
 Silicon Objects Application Note 040625

Fast Silicon, Faster Solutions

This document describes one possible implementation for a pipelined FFT using
MathStar's SOA13D40-01 Filter Builder FPOA. FPOAs consist of an array of 16-bit
processing elements called Silicon Objects.This architecture will provide a linearly
scalable, pipelined FFT structure, supporting a 16K point Complex FFT using three
MathStar SOA13D40-01 FPOA Filter Builder FPOAs, with a one-cycle/point throughput.
This architecture is portable and can be adjusted to accommodate future Filter Builder
FPOAs.

Figure 1. SOA13D40-01 Field Programmable Object Array (FPOA)

Figure 1 shows the 20x20 FPOA object array, including the periphery or I/O objects, used
for this application mapping. In the object array, the three Silicon Object types used are:

� Arithmetic Logic Unit (ALU)
� Register File (RF)
� Multiply/Accumulator (MAC)

IRAM and GPIO periphery objects are also used for this application.

The physical size of this array, and the composition of the butterfly tile (2x5 array), gives
us to a total of 32 butterflies. Implementation of an 8K point FFT requires using 13
butterflies to complete the entire FFT operation.

- Arithmetic Logic Unit

- Register File

- Multiply/Accumulator

256

80

64

32 butterfly tiles can be
constructed with 8 tiles per
column. 4 columns total.

- GPIO

- IRAM

These three IRAMs
control the first few
stages of the 8K FFT.

These IRAMs supply phase factors to
sequential stages of the 8K FFT.

8K Point FFT Implementation Using
MathStar�s SOA13D40-01 Field Programmable
Object Arrays (FPOAs)

2 Silicon Objects Application Note 040625

Fast Silicon, Faster Solutions

Phase (or twiddle) factors are pre-calculated and stored in the IRAM on the upper and
lower edges of the device. The data in and out of the chip is handled through the chip�s Rx/
Tx LVDS interfaces.

This application note focuses on the implementation of an 8K point Complex FFT using
three MathStar SOA13D40-01 FPOAs.

The primary limitation of the SOA13D40-01 FPOA is IO throughput. For a single
multiplier operating at 1GHz, the FPOA consumes 32 Gbps using two 16-bit operands and
it generates a 16 Gbps output. For this implementation the most effective IO available in
the FPOA is its 800 MHz DDR 16-bit LVDS Rx/Tx interface. This interface provides 25.6
Gbps of inputs and outputs respectively.

Therefore, to match the IO performance, the operating frequency for this FFT will be 800
MHz; only two 16-bit samples may arrive per cycle. Only one Radix-2 butterfly is used to
process the incoming two samples. An 8K point Complex FFT is shown in Figure 2. The
overall performance of a 8K Complex FFT operating at 800 MHz is 10.240us.

The first FPOA chip receives two samples per-cycle through the 16-bit DDR LVDS port.
Data is assumed to arrive in the exact order required, as follows:

0,256, 256x2, 256x3,�., 256x31,
1,256+1, 256x2+1, 256x3+1,�., 256X31+1,
2,256+2, 256x2+2, 256x3+2,�., 256X31+2,
��
n, 256+n, 256x2+n, 256x3+n,�., 256X31+n

where n is 31 for 8K FFT.

Each butterfly has a throughput of two cycles per input pair sample. Each butterfly
executes 4K times to complete a single stage of the FFT. Therefore, it takes 8K cycles to
complete a single stage. Since the entire structure is fully pipelined, a new set of samples
can arrive every 8K cycles. The limitation of internal memory provides the rationale of
having only five stages executed in the first FPOA. Phase (twiddle) factors for each stage
of the FFT are stored in IRAM.

Each FPOA has sufficient (possible 32) butterfly structures so that the number of parallel
butterflies in operation does not adversely affect the FPOAs.

Radix 2 DIF FFT Implementation

Fast Fourier Transform (FFT) is derived from Discrete Fourier Transform (DFT). It
transforms data samples between the time domain and the frequency domain. The
underlying assumption here is that the number of points to be calculated will be a power of
2, such as 4, 16, 32, 64, 128, 256, etc. FFT is a typical �divide-and-conquer� application.
Large numbers of data samples are divided into two groups; for our purposes odd and even

040625 Silicon Objects Application Note 3

Fast Silicon, Faster Solutions

indexed. Each group is further divided until there are only two data points to process.
Refer to any basic FFT book for a detailed derivation of this strategy.

The method described, of halving the data points each time, is called a radix2. Each
Radix2 DIF FFT must process two complex numbers using the proper twiddle factors.
This processing is called a butterfly operation. The figure below illustrates the operations
that