write
that disables the cache must be preceded by a sync instruction and fol-
lowed by an isync instruction. If the isync instruction is not the last
instruction in a cache block, the remainder of the instructions in that block
can be fetched as though the cache were still enabled.

3.4.5 Flushing the Level 2 Cache

The restriction that the level 1 caches are always a subset of the level 2
cache presents a complication to any program that must invalidate all blocks
or flush all modified data from the level 2 cache. When programs write to
the instruction stream, a single cache block can be marked as modified and
also be present in both the instruction and data caches. A routine that
attempts to flush the cache by touching 32KB worth of data replaces that
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cache block in the data cache, but will not necessarily evict it from the
instruction cache, and therefore it can remain modified in the level 2 cache.

While good programming practices dictate that writes to the instruction
stream be done in the coherent fashion suggested in Section 2.2.6 on
page 32, an operating system cannot guarantee that all application software
is well-behaved. The following algorithm, which uses the lwdx instruction
to access the L2 cache tags directly, can be used by privileged software to
ensure that all modified data has been written back to main memory.

for (i = 0; i < L2_N_SETS; i++)

for (j = 0; j < L2_ASSOC; j++)

{

tag_addr = MAKE_DIAG_L2_TAG_ADDR (i, j);

tag = LWDX (tag_addr);

if ((tag & L2_TAG_STATE_MASK) == L2_TAG_MODIFIED)

DCBST (L2_TAG_TO_ADDR (tag, i));

}

In this example, the MAKE_DIAG_L2_TAG_ADDR macro creates the diag-
nostic address that accesses the level 2 cache tag for block j in set i. The
L2_TAG_TO_ADDR macro returns the physical address of the block
described by the cache tag, and the LWDX and DCBST macros invoke the
lwdx and dcbst instructions, respectively. This routine must run with data
address translation disabled so that the physical address of the cache block
can be used as the effective address argument to dcbst. 

If application software is expected to flush the cache reliably, this routine
should be provided as an operating system service. Alternatively, an applica-
tion can guarantee that all modified lines are written back to memory by
flushing the instruction cache (by executing code from 64 consecutive
cache blocks, for example) and then flushing the level 2 cache by loading
data from 1024 consecutive cache blocks known not to be modified in the
cache.

Because it was optimized for zeroing large blocks of memory that are not
expected to be referenced immediately, the dcbz instruction does not
place the block containing the target storage address in the level 1 cache. It
also does not invalidate the level 1 cache entries indexed by the target
address if they contain blocks from a different storage address. Because of
this, dcbz cannot be used to flush the entire level 2 cache.
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3.4.6 Cache Coherency Protocol

The X704 uses the 4-state MESI protocol to maintain data coherency among
its caches, the caches in other processors in a multiprocessor system, I/O
devices, and main memory. This section describes the cache states, the
operations that change cache block states, and the transitions that those
operations cause. Some of the mechanisms used to detect and perform
state transitions are part of the external bus protocol and are described in
the PowerPC 60x Microprocessor Interface Definition.

The MESI states are:

Invalid The block is not valid in the level 2 cache.

Exclusive The block is valid in the level 2 cache, is not modified, and is not present 
in the cache of any other processor in a multiprocessor system.

Shared The block is valid in the level 2 cache, is not modified, but can be present 
in the caches of other processors in a multiprocessor system.

Modified The block is valid in the level 2 cache, has been modified with respect to 
the contents of main memory, and is not present in the cache of any 
other processor in a multiprocessor system.

In order to guarantee correct operation of the cache coherence scheme, the
memory coherence storage control attribute (M bit) should be set for all
pages that may be shared between processors. If the M bit is not set for a
shared page, software must use cache management and synchronization
instructions to ensure that separate processors have a consistent view of
the data on that page.

The operations that cause changes in the MESI state of a cache block are:

Read miss The block is changed from the invalid state to either exclusive or shared, 
depending on whether another processor has the line cached.

Write miss The block is changed from the invalid state to modified.

Evict/Flush The block is changed from the exclusive, shared, or modified states to 
invalid because it is being replaced in the cache, because it is the target 
of a dcbf instruction or bus flush operation, or because another proces-
sor is requesting exclusive access to it. If the block was in the modified 
state, the contents are written back to memory.

Write hit The block is changed from the exclusive or shared states to modified 
because it was the target of a store instruction that hit in the cache.
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Bus read hit The block is changed from the exclusive state to the shared state 
because another processor requested read access to the block.

Clean The block is changed from the modified state to the exclusive state 
because it was the target of a dcbst instruction or a bus operation that 
requested a clean. The modified data is written back to memory.

Invalidate The block is changed from the exclusive, shared, or modified state to 
invalid because it was the target of a dcbi instruction or a bus operation 
that requested an invalidate. If the block was in the modified state, the 
modified data is discarded.

3.4.7 Cache Prefetching

When prefetching is enabled, the level 2 cache controller uses spare
resources to move data into the level 2 cache by having each miss that
completes start a prefetch reference on the cache block at the next higher
address. Prefetches have lower priority than demand misses or stores
when accessing the system bus and internal busses, but are otherwise
implemented in a nearly identical fashion to demand misses—including
sharing the same level 2 cache tag access resources. At any time, only one
data address (demand or prefetch) and one instruction address can access
the level 2 cache tags. If a new address arrives for a demand miss before
the prefetch address completes its tag access, the prefetch request is
dropped.

Prefetching stops when the requested data is already in the level 2 cache,
after the last line on a physical memory page is fetched, when the L2CTL
register is written, and when any TLB invalidate occurs. In addition,
prefetches are never performed on guarded data pages, and all cache
prefetching is disabled when the processor clock to bus clock ratio is less
than 6:1.

The dcbt and dcbtst touch instructions are treated as prefetch requests
that can be made even when data prefetching is disabled. Touch instruc-
tions are executed at the same priority as other prefetches. The touched
data is never placed in the level 1 data cache. Unlike either demand misses
or other prefetches, touch instructions that complete never cause further
prefetch requests. Because touch instructions overwrite the previous con-
tents of the level 2 cache tag access register, a sequence of touch instruc-
tions rarely results in all of the requested lines being brought into the cache.
The most likely result is for the last reference in the sequence to be the only
successful one.
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3.5 Translation Lookaside Buffer (TLB)

The TLB contains 128 entries, organized as a 4-way set-associative cache;
each can be used to map a virtual page address to a physical address. A
total of 512KB of storage can be covered by TLB translations. Each TLB
entry is a doubleword formatted as shown in Figure 22.

Figure 22: TLB Entry

The fields are defined as follows:

V is the valid bit. The translation entry is valid if this bit is set, and invalid if it is
clear.

VSID is the virtual segment ID associated with this translation.

WIMG are the storage access control bits for the page associated with this transla-
tion.

PP are the page protection bits for the page associated with this translation.

RPN is the page number of the physical page frame associated with this transla-
tion. The physical address for memory references using this translation is
produced by appending bits (20:31) of the effective address to RPN.

C is the page changed bit. If an instruction attempts to store to this page and
this bit is clear, a TLB store interrupt occurs.

PAGEIDX is bits (24:34) of the virtual address (bits (4:14) of the effective address) asso-
ciated with this translation.

TLB entries may be written with diagnostic accesses at the addresses
shown in Table 7 on page 84, or by using the TLBLRU and TLBMRF regis-
ters described in Section 2.3.4.4 on page 38.

A TLB match with an effective address occurs when both of these condi-
tions are true:

1. The virtual segment ID in the segment register referenced by bits (0:3)
of the effective address matches the VSID field of the TLB entry.

2. Bits (4:14) of the effective address match the PAGEIDX field of the TLB
entry.

PAGEIDX

21 31

RPN

0 19

0

V

29

O

1 24

VSID

25 28

WIMG

30 31

PP

C

20
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Effective address bits (15:19) index into the TLB, and do not participate fur-
ther in the determination of a match. If no match is found for an effective
address, a TLB miss interrupt occurs.

The TLB miss handler can write a specific entry in the set indexed by bits
(15:19) of the effective address of an lwdx instruction, or it can use the
TLBLRU0 and TLBLRU1 registers to write the least recently used entry in
the set addressed by DAR(15:19). See Appendix A for an example of a TLB
miss handler.

Software that writes a TLB entry should also set the Reference bit in the
associated PTE.

Writing multiple TLB entries that translate the same effective address is an
error and can cause a machine check or boundedly undefined results.

The TLB tracks usage history in each set using a 3-bit pseudo-LRU algorithm
that works as follows:

• Bit 0 is set when entries 0 or 1 are used, and cleared when entries 2 or
3 are used.

• Bit 1 is set when entry 0 is used, and cleared when entry 1 is used.

• Bit 2 is set when entry 2 is used, and cleared when entry 3 is used.

Application of these rules yields the following state transition table:

When choosing the LRU entry to replace, the TLB uses the following rules:

• If bit 0 is set, choose entry 3 if bit 2 is set, or entry 2 if bit 2 is clear.

• If bit 0 is clear, choose entry 1 if bit 1 is set, or entry 0 if bit 1 is clear.

Current
State

State After Access to Entry 

0 1 2 3

000 110 100 001 000

001 111 101 001 000

010 110 100 011 010

011 111 101 011 010

100 110 100 001 000

101 111 101 001 000

110 110 100 011 010

111 111 101 011 010
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These rules are embodied in the following table:

3.6 Instruction TLB (ITLB)

The ITLB consists of four 8-byte entries used to translate instruction
addresses. Unlike the main TLB, the ITLB translates directly from effective
addresses to physical addresses, skipping the virtual stage. As a result, the
ITLB must be flushed each time a segment register or TLB entry is modi-
fied, including each time entries are modified by writes to the TLBLRU0,
TLBLRU1, and TLBMRF registers or by a local or broadcast tlbie operation.
The ITLB is maintained automatically by the hardware, which flushes it and
refills it from the TLB as necessary.

3.7 Block Address Translation

The X704 supports block address translation as defined in the PowerPC
Architecture Specification. The instruction fetch unit contains four pairs of
IBAT registers, and the load/store unit contains four pairs of DBAT registers.
These registers can be accessed with mfspr and mtspr instructions using
the defined SPR numbers or with diagnostic accesses.

3.8 Branch Prediction

The X704 instruction fetch unit maintains branch prediction and branch tar-
get information in the finder. There is one finder entry for each doubleword
in the instruction cache. Finder entries are written to a default value (as
described in Section 3.8.3 on page 83) when a block is brought in to the
instruction cache, and are updated by the decode unit as necessary. A finder
entry holds information on the direction and target for a maximum of one
branch instruction; if an aligned doubleword contains two branches, the
finder entry describes only one branch at any given time. This condition can
cause poor prediction performance as prediction information for each
branch continually overwrites the information for the other branch.

State LRU Block

00x 0

01x 1

1x0 2

1x1 3
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Branch prediction information is lost when a block is evicted from the
instruction cache. Finder information can also be corrupted if a block con-
taining a branch is evicted from the instruction cache while that branch is in
the instruction buffer or the pipeline. If this happens, the decode unit can
update the finder entry for the replacement block, even if there is no branch
in that block, because its finder target address is a cache block index rather
than a complete physical address. This can result in spurious mispredicted
branches, but does not affect the correct execution of programs.

The finder can be accessed using the diagnostic address space so that the
finder RAM can be tested by a power-on-self-test program. The width of the
finder RAM is 14 bits and the data is right justified in bits (18:31) when read
or written. The test program need not leave any particular value in the
finder, but clearing each entry is recommended.

3.8.1 Branch Direction Prediction

The finder maintains two bits of branch direction information that repre-
sents four states: strong taken (ST), weak taken (WT), weak not taken
(WNT), and strong not taken (SNT). When the state is either ST or WT, the
branch is predicted taken, and when the state is either WNT or SNT, the
branch is predicted not taken. Each time a branch is executed, the finder
entry is updated as depicted in Figure 23.

Finder entries for absolute branches always predict the branches to be not
taken.
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Figure 23: Predicted Branch Direction State Transitions

3.8.2 Branch Target Prediction

For instructions that alter the program counter and are predicted to be taken,
the finder value may specify that the new fetch PC comes from the link regis-
ter, from the count register, from SRR0, or directly from the finder for
branches with targets within the same 2KB block as the branch instructions
or from the 2KB blocks immediately before and immediately after that block.

Relative branches whose targets are too far away for the finder to address
are never predicted to be taken.

3.8.3 Finder Initialization

When a block is loaded into the instruction cache, the corresponding finder
entries are initialized according to the following rules:

• If neither instruction is a branch, the finder is initialized to WNT.

• If both instructions are branches, only the first one is examined.

• b and bc instructions are initialized to WT if bits (16:21) of the instruction
are either all zeros or all ones, and to WNT otherwise.

• rfi, bclr, and bcctr instructions are initialized to WT.

• The y bit in the BO field of conditional branch instructions is ignored.

For information on WT and WNT settings, see Section 3.8.1 on page 82.

WT

SNT ST

WNT

Solid lines indicate taken branches and dashed lines indicate not taken branches.
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3.9 Diagnostic Accesses

The X704 allows diagnostic access to all of its internal RAM structures using
the lwdx and stwdx instructions. These instructions use an alternate
address space to address individual resources such as the caches, TLB,
finder, and BATs. The diagnostic address space is defined in Table 7.

In this table, an x represents a bit used to address an individual entry within
a larger structure, an A selects among elements of a set in associative
structures, and L is clear to select the more-significant half of a doubleword
entry and set to select the less-significant half. Finally, a hyphen (-) repre-
sents an address bit that is ignored.

Only those SPRs implemented in the instruction fetch, load/store, and level
2 cache units can be accessed through the diagnostic address space. See
Table 2 on page 36 for a list of SPRs implemented in those units.

When the cache is enabled, avoid diagnostic writes to any of the three
caches, including the tags. An instruction that writes to the data or tags of
an enabled cache has boundedly undefined results. Diagnostic writes to the
data cache data RAMs must be followed by a sync or eieio instruction in
order to ensure that the data is visible to subsequent load instructions and
to ensure that the writes are done in order.

1. The entry address is the SPR number as used in mfspr and mtspr instructions.

Table 7: Diagnostic Address Space

Address Structure Accessed

0000 0000 ---- ---- ---- xxxx xxxx xx00 SPR1

1000 0100 ---- ---- ---- -xxx xxxx x-00 Finder

1000 1000 ---- ---- ---- -xxx xxxx xx00 Instruction Cache Data

1000 1010 ---- ---- ---- -xxx xxx- --00 Instruction Cache Tags

1001 1000 ---- ---- ---- -xxx xxxx xx00 Data Cache Data

1011 1110 ---- ---- ---- -xxx xxx- --00 Data Cache Tags

1010 1000 -AAA ---- ---- xxxx xxxx xx00 Level 2 Cache Data

1010 1010 -AAA ---- ---- xxxx xxx- --00 Level 2 Cache Tags

1010 1110 ---- ---- ---- xxxx xxx- --00 Level 2 Cache Use Records

1011 1000 ---- ---x xxxx ---- ---A AL00 TLB

1011 1010 ---- ---x xxxx ---- ---- -L00 LRU TLB entry
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Diagnostic writes to the instruction cache can be suppressed by an ITLB
miss. Hence, diagnostic writes of the instruction cache should be done with
instruction address translation disabled (MSR[IR] clear). This conflict does
not affect diagnostic writes to the IBATs, the finder, or other fetch unit struc-
tures.

A single diagnostic write to the TLB only writes half of a TLB entry. The two
diagnostic writes required to write an entire entry must be executed with
both instruction and data translation disabled (MSR[IR] and MSR[DR] clear).
Diagnostic write accesses to the TLB with address translation enabled have
boundedly undefined results.

Diagnostic writes to the TLB LRU space modify the least recently used TLB
entry in the addressed set. The 3-bit LRU information described in
Section 3.5 on page 79 is not directly accessible to software. If either data
or instruction translation is enabled (MSR[IR] or MSR[DR] set), TLB LRU
space accesses must be preceded by sync instructions in order to ensure
that previous references have updated the TLB LRU information. If instruc-
tion translation is enabled, TLB LRU space accesses must be followed by
isync instructions.

Diagnostic accesses to the finder should be performed only when the
instruction cache is disabled (L2CTL.IE is clear) and branch prediction is dis-
abled (MODES[BPE] is clear).

Diagnostic accesses to addresses not defined in Table 7 or to undefined
entries in the diagnostic SPR space cause data storage interrupts. Unde-
fined addresses are those where bits (0:3) differ from all of the entries in the
table.

Diagnostic accesses never trigger data breakpoints, even if the diagnostic
address matches the effective address in the DABR.

3.10 Power-On Reset and Hard Reset Initialization

When the HRESET signal is asserted, most of the processor state becomes
undefined. The registers listed in Table 8 are initialized as shown. Execution
begins at the system reset interrupt vector at address0xfff00100. All
other processor state, including the general registers, cache tags, level 2
cache use records, and TLB entries, is undefined and must be initialized
before use. The X704 has no power-on-reset circuitry, so the HRESET signal
must be asserted after power is applied to the chip.
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A soft reset, taken in response to the assertion of the SRESET signal,
causes the same actions as a hard reset, except the CHECK[R] bit is
cleared, the remaining fields of the CHECK register and BPTCTL are left
unchanged. The SRESET signal is examined only if HRESET is not asserted.

For all resets, the cache tags and the level 2 cache use records must be ini-
tialized before the caches are enabled. The level 2 cache initialization soft-
ware can also determine if any blocks are unusable, and should set the
L2CDR register or the VALID and PLRU fields of use records to reflect any
errors found. The TLB entries must be initialized before address translation
is enabled. To ensure a deterministic reset, the finder should be initialized to
all zeros before branch prediction is enabled. The TLB LRU information is ini-
tialized such that the behavior is deterministic and identical on each reset.

The MODES register is reset to a value that specifies the most conservative
mode of operation. The system reset interrupt handler should enable pipe-
line overlap and superscalar execution as soon as possible. Branch predic-
tion should be enabled as soon as the finder has been initialized.

1. The contents of the revision field is implementation-
dependent.

2. All other bits of this register are undefined at reset.
3. The clock field is set from the PLL_CFG pins.

Table 8: Hard Reset State Initialization

Resource Setting

MSR 0x00000040

SRR1 0x00000040

DEC 0xffffffff

PVR 0x0060rrrr1

BPTCTL 0x00000000

IABR[IE] 02

EVENT 0x00000000

CHECK 0x00800000

MODES 0x00000000

L2CTL 0x00cc00003

ITLB All entries are invalid
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4. Instruction Execution

This chapter describes the performance-related characteristics of the X704.
There are four major components affecting the execution time of instructions: 

• the inherent execution time of each instruction in the X704, usually one
cycle

• the parallelism available in the X704

• the interactions between instructions

• the ability of the caches to supply instructions and data to the pipelines. 

These subjects are all covered in the following sections.

4.1 Pipeline Diagrams

The examples in this chapter make extensive use of simple pipeline diagrams.
The progress of an instruction flow is shown in a horizontal line with a letter in
each column indicating the current pipe stage. In the simplest case, a load
instruction fetched and executed with no pipeline delays is depicted like this:

lbz r1, (r2) F D A C M W

Instructions issued in the same group are represented by identical lines, since
any pipe stall holds all instructions in a group. Instructions issued on succeed-
ing cycles are offset to the right by one column for each cycle of delay. The F
stage is omitted here; it is shown only in those diagrams where it is key to
understanding the example.

lbz r1, (r2) D A C M W

addi r3, r4, 1 D A C M W

sthu r5, 4(r2) D A C M W

In this example, the lbz and addi instructions are issued together, followed
one cycle later by the sthu instruction. 
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Each column in a pipeline diagram represents the state of the machine at any
point in time, so one can see that the store instruction is computing its
address in A while the previous load is accessing the cache in C. Multiple
occurrences of a stage in single lines of pipeline diagrams represent pipeline
stalls. Even though instructions can spend several cycles in the instruction
decode buffer waiting to be dispatched, only one D is shown except when
demonstrating dispatch grouping rules.

4.2 Sliding ALU Stage

As described in Section 3.1.7 on page 69, the ALU, also known as X, pipe
stage can be located in the A, C, or M pipe stages. In pipeline diagrams, the
letter x is appended to a pipe stage name to denote the current location of
the ALU stage. For example, a flow that executes an ALU operation in the C
stage is depicted like this:

D A Cx M W

The X stage is initially located in A. This allows condition register flag values
to be computed early in the pipe and thus reduces the penalty for mispre-
dicted branches. When an ALU operand is not available in the A stage, X
moves to a later pipe stage. This can happen with operands such as SPRs
that cannot be bypassed, but occurs most frequently when load data is used
by the following instruction, as in this example:

lwz r1, (r2) D A C M W

add r3, r2, r1 D A Cx M W

The load instruction result is not available until the end of the C stage, and
therefore cannot be used in the A stage of the add instruction. Instead, the
ALU moves to the C stage of the add. If the load and use had been issued in
the same cycle, the X stage would move to M, as shown in this pipeline dia-
gram:

lwz r1, (r2) D A C M W

add r3, r2, r1 D A C Mx W

This example shows the effective load-use penalty of zero cycles. Once X
has moved out to M, successive load-use pairings have no further effects.
Consider this example:

lwz r1, (r2) D A C M W

add r3, r2, r1 D A C Mx W

lwz r4, 4(r2) D A C M W

add r3, r4, r3 D A C Mx W
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The X stage is also moved out to M on all accesses to SPRs located in the
decode or branch units, including the link register, count register, and condi-
tion register. For the condition register, this occurs only for accesses with
instructions such as mtcrf and mfcr, and does not occur for compare
instructions or those that set CR0 or CR1 because Rc is set. For example:

add r1, r2, r3 D Ax C M W

mtlr r4 D A C Mx W

addi r1, r1, 4 D A C Mx W

After it has moved later in the pipe, the X stage remains where it is as long
as instructions continue to use the ALU. At the first opportunity when the
ALU is not being used, X returns to A. Compare the following two examples:

li r0, 4 D Ax C M W

lwz r1, (r2) D A C M W

add r1, r2, r1 D A Cx M W

subf r3, r3, r1 D A Cx M W

and

li r0, 4 D Ax C M W

lwz r1, (r2) D A C M W

add r1, r2, r1 D A Cx M W

lwz r3, 4(r2) D A C M W

subf r1, r4, r1 D Ax C M W

In the second example, the second load instruction does not use the ALU,
so the X stage can be moved back to A in time to execute the subtract
instruction. (Assume that the lwz and subf instructions are not grouped
because the instruction buffer was empty after the lwz was issued.) Notice
that the ALU is used in consecutive cycles by the add and subf instructions;
no ALU cycles are wasted.

The rules for moving the X stage back to an earlier stage in the pipeline are:

1. If the next group does not require the ALU and X is not already in A,
move X back one pipe stage either from M to C or from C to A. If the
next two flows do not require the ALU, X can move back from M to A in
a single cycle.

2. On a mispredicted branch, X moves back to A.
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The X stage is most likely to move back toward the A stage when the pipe-
line is empty because of a branch mispredict or an empty instruction
decode buffer.

The later in the pipe X is located, the longer it takes for results to be avail-
able to other execution units. For performance, the most important factor is
the impact of the availability of flag results on the cost of branch mispre-
dicts, though the availability of ALU results for use as address generation
operands is also important. If a branch is predicted correctly, there is no visi-
ble penalty even when X is all the way out in the M stage. For example, a
correctly predicted compare and branch to a load instruction could look like
this:

cmp r1, r2 D A C Mx W

beq D A C M W

lwz r3, (r4) D A C M W

There is always a penalty for mispredicted branches; the important factor is
that the penalty increases by one cycle for each cycle it takes to discover
that the branch was mispredicted, which occurs no earlier than the cycle
after the flag value is computed. If the branch in the previous example had
been predicted incorrectly, this sequence would incur the maximum five-
cycle branch mispredict penalty, as shown in the following pipeline diagram:

cmp r1, r2 D A C Mx W

bcc D A C M W

<mispredict> ---

lwz r7, (r8) F D A C M W

If the X stage of the compare instruction had been in the A stage, the pipe-
line diagram would have looked like this, and the mispredict penalty would
have been only three cycles.

cmp r1, r2 D Ax C M W

bcc D A C M W

<mispredict> ---

lwz r7, (r8) F D A C M W

If the flag value had been known when the branch arrived in A, the mispre-
dict penalty would have been the minimum two cycles.
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4.3 Branch Resolution

A conditional branch is unresolved until the value of the condition register
flag it depends on is known. Resolving a branch consists of determining the
direction of the branch, determining whether the branch direction and
branch target address were predicted correctly, and flushing the pipeline
and redirecting the fetch unit if either was incorrectly predicted. Each pipe-
line stage can contain an unresolved branch in any position in the instruction
group. Each unresolved branch in the pipeline can be predicted to be either
taken or not taken.

Unconditional branches must also be resolved. Even though the branch
direction is known, the branch target address still needs verification. In this
case, resolution need not wait for any particular flag to become available.

If a flag has not been set in some time, a conditional branch depending on
that flag can be resolved in the A stage. In other cases, including the com-
mon case where the branch immediately follows the instruction that modi-
fies the condition register, the branch can be resolved in the stage after the
new flag value is computed. Only one branch, the oldest unresolved branch
in the pipeline, can be resolved on each cycle. 

Most flags are set by arithmetic instructions, and their values are available in
the cycle after the X stage. Condition register logical instructions are exe-
cuted in the branch unit and their results are not available until the W stage.

The following example illustrates branch resolution:

0 1 2 3 4 5 6

cmpwi cr1, r3, 0 D Ax C M W

lwz r2, (r1) D A C M W

cmpwi r2, 0 D A C Mx W

beq .+40 D A C M W

bgt cr1,.+20 D A C M W

Even though the value of CR1 is known before the second branch enters A
in cycle 3, that branch cannot be resolved until it is in W during cycle 6. This
is because the value of CR0 needed to resolve the first branch is not known
until the end of cycle 4, preventing the first branch from being resolved until
cycle 5; a later branch cannot be resolved before an earlier one.

Conditional branches that decrement and test the count register can be pre-
dicted unless they are preceded by an explicit load of the count register. In
that case, the conditional branch cannot be resolved until the cycle after the
mtctr instruction reaches the W stage.
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4.4 Instruction Grouping Rules

The X704 is a superscalar processor. The decode unit can issue up to three
instructions on each cycle, one to each of the following three pipelines:

ALU/Float This pipeline executes all instructions that do not access memory and do 
not fall in the branch group. These are either integer arithmetic, logical, 
or shift operations, floating-point operations other than loads and stores, 
and some SPR accesses.

Load/Store This pipeline executes instructions that access memory, including cache 
operations, synchronization, and diagnostic accesses that go through the 
data cache (dcbz, eieio, diagnostic cache tag accesses, and so on). 
Most SPR accesses are handled by the load/store pipeline.

Branch This pipeline executes conditional and unconditional branches including 
rfi, sc, condition-register logical, and isync. These instructions have pri-
mary opcodes equal to 0b0100xx.

The only instruction that can be the third in a group is a PC-relative branch.
There are no other position restrictions. Floating-point and integer opera-
tions cannot be executed in a single group. The load/store with update
instructions use both the load/store and the ALU pipelines, thus preventing
an ALU or floating-point instruction from issuing in the same group.

No instructions can be issued if the pipeline is stalled and there is at least
one valid instruction in the A stage that cannot proceed down the pipe. In
the absence of such a stall, the decode unit places instructions in the group
to be issued until one of the following conditions occurs:

1. The instruction decode buffer is empty.

2. There are three instructions in the group being issued.

3. There are two instructions in the group being issued, and the next
instruction in the instruction decode buffer is not a PC-relative branch.

4. The next instruction in the decode buffer uses the same pipeline as an
instruction already in the group being issued.

5. The next instruction in the decode buffer writes the same register as an
instruction already in the group being issued.

6. Either the next instruction in the decode buffer or an instruction placed
in the issuing group is one of a class of instructions that must execute
by itself. 
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This class comprises the dcbst, dcbtst, dcbz, sync, isync, tlbie,
tlbsync, lmw, stmw, lswx, stswx, lswi, stswi, lwarx, stwcx.,
sc, rfi, mtcrf, mfcr, mfmsr, mtmsr, mftb, mtsr, mtsrin, mfsr,
mfsrin, mcrxr, as well as mtspr and mfspr instructions that access
privileged registers.

mtspr and mfspr instructions referencing the LR, CTR, and XER regis-
ters execute as ALU instructions. All other mtspr and mfspr instruc-
tions execute in a group by themselves.

7. The group being issued contains an mtspr instruction and the next
instruction in the decode buffer is a conditional branch.

8. The next instruction in the decode buffer is a floating-point divide, any
floating-point instruction with the Rc bit set, or a floating point status
and control register instruction, and the group being issued is not
empty.

9. The integer pipeline is not empty and the next instruction in the decode
buffer is an lswx or stswx.

10. The group being issued contains an instruction and either branch tracing
or single-step tracing is enabled (MSR[SE] or MSR[BE] are set), or the
processor is in single-issue mode (MODES[SI] is set).

11. The group being issued contains an instruction that takes an instruction
storage interrupt, instruction fetch TLB miss interrupt, or instruction
breakpoint trace interrupt or strobe pulse.

Multi-flow instructions use one D stage for each flow. No other instructions
issue during these additional D stages. The load and store multiple and
move assist instructions are multi-flow; they have one flow for each register
accessed. An lswx or stswx instruction with a length of zero requires one
flow. Each memory reference in a misaligned multi-flow instruction incurs
additional performance penalties as described in Section 4.8 on page 99.

Only one instruction can be issued on the cycle following a mispredicted
branch that occurred because of an invalid finder entry. Consider this pair of
instructions issued in a single group:

14 beq .+40 

54 add r0, r1, r2

where the finder indicates that the branch is taken and that the add instruc-
tion is also a taken branch. The invalid finder entry causes a mispredict back
to PC 14. When the branch instruction is reissued, a group break occurs
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before the add instruction. This break is required because only one finder
entry can be updated on each cycle, and both instructions require finder
entry modification. This situation is rare, and this group break has a negligi-
ble performance impact.

Because the fetch unit predicts branch target addresses and places instruc-
tions fetched from the branch target into the instruction buffer, there is no
requirement that instructions executed in the same group be from sequen-
tial addresses.

4.5 Fetch Stalls

No instructions can be issued until they have been fetched into the proces-
sor. The fetch unit loads instructions into the instruction buffer unless any of
the following conditions are present:

1. The fetch buffer portion of the instruction buffer is not empty.

2. The current fetch causes an ITLB miss. 

If the ITLB miss can be satisfied from the main TLB, there is a minimum
four cycle penalty. If the miss cannot be satisfied from the main TLB
and the processor attempts to issue the instruction at the offending
address, a TLB miss interrupt occurs.

3. The current fetch PC misses in the instruction cache. 

An instruction cache miss has a minimum penalty of four cycles if the
level 2 cache speculative access succeeds. The minimum penalty is
five cycles if there is no speculative access, or if the speculative access
fails.

4. The value in the appropriate register (CTR, LR, or SRR0) is not current,
and a bcctr, bclr or rfi indirect branch instruction in the instruction
buffer is predicted to be taken. 

In this case, the fetch unit stalls until the instruction buffer contains
three or fewer instructions and all instructions in the pipeline or instruc-
tion buffer, if any, that could modify the register containing the target
address have completed.

5. An isync or rfi instruction is issued, the L2CTL register is written, or an
interrupt is taken.

In this case, the fetch unit resumes fetching instructions when all cache
operations, synchronization instructions, and diagnostic writes have
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been removed from the store queue. Diagnostic writes include modifi-
cations to the TLB or to SPRs that affect the context in which instruc-
tions addresses are interpreted. This stall ensures that these events are
context synchronizing.

6. The instruction buffer has an associated four-entry queue that provides
an entry for each instruction in the instruction buffer that is either
marked as a branch in the finder or causes a trap known to the fetch
unit. 

If this queue is full, an instruction requiring a queue entry cannot be put
in the instruction buffer until the cycle after another entry is freed.
Entries are removed from this queue when the associated instruction is
issued. This queue rarely fills, and should not cause any performance
degradation.

4.6 Decode Stalls

After the decode unit has determined how many instructions can be moved
from the instruction buffer into the execution pipeline, it may discover that
one or more of those instructions cannot be issued because of a resource
conflict. Rather than attempt to determine if a smaller instruction group
could be issued, the decode unit prevents the entire group from moving to
the A stage.

Any of the following events cause decode stalls:

1. The instruction group contains a load or store with an address register
operand that is being written by either a load instruction in the A stage
or an ALU instruction that has not yet reached the X stage. This is
known as an address generation dependency. For example:

lwz r1, (r0) D A C M W

lwz r2, (r1) D D D A C M W

In this case, the second load instruction is delayed for two cycles: once
by a group break because of a pipeline conflict with the previous
instruction, and once by a stall because it may not reach the A stage
until the result of the previous instruction can be bypassed from its C
stage.

Normally, the X stage occurs in A, so a sequence like the following does
not cause an empty instruction group to be issued:
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lwz r1, (r0) D A C M W

add r3, r0, r7 D Ax C M W

lwz r2, (r3) D A C M W

If the X stage is farther out in the pipeline, multiple address generation
stalls occur, as in the extra two-cycle delay in this example:

lwz r1, (r0) D A C M W

add r3, r0, r1 D A C Mx W

lwz r2, (r3) D D D A C M W

2. A group containing an indirect branch instruction (bcctr, bclr, or rfi )
cannot be issued while any instruction that modifies the register hold-
ing the target address is in the pipe. This is apparent in a sequence like
the following:

mtlr r0 D A C M W

blr D D D D D A C M W

3. A group containing a floating-point instruction cannot be issued unless
the ALU X stage is in the A stage.

4. A group containing a floating-point instruction with the Rc bit set or a
floating point status and control register instruction cannot be issued
while there is a floating-point divide instruction in the execution pipe-
line.

5. A group containing a floating-point computational instruction cannot be
issued while an instruction that sets FPSCR explicitly (mtfsf, mtfsfi,
mtfsb0, and mtfsb1) is in the pipeline but has not yet reached the W
stage. This can cause a delay of as long as four cycles in issuing the
next instruction.

6. A group containing a floating-point instruction cannot be issued while
there is a single-precision floating-point load of a denormalized value in
the W stage, and any instruction using the load/store pipeline is in the
M stage.

7. No instructions can be issued while an stwcx. or sync instruction is
waiting to complete in the W stage. See the entries for these instruc-
tions in Section 4.7 on page 97.

As shown in Section 4.2 on page 88, the sliding X stage eliminates most
group breaking because of read-after-write register dependencies; only
address operand dependencies cause group breaks. In addition, an ALU
instruction that writes CR and a condition-register logical instruction (for
example, cror) can execute in the same group.
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4.7 Pipe Stalls

Certain conditions cause an instruction to require multiple cycles in a single
pipe stage, causing the pipeline to stall. When the pipeline stalls, instruc-
tions already in the pipe advance and instructions can be issued while there
are empty stages behind the stalled instruction.

The following conditions cause the pipeline to stall:

1. A multi-step instruction uses multiple X stages. The various multiply and
divide instructions are the only multi-step instructions.

The mulhw and mulhwu instructions always take five steps and the
mullwo instruction always takes six steps, but mullw and mulli take
between three and five steps depending on the number of leading
zeroes in the (RB) operand to mullw or the sign-extended immediate
operand of mulli according to this table: 

The divw and divwu instructions always take 37 steps.

2. If the X stage is in M, tw and twi instructions stall in X for a single
cycle.

3. A load instruction in the C stage stalls for a single cycle if it addresses
the same doubleword as a store in the M or W stage, or if it addresses
the same cache block being supplied from the level 2 cache to the data
cache on that cycle.

4. A load instruction in the C stage stalls while a store queue entry is being
written to the data cache. A store instruction in the C stage stalls in this
situation only if the store queue entry updates the data cache tags. 

This situation occurs when the store queue is full or when the hardware
cannot determine whether it will become full. If the store queue were
not full, advancing the pipeline would take precedence over writing a
store queue entry to the data cache. This case is rare.

5. A store instruction in either the C stage or the W stage stalls for a single
cycle if it hits the cache block being supplied from the level 2 cache to
the data cache on that cycle. 

Number of Leading Zeros Steps

16 or more 3

8 to 15 4

fewer than 8 5
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6. Load instructions that cause data cache misses stall in the M stage until
the target word is accessible. The minimum data cache miss penalty is
three cycles if the level 2 cache speculative access succeeds. The mini-
mum penalty is four cycles if there is no speculative access or if it fails.

7. If the store queue is full, a store instruction in the W stage stalls until a
store queue entry becomes available.

8. A load or store instruction that uses the result of a misaligned load or
load algebraic instruction as an address operand stalls in the A stage
until that misaligned load or load algebraic instruction has exited the M
stage. An ALU instruction that uses the result of a misaligned load or
load algebraic instruction may also stall in X. See Section 4.8 on
page 99.

9. A caching inhibited or diagnostic load stalls in the M stage until the tar-
get data is returned. Caching inhibited loads must also wait for all cach-
ing inhibited stores to be drained from the store queue, and diagnostic
loads other than data cache data accesses must wait for all diagnostic
stores to be drained from the store queue. Diagnostic accesses include
reads and writes of SPRs implemented in the load/store, level 2 cache,
and fetch units. A list of those SPRs can be found in Table 2 on page 36.

10. A dcbf, dcbi, or dcbz instruction in the M stage, W stage, or store
queue stalls a subsequent load or store instruction to the same cache
block index in the C stage until two cycles after the cache operation is
removed from the store queue. Any load or store instruction in the C
stage stalls for one cycle on the cycle after a dcbf, dcbi, or dcbz

instruction is removed from the store queue. This stall also affects
caching inhibited loads and stores.

11. The sync instruction stalls in the W stage until the store queue is
empty and the level 2 cache has no operations in progress. All instruc-
tions in the pipe behind the sync will be re-issued when the sync com-
pletes.

12. The eieio instruction stalls in the W stage and holds subsequent
load/store instructions in the C stage until the store queue is empty and
the level 2 cache reports that all previous tlbie and tlbsync instruc-
tions have been broadcast on the bus.

13. The lwarx and stwcx. instructions stall in the M stage until all
branches ahead of them have been resolved and they are known to be
on the execution path.
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14. The stwcx. instruction stalls in the M stage until the store queue is
empty. When the store queue is empty, the conditional store operation
is sent to the level 2 cache and the instruction stalls until the level 2
cache reports whether the store succeeded.

15. Branches that are not the last instruction in their group stall in the M
stage until they are resolved.

16. The mfcr instruction stalls in the M stage for one cycle if the W stage is
not empty.

Stalls caused by store instructions in the W stage are visible to the rest of
the pipeline only when there is another load/store instruction in M. In that
case, it appears as though the load/store instruction in M is stalling.

TLB misses are interrupts and do not cause pipe stalls. Pipeline stalls
caused by floating-point instructions are covered in Section 4.9 on
page 101.

4.8 Penalties for Algebraic and Misaligned Loads and Stores

Most load results can be bypassed from the cache output in the C stage
directly to any stage that might need them. Some load instructions require
extra processing that prevents this efficient bypassing. The load algebraic
instructions require additional time to perform sign extensions, and cannot
bypass their results immediately. Some misaligned loads require multiple
accesses to the cache and must introduce pipe stalls. The following sec-
tions illustrate these penalties.

4.8.1 Pipeline Diagrams for Algebraic Loads

Load algebraic instructions access the cache as efficiently as other load
instructions, but they cannot bypass their result from the C stage as other
loads do. A subsequent instruction that uses the result of a load algebraic
can stall, or the ALU can move out to a later stage. There is no decrease in
the bandwidth of these instructions, so if the following instructions do not
use their results, no penalty is incurred. For example,

lha r1, (r2) D A C M W

lwz r3, 4(r2) D A C M W

lwz r4, 8(r2) D A C M W
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Similarly, a sequence of lha instructions executes with no stalls:

lha r1, (r2) D A C M W

lha r3, 2(r2) D A C M W

lha r4, 4(r2) D A C M W

lha r5, 6(r2) D A C M W

If an ALU instruction needs the result of an algebraic load, the X stage stalls
for one cycle waiting for the result, as though it were a one-cycle cache
miss penalty:

lha r1, (r2) D A C M W

or r3, r4, r5 D Ax C M W

add r1, r1, r2 D A Cx Cx M W

For a non-algebraic load, the result would have been available at the end of
the C stage and could have been wrapped into the first C stage of the add.
The or instruction forces a pipeline conflict group break and also demon-
strates that two cycles of possible ALU usage were lost. If the result of an
algebraic load is needed to generate an address for the following instruc-
tion, that instruction is held in A for an additional cycle:

lha r1, (r2) D A C M W

lwz r4, (r1) D D A A C M W

These examples demonstrate that algebraic loads have the same band-
width as other loads, but are encumbered by an additional cycle of latency.

4.8.2 Pipeline Diagrams for Misaligned Loads

The X704 executes most unaligned loads with no performance penalty.
Unaligned loads that cross a doubleword (eight-byte) boundary require two
instruction flows: one for each doubleword access to the data cache. This
impacts performance. In this section, the term misaligned refers only to
accesses that cross doubleword boundaries. 

In pipeline diagrams, misaligned loads are shown with two A stages. The
additional A stage represents both the C stage of the first cache access
flow and the A stage of the second one. This extra flow can be viewed as an
A stage stall that reduces the bandwidth of misaligned loads to one every
two cycles. A sequence of misaligned loads looks like this:

lwz r2, (r1) D A A C M W

lwz r3, 4(r1) D A A C M W

lwz r4, 8(r1) D A A C M W
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If an ALU instruction needs the result of a misaligned load, the X stage stalls
for one cycle waiting for the result, as though it were a one-cycle cache
miss penalty:

lwz r2, (r1) D A A C M W

or r3, r4, r5 D Ax Ax C M W

add r2, r2, r1 D A Cx Cx M W

Again, the or instruction forces a group break for illustrative purposes only.
If the load result is needed to generate an address for the following instruc-
tion, that instruction is held in A until the load result is available at the end of
the M stage:

lwz r2, (r1) D A A C M W

lwz r4, (r2) D A A A C M W

4.8.3 Pipeline Diagram for Misaligned Stores

Misaligned store instructions that cross a doubleword (eight-byte) boundary
require two cache accesses and two A stages just as misaligned loads do.
In addition, they require two M stages because the store data must be sup-
plied to the data cache for each write. This causes a delay of one cycle to
the following instructions, requiring an extra cycle in the A stage to com-
plete their execution. The additional stalls reduce the bandwidth of mis-
aligned stores to one every three cycles.

A pipeline diagram of a misaligned store followed by an aligned store and an
unrelated ALU operation looks like this:

stw r1, (r2) D A A C M M W

stw r3, (r4) D A A C M W

addi r5, r6, 4 D Ax Ax C M W

4.9 Floating-Point Execution

Unlike integer operations, all of the non-load/store floating-point instructions
have multiple-cycle latencies. Portions of the floating-point unit are not pipe-
lined, preventing some floating-point operations from issuing on every
cycle. The following table shows the bandwidth and latency for all of the
floating-point instructions. 
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The bandwidth column lists the minimum number of cycles between
issues, where a value of one indicates that one instruction can issue every

1. This is the latency until a branch depending on the resulting flags can be resolved.
2. Worst-case divides are those requiring the maximum normalization of an operand 

and the maximum denormalization of the result.

Table 9: Floating-Point Instruction Bandwidth and Latency 

Instruction Bandwidth Latency

fabs 1 4

fadd 1 4

fadds 1 4

fcmpo 1 41

fcmpu 1 41

fctiw 1 4

fctiwz 1 4

fdiv (typical) 34 35

fdiv (worst case) 1402 141

fdivs (typical) 20 21

fdivs (worst case) 662 67

fmadd 2 5

fmadds 1 4

fmr 1 4

fmsub 2 5

fmsubs 1 4

fmul 2 5

fmuls 1 4

fnabs 1 4

fneg 1 4

fnmadd 2 5

fnmadds 1 4

fnmsub 2 5

fnmsubs 1 4

frsp 1 4

fsel 1 4

fsub 1 4

fsubs 1 4
1 0 2 E X P O N E N T I A L  X 704 TE C H N I C A L  S U M M A R Y



cycle. The latency column shows the number of cycles that must elapse
before the result of the instruction can be used as an input to another float-
ing-point instruction.

4.9.1 Floating-Point Computational Instructions

The floating-point execution pipeline has four execution stages, called F1,
F2, F3, and F4, in addition to the normal decode and writeback stages. The
W stage of a floating-point operation normally occurs one cycle after the W
stage of load/store or branch instructions issued in the same group. The
latency of floating-point instructions is shown in this pipeline diagram:

fadd fr1, fr2, fr3 D F1 F2 F3 F4 W

fmul fr4, fr1, fr5 D F1 F1 F2 F3 F4 W

The extra cycle of latency on double-precision multiplies is manifested by an
additional F1 stage. This double use of a pipe stage means that double-pre-
cision multiply and multiply-add operations can be issued only every other
cycle, as shown in this diagram:

fmul fr1, fr2, fr3 D F1 F1 F2 F3 F4 W

fmul fr4, fr5, fr6 D F1 F1 F2 F3 F4 W

fadd fr7, fr8, fr9 D F1 F2 F3 F4 W

The fadd instruction in this diagram shows that any floating-point instruc-
tion following an instruction with a two-cycle bandwidth is delayed.

The result of a floating-point divide instruction cannot be bypassed when
used as an operand to a following instruction; it must be written into the
floating-point register file and then read out. Thus, the latency of the float-
ing-point divider is one cycle longer than the issue rate. When all floating-
point exceptions are disabled, the Rc bit in a divide instruction is clear, and
the MODES[POE] bit is set, the divider operates asynchronously. In this
case, a subsequent floating-point instruction can be delayed by one cycle to
allow the divider to write a result into the register file. When the divider is
operating synchronously, the entire pipeline stalls waiting for the divide
result. In this case, the latency and issue bandwidth are identical.

4.9.2 Floating-Point Compare Instructions

A branch instruction that depends on a condition register field set by a float-
ing-point instruction cannot be resolved until the W stage of the instruction
that sets CR. A mispredicted branch in a group with a floating-point com-
pare incurs a six-cycle penalty, as shown in the following pipeline diagram:
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fcmpu fr4,fr5 D F1 F2 F3 F4 W

bcc cr1 D A C M M W

<mispredict> ---

add r1, r2, r3 F D A C MW

4.9.3 Floating-Point Load and Store Instructions

Floating-point load instructions have an extra cycle of load-use penalty when
compared to fixed-point loads. In addition, there is no equivalent of the slid-
ing X stage to absorb some of the load-use penalty. The load-use relation-
ship is shown in this pipeline diagram:

lfd fr0, (r4) D A C M W

fadd fr0, fr1, fr2 D F1 F2 F3 F4 W

Single-precision floating-point loads of denormalized data incur an additional
penalty of up to 23 cycles while they are converted to the double-precision
format used in the floating-point register file. The normalization occurs in
the W stage and stalls the entire pipeline. A single-precision floating-point
load of the value zero requires one extra cycle of latency because the result
cannot be bypassed until the processor can determine that zero is not a
denormalized value. This extra latency does not affect the one issue per
cycle bandwidth of floating point loads.

Floating-point store data must come directly from the floating-point register
file; neither load data nor computational results can be bypassed. The result-
store relationship is shown in this pipeline diagram:

fadd fr0, fr1, fr2 D F1 F2 F3 F4 W

stfd fr0,(r1) D A C C C C M W

The result is read from the register file in the last C stage of the store, one
cycle after it was written by the fadd instruction. If the result had come
from a load of a denormalized single-precision value, the pipeline diagram
would look like this (the lowercase w pipe stage represents a shift of a sin-
gle bit of a normalization):

lfs fr0, (r1) D A C M w w w W

stfd fr0, (r2) D A C C C C C C M W

Single-precision floating-point stores of denormalized values are performed
without any performance penalty.
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4.9.4 Floating Point Exceptions and Condition Register Updates

When inexact, underflow, and overflow exceptions are enabled, an instruc-
tion group containing a floating-point computational instruction stalls in the
M stage until the floating-point unit can determine whether an exception
has occurred. An instruction group containing a floating-point computational
instruction with the Rc bit set also stalls.

4.9.5 Floating-Point and Integer Pipeline Synchronization

The floating-point and integer pipelines are not tightly coupled; floating-point
and load/store or branch instructions that issue in the same group do not
necessarily proceed down the pipeline together. Table 10 shows the valid
alignments of the two pipelines. 

This loose coupling allows one pipeline to proceed while the other is stalled.
In the absence of stalls, paired instructions proceed on the diagonal path
from D/D through A/F1, C/F2, M/F3, and W/F4; floating-point instructions
continue on to the floating-point write (FW) stage, which is one cycle after
the W stage for a fixed-point instruction. If any floating-point exceptions are
enabled and there is a possibility that the floating-point instruction may take
an exception, or if a floating-point instruction updates CR because the Rc bit
is set, the group must pass through the M/F4 point to coordinate exception
processing and condition register updates. This will always cause the inte-
ger pipe to stall for at least one cycle. Condition register updates resulting
from floating-point compare instructions can be handled at the M/F3 point
and do not cause a stall.

Table 10: Floating-Point and Integer Pipeline Alignments

D F1 F2 F3 F4 FW

D •

A • • • •

C • • • •

M • • • •

W • • •

— • •

— •
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4.9.6 Optimizing Floating-Point Performance

To obtain the best floating-point performance on the X704, follow these
guidelines:

• Disable all exceptions by clearing the five exception enable bits in the
FPSCR.

• Do not set the Rc bit in any floating-point instructions.

• Explicit reads and writes of FPSCR with the floating-point status and
control register instructions should be used sparingly.

• If programs are expected to generate denormalized numbers, they
should be run in non-IEEE mode by setting FPSCR[NI].

• In floating-point code, fixed-point instructions should be scheduled so
that the ALU X stage remains in the A stage. In particular, fixed-point
loads should be separated from uses by two cycles.

• Instructions should be scheduled so that floating-point instructions do
not immediately follow double-precision floating-point multiply or multi-
ply-add instructions.
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5. Signal Descriptions

The X704 supports the Basic Transport Protocol described in the PowerPC
60x Microprocessor Interface Specification. The X704 does not support the
Extended Transfer Protocol described in that document. The 60x bus pro-
vides a 64-bit data bus and a separate 32-bit address bus, each with byte
parity. The following sections describe the X704 processor interface in more
detail.

5.1 Bus Interface Signals

Figure 24 illustrates the X704 bus interface signals grouped according to
their functions. All interface signals except the clocks and those listed as
configuration and test are described in the PowerPC 60x Microprocessor
Interface Specification. The X704 does not support the XATS extended
address transfer start pin, the SMI interrupt pin, and the CKSTP_IN and
CKSTP_OUT check stop pins described in that specification.
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Figure 24: X704 Bus Interface Signals

BR

BG

ABB

TS

A

AP

APE

TT

TC

TSIZ

TBST

CI

WT

GBL

CSE

AACK

ARTRY

SHD

PHEAT_DIS

OTMP_DIS

WARM

HOT

CLOCK

CLK_CTL

DBG

DBWO

DBB

D

DP

DPE

DBDIS

TA

DRTRY

TEA

INT

MCP

HRESET

SRESET

RSRV

STROBE

PLL_CFG

PLL_BYPASS

SCAN_EN

SCAN_SER

TCK

TMS

TDI

TDO

TRST

CLK_OUT

TEMP_OUT

ADDRESS
ARBITRATION

DATA
ARBITRATION

DATA
TRANSFER

DATA
TERMINATION

ADDRESS
TRANSFER

ADDRESS
START

TRANSFER
ATTRIBUTES

INTERRUPT
AND STATUS

CONFIGURATION
AND TEST

ADDRESS
TERMINATION

TEMPERATURE
STATUS/CTRL

1  1

1 1

1 1

1 64

8

1

32 1

4

1 1

1

5 1

3

3 1

1 1

1 1

1 1

1 1

3  

1

1 5

1 1

1 1

1

1 1

1 1

1 1

1 1

1

1 2 2 1
1 0 8 E X P O N E N T I A L  X 704 TE C H N I C A L  S U M M A R Y



5.2 Signal Descriptions

The following table describes the X704 processor-dependent bus interface
signals.

Table 11: Processor-Dependent Signal Descriptions

Signal Name Pins Active I/O State Meaning Timing Comments

STROBE
Breakpoint 
strobe

1 N/A O Asserted/Negated—
when breakpoint strobes 
are used, this pin indicates 
breakpoint hits. The signal 
is either asserted or 
negated on a breakpoint 
depending on the value of 
the L2CTL.SB bit.

Asserted/Negated—
pulsed for one bus clock 
within three bus clocks 
after the breakpoint is trig-
gered.

PLL_CFG
PLL and 
clock 
configuration

5 high I Asserted/Negated—con-
figures the ratio between 
processor and bus clocks. 
See Section 5.2.1 on 
page 111 for more infor-
mation.

These pins may be 
changed only while the 
HRESET input is asserted.

PLL_BYPASS
PLL disable

1 high I Asserted—disables the 
PLL and causes the CLOCK 
input to be passed directly 
to the internal clock signal.

These pins can be changed 
only while the HRESET 
input is asserted.

CLOCK
System clock

1 I Standard input clock sent 
to the PLL.

CLK_CTL
Clock control

2 high I Selects the internal clock 
tree source among the 
internal clock signal, TCK, 
and a speed test clock. 
See Section 5.2.1 on 
page 111 for more infor-
mation.

See Section 5.2.1 on 
page 111 for more infor-
mation on this signal.

CLK_OUT
PLL test
clockout

1 O This pin is a 50% duty 
cycle clock that runs at 
half the frequency of the 
internal system bus clock 
PLL output. It is intended 
to be used as a heartbeat 
test.

SCAN_EN
Scan enable

1 high I Asserted—enables scan 
mode on all scannable flip-
flops and disables all inter-
nal RAM write enables.
Negated—All flip-flops 
and RAM write enables 
are in the normal operat-
ing mode.

See Section 7.2 on 
page 119 for more infor-
mation on this signal.
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SCAN_SER
scan serial 
mode

1 high I Asserted—all scan ele-
ments are configured as a 
single scan chain.
Negated—the scan ele-
ments are configured as 
multiple parallel scan 
chains.

See Section 7.2 on 
page 119 for more infor-
mation on this signal.

HOT 1 high O Asserted—the die tem-
perature has exceeded 
the maximum operating 
temperature. If the 
OTMP_DIS pin is not 
asserted, the processor 
has shut down.
Negated—the die temper-
ature is below the maxi-
mum operating 
temperature.

See Section 5.2.3 on 
page 113 for more infor-
mation on this signal.

WARM 1 high O Asserted—the die tem-
perature is near the top of 
the operating range.
Negated—the die temper-
ature is below the top of 
the operating range.

See Section 5.2.3 on 
page 113 for more infor-
mation on this signal.

TEMP_OUT 2 analog O The voltage across these 
two pins is a measure-
ment of the die tempera-
ture. Bit 1 of this signal is 
a ground reference for bit 
0.

OTMP_DIS 1 high I Asserted—the processor 
will continue operating 
when the maximum oper-
ating temperature is 
exceeded.
Negated—the processor 
will shut down when its 
maximum operating tem-
perature is exceeded.

See Section 5.2.3 on 
page 113 for more infor-
mation on this signal.

PHEAT_DIS 1 high I Asserted—the processor 
will process reset inter-
rupts as soon as they are 
detected.
Negated—the processor 
will hold reset interrupts 
pending until the die tem-
perature is above a mini-
mum threshold.

See Section 5.2.3 on 
page 113 for more infor-
mation on this signal.

Table 11: Processor-Dependent Signal Descriptions

Signal Name Pins Active I/O State Meaning Timing Comments
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5.2.1 Clock and Phase-Locked Loop Signals

The X704 receives an external system clock on the CLOCK input pin. The
system clock frequency must be between 40MHz and 100MHz.

The X704 contains a phase-locked loop (PLL) referenced to the external sys-
tem clock that generates the internal processor and bus clocks. The internal
processor clock frequency is an integral multiple of the system clock fre-
quency and can range from 350MHz to 650MHz in normal system opera-
tion. The internal bus clock is a copy of the system clock output by the
PLL for use on-chip.

The internal processor clock to system clock ratio configuration information
is encoded in the 5-bit PLL_CFG input. The values 1, 2, and 17 through 31
are reserved and may not be used. In all other cases, the system bus clock
frequency is multiplied by one more than the value of this field to produce
the processor clock frequency. For example, a value of 5 in PLL_CFG
denotes a processor clock to bus clock ratio of 6:1.

Representative settings of PLL_CFG for typical system and processor clock
rates are shown in Table 12.

TRST_
JTAG 
test reset

1 low I Asserted—resets the 
JTAG TAP controller.

This signal must be held 
asserted during normal 
chip operation.
This signal must be 
asserted synchronously 
with TCK.

TCK
JTAG 
test clock

1 I JTAG scan and test clock

TMS
JTAG 
test mode
select

1 high I Asserted/Negated—
causes the TAP controller 
to change states as 
defined in the JTAG speci-
fication.

TDI
JTAG 
test data in

1 high I Asserted/Negated—car-
ries the serial data input to 
the TAP controller.

TDO
JTAG 
test data out

1 high O Asserted/Negated—car-
ries the serial data output 
from the TAP controller.

Table 11: Processor-Dependent Signal Descriptions

Signal Name Pins Active I/O State Meaning Timing Comments
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The use of a bus clock to processor clock ratio of 1:1 is allowed only for chip
testing; the bus interface is not logically functional in this configuration. 

If the PLL_BYPASS input pin is asserted, the PLL is disabled and the system
clock input is passed directly to the internal processor clock distribution
tree. The PLL configuration inputs are still used to create an internal bus
clock, but system logic that requires a functional bus must include a clock
divider to create an external bus clock that matches the internal one. Use
PLL bypass mode for chip testing only.

The two-bit CLK_CTL signal selects alternate clock sources during test and
scan operations. This signal is encoded as shown in the following table:

In normal operation, CLK_CTL is set to 10. During scan testing, it is set to
11 to distribute the TCK JTAG test clock pin. When CLK_CTL is set to 00,
the scan speed testing trigger is enabled. In this state, when a rising edge is
detected on CLK_CTL(1) the internal clock is switched from TCK to the PLL
output (or PLL bypass) clock for two internal clock cycles. The CLK_CTL(1)

Table 12: Typical PLL_CFG Settings

System Clock (MHz) Processor Clock (MHz) PLL_CFG Value

40 400 01001

50 500 01001

50 600 01011

60 420 00110

60 600 01001

66.7 400 00101

66.7 600 01000

80 400 00100

80 640 00111

100 400 00011

100 600 00101

100 700 00110

Table 13: CLK_CTL Settings

CLK_CTL Clock distributed throughout chip

00 TCK, speed-test trigger enabled

01 scan speed test (See Section 7.3 on page 120)

10 PLL output or PLL bypass

11 TCK
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edge is sampled on the rising edge of the CLOCK input. During scan speed
testing, CLK_CTL(1) should be asserted for at least two external clock
cycles. See Section 7.3 on page 120 for more information on scan speed
testing.

5.2.2 Test Signals

The X704 provides the five interface signals needed to implement the IEEE
1149.1 JTAG standard. That standard should be consulted for information
on the JTAG protocol. The X704 deviates from the standard by requiring the
optional TRST test reset pin to be asserted synchronously with the TCK test
clock.

The CLK_OUT pin provides a basic check of chip functionality. This pin out-
puts a 50% duty cycle clock running at half the frequency of the internal bus
clock signal generated by the PLL. The PLL generates a bus clock even
when PLL_BYPASS is asserted.

The SCAN_EN and SCAN_SER signals support manipulation of the internal
scan chains. Use of these signals is described in Section 7.2 on page 119.

The STROBE pin indicates that instruction or data breakpoints have been
triggered. This pin is intended to be used as a trigger for a logic analyzer. For
more information on breakpoints, see Section 2.3.4.5 on page 41.

5.2.3 Thermal Monitoring and Control Signals

The X704 contains an internal temperature sensor unit that constantly moni-
tors the internal die temperature. This unit supplies an analog output repre-
senting the current temperature and two digital outputs indicating whether
the die temperature has exceeded either a warm or hot threshold. The hot
threshold represents the maximum operating temperature of the part, and
the warm threshold is set approximately 10°C below that point.

In order to prevent physical damage to the processor, the temperature
sensor unit turns off the voltage reference generators when the hot
threshold is exceeded, effectively cutting power to the chip and causing it
to cease operating. This automatic cutoff can be disabled by asserting the
OTMP_DIS input pin. Assertion of this pin is not recommended for other
than testing purposes. Once an over-temperature shutdown has occurred,
the processor cannot be restarted until the temperature drops below the
warm threshold and either the HRESET or SRESET pin is asserted.
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The WARM output is intended to be used by systems that can provide addi-
tional cooling capacity in high temperature situations, or as an indication to
the system that an over-temperature shutdown may occur.

The digital threshold indications are provided to external system hardware
on the WARM and HOT output pins and to system software as the WT and
HT bits in the CHECK register.

The temperature sensor provides a preheat period before processing a
reset interrupt. At lower temperatures, the processor requires higher volt-
ages. By delaying a reset interrupt until the processor has reached a mini-
mum operating temperature, a lower voltage can be used, reducing the
amount of power dissipated by the processor. The preheat delay can be
suppressed by asserting the PHEAT_DIS input pin.

The exact values of the preheat, warm, and hot temperature thresholds, the
correlation between the TEMP_OUT analog outputs and die temperature,
power dissipation, and the processor’s voltage requirements will be sup-
plied in a later version of this document.
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6. Processor Interface

The X704 processor uses the PowerPC 60x processor interface standard.
This standard contains several features that are implementation depen-
dent. This section contains a summary of ways that the X704 interface may
differ from other PowerPC processor interfaces.

• The X704 supports the read with no intent to cache (RWNITC), lwarx

reservation set, ICBI, TLB invalidate, TLBSYNC, and EIEIO bus opera-
tions.

• The X704 does not support the external control word read and external
control word write bus operations produced by the ecwix and ecowx

instructions.

• The X704 does not support the extended transfer protocol (PIO).

• The X704 does not provide any power management signals, the SMI sig-
nal, or any checkstop signals.

• The X704's 8-way set-associative level 2 cache requires three cache set
element (CSE) output signals.

• The X704 supports the multiprocessing features of the interface defini-
tion including the SHD signal, reservation cancellation on snooped read
with intent to modify (RWITM) operations, and the suppression of
snoops for transactions that do not assert the GBL signal.

• The X704 supports non-cacheable and write through dcbz operations.

• The X704 supports write through write atomic transactions.

• The X704 does not support a timebase enable input signal; the timebase
is enabled by a field in the MODES register.

The following sections elaborate on the X704 bus interface implementation.
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6.1 Address Bus

In order to maximize available address bus bandwidth, the X704 always
asserts TS coincidentally with ABB and deasserts ABB on the cycle following
AACK.

Address and data parity errors detected by the X704 cause APE or DPE to be
asserted even if the CHECK.BP bus parity machine check enable bit is clear.

The X704 will neither generate nor snoop the external control word read or
external control word write TT encodings. The X704 does not generate the
read with no intent to cache (RWNITC) TT encoding, but it will snoop global
transactions of that type. When an RWNITC snoop is received, the ARTRY
and SHD pins are asserted if necessary, and the cache state is changed to
exclusive as for a clean bus operation.

6.2 Data Bus

On burst reads, the X704 can present any doubleword-aligned address in the
block and expects to receive the addressed doubleword of data first, followed
by the remaining doublewords in increasing address order, wrapping back to
the beginning of the block if required. On burst writes, the X704 always trans-
fers data beginning at the start (lowest address) of the block.

6.3 Coherency Protocol

On cycles where it is not driving the bus, the X704 snoops all bus transactions
where the GBL signal is asserted. The X704 never snoops its own transactions
or asserts ARTRY in response to its own transactions.

The ARTRY signal is asserted in response to the following conditions:

• A snoop hits a modified block, causing that block to be written back to
memory.

• A snoop that might require a writeback arrives while an earlier snoop
writeback is in progress. This snoop is retried even if no writeback is
required.

• A bus SYNC operation arrives when a snoop writeback is in progress.

• A bus TLBSYNC operation arrives while the X704 has a pending operation
based on a TLB translation that occurred before the most recent snooped
TLB invalidation.

• A bus TLBIE operation arrives while the MSR[TW] bit is asserted.

• Resource contention prevented a snoop operation from accessing the
cache tags in time to determine how to assert ARTRY and SHD accurately.
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6.4 Features for Improved Bus Performance

The X704 implements the following performance-enhancing bus protocol
extensions allowed by the bus specification:

• Optional disabling of the DRTRY signal, decreasing the minimum read
latency by one cycle.

• Optional data-streaming mode, increasing the maximum bandwidth.

• Optional elimination of the ABB and DBB signals.

The DRTRY signal allows external cache and memory controllers to cancel a
data transfer after it has already been sent to the processor. The processor
must buffer data for a cycle to prevent it from being used before a transfer
is canceled. This buffering adds a cycle to the read latency. Disabling the
DRTRY signal eliminates this cycle of latency. There is a performance cost,
however. In this mode, the earliest data transfer cannot occur until the first
cycle of the ARTRY window, and not on the cycle before that as it can using
the standard protocol.

Data streaming allows consecutive burst reads to appear on the bus with-
out an intervening dead cycle. Do not use this feature unless DBB is dis-
abled and the system arbitration logic asserts DBG for only the single cycle
before a data transfer must start on the bus.

The DRTRY feature is disabled and data streaming is enabled when DRTRY
is asserted along with HRESET in the hardware reset interval.

X704 processors recognize address tenures by tracking the TS and AACK
signals and do not depend on ABB assertions. Assertions of ABB are
always recognized and prevent a X704 from using a bus grant. The X704 will
drive ABB during its address tenures.

The X704 does not require the DBB input if the system guarantees that DBG
will only be asserted for the one cycle before its data tenure should start.
DBB assertions are always recognized and prevent a X704 from using a data
bus grant.
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7. Test Interface

This chapter briefly describes the X704’s test interface. 

7.1 JTAG Interface

The X704 supports an IEEE 1149.1-compliant JTAG TAP interface that can be
used to perform board-level testing. The TAP controller supports the JTAG
boundary scan SAMPLE/PRELOAD, EXTEST, INTEST, and BYPASS instruc-
tions. The JTAG ID register is not supported. All X704 I/O pins except
CLOCK, CLK_OUT, SCAN_EN, SCAN_SER, and the five JTAG interface sig-
nals appear on the boundary scan chain. 

The TAP controller is not used to access the internal scan chains described
in the next section.

7.2 Scan Chains 

The X704 supports a single serial scan chain that includes every flip flop in
the design. This scan chain can also be configured as 32 separate scan
chains that can be accessed in parallel. The serial scan mode is intended for
functional debug of prototype systems, while the parallel scan interface can
be used for both functional debug and for manufacturing testing where high
bandwidth scan is required.

The scan interface is driven entirely from input pins and does not use the
JTAG TAP controller. It does make use of the TCK test clock and the TDI and
TDO scan data input and output pins. To enable scan, the test device should
assert SCAN_EN to place all internal flip flops in the scan configuration.
Asserting the SCAN_EN pin also disables the write enables on all of the
internal RAMs.
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The SCAN_SER pin selects between the serial and parallel scan interfaces.
When this pin is asserted, the flip flops are treated as one long scan chain
with an input on the TDI pin and an output on the TDO pin. When
SCAN_SER is not asserted, the flip flops are treated as 32 scan chains with
inputs on one set of D bus data pins and outputs on another set of D bus
data pins.

Two clocking mechanisms can be used during scan. If the PLL is in bypass
mode, the CLK_CTL input can be set to 10 to use the CLOCK input pin to
clock the scan chain. Alternatively, CLK_CTL can be set to 11 to select TCK
as the source of the scan clock. In this case, the scan interface can be used
while the PLL is running and synchronized to the CLOCK input.

7.3 At-Speed Testing

Because the X704 runs at internal clock rates greater than the speed at
which a tester can supply vectors to the pins, some method other then sim-
ple external test vectors must be used to do speed fault grading. In order to
meet this requirement, the X704 provides a special speed test feature. With
the PLL running (PLL_BYPASS deasserted), the CLK_CTL input can be set
to 00 to select the TCK clock and enable the scan speed test trigger.

After loading a test vector while TCK is selected as the clock, the tester
clears SCAN_EN and sets CLK_CTL to 01 for at least two cycles of the
CLOCK input, restoring the 00 value after that time. This causes the internal
clock distribution logic to switch to the PLL output clock for two internal
clocks, effectively running one processor clock cycle at the internal proces-
sor clock rate rather than the tester clock rate. The scan chain can then be
scanned out of the chip by asserting SCAN_EN and clocking TCK to see if
any faults occurred at speed.
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8. Package Description

Figure 25: Pinout Diagram for the X704 Package
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Table 14: Pinout Listing for the X704 Package 

Signal Name Pin Number

A0—A31 L01, M01, M03, K02, L02, L03, K01, N01, J01, H02, K03, J03, N02, G02, J02, 
M02, G03, F01, H03, E01, D02, F02, H01, F03, G01, E02, D01, E03, C01, C02, 
D03, C03

AACK C06

ABB V03

AP0—AP3 W04, V04, T09, T01

APE V08

ARTRY W08

BG A07

BR U09

CI W06

CLK_CTL0—CLK_CTL1 B16, A17

CLK_OUT W03

CLOCK C09

CSE0—CSE2 U06, P03, U01

DBB W07

DBDIS A16

DBG A06

DBWO A05

DH0—DH31 U13, W14, V12, V16, W15, U15, R17, U16, V15, T17, U12, W17, R18, T18, M17, 
V17, V18, U17, P18, N18, P17, N19,U18, N17, T19, M18, K17, L18, L17, R19, 
R01, J17

DIODE_A B06

DIODE_C B07

DL0—DL31 K18, P19, K19, L19, M19, J19, J18, H18, G18, G19, F18, F19, F17, D19, C18, C19, 
T11, P02, U11, P01, V10, U14, V09, U08, V07, G17, D18, D17, E19, E17, E18, C17

DP0—DP7 V14, W16, V11, U19, H17, H19, U07, U10

DPE W10

DRTRY B04

GBL N03

HOT C04

HRESET C11

INT B09

MCP A04

Not Connected A01, A18, B03, B17, B18, B19, C05, C14, C15, C16, T07, T13, V01, V19, W02, 
W18

OTMP_DIS A09
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PHEAT_DIS B05

PLL_BYPASS C12

PLL_CFG0—PLL_CFG4 B14, C08, B11, A10, C07

RSRV T03

SCAN_EN A12

SCAN_SER A11

SHD W09

SRESET B15

STROBE U05

TA A08

TBST V13

TC0—TC2 T10, W12, U04

TCK C10

TDI B08

TDO R03

TEA A03

TEMP_OUT A14, C13

TMS B10

TRST  A13

TS W05

TSIZ0—TSIZ2 V02, U03, T02

TT W11, W13, V05, V06, U02

Vc D08, D11, E07, E10, E13, F09, F12, G08, G11, H07, H10, H13, J06, J09, J12, K08, 
K11, K14, L07, L10, L13, M09, M12, N08, N11, P07, P10, P13, R09, R12, T08

Vdd D05, D14, D16, E04, E06, E15, F05, F14, F16, G04, G06, G15, H05, H14, H16, 
J04, J15, K05, K16, L04, L15, M05, M14, M16, N04, N06, N15, P05, P14, P16, 
R04, R06, R15, T05, T14, T16

VGc D09, D12, E08, E11, F07, F10, F13, G09, G12, H08, H11, J07, J10, J13, K06, K09, 
K12, L08, L11, L14, M07, M10, M13, N09, N12, P08, P11, R07, R10, R13, T12

VGf D07, D10, D13, E09, E12, F08, F11, G07, G10, G13, H09, H12, J08, J11, J14, 
K07, K10, K13, L06, L09, L12, M08, M11, N07, N10, N13, P09, P12, R08, R11

Vrd B12

Vrn B13

Vrp A15

Vss D04, D06, D15, E05, E14, E16, F04, F06, F15, G05, G14, G16, H04, H06, H15, 
J05, J16, K04, K15, L05, L16, M04, M06, M15, N05, N14, N16, P04, P06, P15, 
R05, R14, R16,T04, T06, T15

WARM B02

WT R02

Table 14: Pinout Listing for the X704 Package (Cont.)

Signal Name Pin Number
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Figure 26: X704 Package Structure
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Appendix A. Sample TLB Interrupt Handlers

This appendix contains sample handlers for the TLB miss and TLB store
interrupts. These examples demonstrate the use of the X704’s TLB miss
SPRs and were written with more attention to clarity than to performance.

The TLB miss handler performs the following steps:

1. Saves some general registers and the counter register.

2. Initializes the PTE search from the CMP and HASH1 registers.

3. Searches both possible PTEG groups for the requested translation.

4. Uses the TLBLRU0 and TLBLRU1 registers to write the new translation
into the TLB if the matching PTE is found.

5. Converts the TLB miss interrupt into the proper instruction storage or
data storage interrupt if the matching PTE is not found.

! The TLB miss handler is called on both instruction and data TLB

! misses. The hardware writes MAR and MISR and saves CR0 in the

! upper bits of SRR1. The handler uses r29-31 and the counter 

! register after saving them using information in SPRGs 4 and 5.

TLBMISS: ! handler at 0x1000

mtsprg 5, r29 ! save r29 in SPRG5

mfsprg r29, 4 ! use r29 as pointer to save area

stmw r30, 0(r29) ! save r30 and r31 in save area

mfctr r30 ! save counter register

stw r30, 8(r29) ! in save area

! The magic CMP and HASH1 registers use the miss address saved in
! MAR,the value in SDR1, and the contents of the segment register 
! indexed by the upper four bits of the address in MAR.

mfspr r30, cmp ! upper half of desired PTE in r30

mfspr r31, hash1 ! addr of primary PTEG in r31
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TLB_MISS_PTEG_SEARCH:

li r29, 8 ! loop over 8 PTEs in a PTEG

mtctr r29

TLB_MISS_LOOP:

lwz r29, 0(r31) ! load upper half of this PTE

cmplw r29, r30 ! compare to desired entry

beq WRITE_TLB ! found it!

addi r31, r31, 8 ! point to next PTE

bdnz TLB_MISS_LOOP ! and try again

andi. r29, r30, 0x40 ! was this secondary search?

bne TLB_FAULT ! if so, it’s a storage interrupt

mfspr r31, hash2 ! otherwise, try secondary PTEG

ori r30, r30, 0x40 ! Set H=1 in target PTE upper half

! and search secondary PTEG

b TLB_MISS_PTEG_SEARCH

! If we get here, the upper half of the PTE is

! in r29 and the PTE address is in r31.

WRITE_TLB_ENTRY:

lwz r30, 4(r31) ! load lower half of PTE

ori r30, r30, 0x100 ! set referenced bit

stw r30, 4(r31) ! and write it back

mtspr tlblru0, r30 ! write the TLB entry using CMP and

! r30

mtspr tlblru1, r30

TLB_RETURN: ! restore registers

mfsprg r29, 4 ! get address of save area

lwz r30, 8(r29) ! load old counter value

mfsrr1 r31 ! SRR1 has saved CR0

mtctr r30 ! restore counter register

mtcrf 0x80, r31 ! restore CR0

lmw r30, 0(r29) ! load r30 and r31 from save area

mfsprg r29, 5 ! restore r29

rfi ! return to faulting instruction

! If we get here, no translation is found, and we must convert

! this interrupt into either a data storage interrupt or an
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! instruction storage interrupt.

! If it’s a data storage interrupt, MAR and MISR must be copied to

! DAR and DSISR. If it’s an instruction miss, we have to set up

! SRR1.

TLB_FAULT:

mfmsr r30 ! must reset MSR[TW]

rlwinm r30, r30, 0, 15, 13

mtmsr r30

mfsprg r29, 0 ! get address of save area

lwz r30, 8(r29) ! restore counter register

mtctr r30

mfspr r30, misr ! get MISR to look at type info

andis. r31, r30, 0x2000 ! was it instr TLB miss?

mfsrr1 r31 ! get saved CR0 from SRR1

bne SETUP_ISI ! it’s an instruction storage fault

mtdsisr r30 ! copy MISR to DSISR

mfspr r30, mar ! copy MAR

mtdar r30 ! to DAR

mtcrf 0x80, r31 ! restore CR0

lmw r30, 0(r29) ! restore r30 and r31

mfsprg r29, 5 ! and restore r29

b DATA_STORAGE_INTERRUPT

SETUP_ISI:

mtcrf 0x80, r31 ! restore CR0

lis r30, 0x4000 ! set up SRR1 for page fault

inslwi r31, r30, 16, 0

mtsrr1 r31 

lmw r30, 0(r29) ! restore r30 and r31

mfsprg r29, 5 ! and restore r29

b INSTR_STORAGE_INTERRUPT

The TLB store handler is similar to the TLB miss handler. An imple-
mentation that tried to minimize interrupt handler instruction 
cache usage could have the TLB miss and TLB store handlers share 
much of their code.

! The TLB store handler is invoked when a store references through

! a TLB entry with the C bit clear. The hardware guarantees that the

! faulting instruction had write permission to the page; if not, it

! would have invoked the data storage interrupt handler instead.
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! The hardware writes MAR and MISR and saves CR0 in the

! upper bits of SRR1. The handler uses r29-31 and the counter

! register after saving them using information in SPRGs 4 and 5.

TLB_STORE: ! handler at 0x1100

mtsprg 5, r29 ! save r29 in SPRG5

mfsprg r29, 4 ! use r29 as pointer to save area

stmw r30, 0(r29) ! save r30 and r31 in save area

mfctr r30 ! save counter register

stw r30, 8(r29) ! in save area

! The CMP and HASH1 registers use the address saved in MAR,

! the value in SDR1, and the contents of the segment register 

! indexed by the upper four bits of the address in MAR.

mfspr r30, cmp ! upper half of desired PTE in r30

mfspr r31, hash1 ! addr of primary PTEG in r31

TLB_STORE_PTEG_SEARCH:

li r29, 8 ! loop over 8 PTEs in a PTEG

mtctr r29

TLB_STORE_LOOP:

lwz r29, 0(r31) ! load upper half of this PTE

cmplw r29, r30 ! compare to desired entry

beq UPDATE_TLB ! found it!

addi r31, r31, 8 ! point to next PTE

bdnz TLB_STORE_LOOP ! and try again

andi. r29, r30, 0x40 ! was this secondary search?

bne TLB_STORE_FAULT ! This shouldn’t happen, O/S forgot

! TLBIE after PTE invalidate?

mfspr r31, hash2 ! otherwise, try secondary PTEG

ori r30, r30, 0x40 ! Set H=1 in target PTE upper half

! and search secondary PTEG

b TLB_STORE_PTEG_SEARCH

! If we get here, the upper half of the PTE is

! in r29 and the PTE address is in r31.

UPDATE_TLB:

lwz r30, 4(r31) ! load lower half of PTE

ori r30, r30, 0x80 ! set changed bit

stw r30, 4(r31) ! and write it back
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mfspr r30, tlbmrf ! load faulting TLB entry

ori r30, r30, 0x800 ! set changed bit

mtspr tlbmrf, r30 ! and write it back

mfsprg r29, 4 ! get address of save area

lwz r30, 8(r29) ! load old counter value

mfsrr1 r31 ! SRR1 has saved CR0

mtctr r30 ! restore counter register

mtcrf 0x80, r31 ! restore CR0

lmw r30, 0(r29) ! load r30 and r31 from save area

mfsprg r29, 5 ! restore r29

rfi ! return to faulting instruction

! If we get here, we couldn’t find the PTE that matches the TLB 

! entry. This isn’t supposed to happen. If it does, treat it like a

! TLB miss that turned into a page fault.

TLB_STORE_FAULT:

mfmsr r30 ! must reset MSR[TW]

rlwinm r30, r30, 0, 15, 13

mtmsr r30

lis r29, 0x4200 ! setup DSISR to be page fault on

! store

mtdsisr r29

mfspr r29, mar ! copy MAR

mtdar r29 ! to DAR

mfsprg r29, 0 ! get address of save area

lwz r30, 8(r29) ! get saved counter

mfsrr1 r31 ! get saved CR0

mtctr r30 ! restore counter register

mtcrf 0x80, r31 ! restore CR0

lmw r30, 0(r29) ! restore r30 and r31

mfsprg r29, 5 ! and restore r29

b DATA_STORAGE_INTERRUPT
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Index
A

address translation 34, 73, 86
alignment 20, 27, 98, 100
ALU stage 88, 96

B

block address translation 54, 81
boundary scan 119
BPTCTL 42, 51
branch prediction 10, 19, 48, 81Ð83
branches

indirect 94, 96
mispredicted 88
resolving 91
unresolved 91

breakpoint
data 21, 41Ð45, 59, 64
instruction 41Ð44, 60, 64
registers 41Ð45

bus interface 107Ð117
bus performance 117

C

cache operations 26, 50
caches

coherency 32, 72, 77
data 11, 25, 70Ð71
enables 26, 51, 75
flushing 75
inclusion 26, 75
instruction 8, 25, 69Ð70, 94
level 2 14, 25, 72Ð76
misses 94, 98
prefetching 78
replacement 26

change bit 27, 53, 54

CHECK 48, 57, 86
checkstop 57
CLK_CTL 112
clock 50, 111Ð113
CMP 38, 39
context synchronization 95
CR 89
CTR 10, 89

D

DABR 41, 45
DAR 59, 60
data cache. See caches, data
dcbf 30
dcbi 55
dcbst 29, 76
dcbt 78
dcbtst 78
dcbz 29, 42, 76
DEC 33
decode unit 10
denormalized numbers 23, 24, 104
diagnostic address space 84
direct-store segments 20, 53, 59

E

eciwx 18
ecowx 18
eieio 12, 32, 50, 98
exceptions

floating-point 24, 69, 105
inexact 24
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F

fetch PC 9
fetch unit 8, 94
finder 8, 81Ð83
floating-point unit 13, 23, 101Ð105
flow, instruction 67
FPSCR 23, 96

G

group 67
guarded storage 19

H

HASH1 38, 40
HASH2 38, 40
HRESET 57, 85, 113

I

IABR 44
icbi 27
instruction buffer 8, 92, 94
instruction cache. See caches, instruc-

tion
instruction fetching 19, 26
instruction grouping 92Ð94
instruction issuing 10, 48
instructions

dcbf 30
dcbi 55
dcbst 29, 76
dcbt 78
dcbtst 78
dcbz 29, 42, 76
diagnostic 30, 48, 84
divide 97
eciwx 18
ecowx 18
eieio 12, 32, 50, 98
executing modified 32
icbi 27
indirect branch 96
invalid 19, 21, 22, 25
isync 28, 94
lmw 21
load algebraic 99
lswi 20, 21, 60

lswx 20, 21, 60
lwarx 33, 98
lwdx 18, 30, 48, 76
mfspr 22, 35
mtmsr 34
mtspr 22, 35
multi-flow 93
multiply 97
rfi 94
stfiwx 24
storage control 54
stswi 20, 60
stswx 20, 60
stwcx. 59, 99
stwdx 31, 48
sync 12, 32, 50, 98
tlbia 55
tlbie 50, 55
tlbsync 50, 55

INT 59
integer unit 10
interrupt 56Ð64

alignment 60
data storage 58
decrementer 60
external 59
floating-point assist 61
floating-point unavailable 60
instruction storage 59
machine check 57
program 60
system call 60
system reset 57
TLB miss 38, 53, 61, 127Ð129
TLB store 38, 53, 62, 129Ð131
trace 60, 64

interrupt priorities 64
interrupt vector 56
isync 28, 94
ITLB 8, 53, 81, 94

J

JTAG 113, 119

L

lmw 21
load/store unit 11, 20
LR 10, 89
LRU 26
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lswi 20, 21, 60
lswx 20, 21, 60
lwarx 33, 98
lwdx 18, 30, 48, 76

M

machine check 48, 57
MAR 38, 61, 63
MCP 58
MESI 26, 72, 77
mfspr 22, 35
MISR 61
MODES 31, 33, 47
MSR 34

BE 34
DR 34, 61, 62
IR 34, 61, 85
LE 34
ME 57
SE 34
TW 34

mtmsr 34
mtspr 22, 35

O

operand placement 27

P

performance 45, 87, 106
phase-locked loop 111
pipeline 48, 67Ð68, 87Ð101

address generation 95
load-use 88
stalls 97Ð101

pipeline diagrams 87
PIR 52

R

reference bit 27, 53, 54, 80
register file

floating-point 13, 23
integer 10

registers
BPTCTL 42, 51
CHECK 48, 57, 86
CMP 38, 39

CR 89
CTR 10, 89
DABR 41, 45
DAR 59, 60
DEC 33
FPSCR 23, 96
HASH1 38, 40
HASH2 38, 40
IABR 44
LR 10, 89
MAR 38, 61, 63
MISR 61
MODES 31, 33, 47
MSR 34
PIR 52
SDR1 38
SPRG 35
SRR0 34
SRR1 34
TBL 33
TBU 33
TLBLRU 38, 40
TLBMRF 38, 41
XDABR 44

reservation 21, 33
reserved fields 17, 33
reset 50, 85, 114
rfi 94

S

scan 119Ð120
SDR1 38
segment registers 38
SPRG 35
SRESET 57, 86, 113
SRR0 34
SRR1 34
stfiwx 24
store queue 11, 97
strobe 42, 51
stswi 20, 60
stswx 20, 60
stwcx. 59, 99
stwdx 18, 31, 48
superscalar 48, 92
sync 12, 32, 50, 98
synchronization 12, 32

context 95
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T

TBL 33
TBU 33
TEA 49, 57
temperature 113
TLB 53, 79Ð81

invalidation 55
replacement 80

TLB miss 38, 54
tlbia 55
tlbie 50, 55
TLBLRU 38, 40
TLBMRF 38, 41
tlbsync 50, 55
translation lookaside buffer. See TLB

U

use record 51, 72, 73, 86

X

XDABR 44
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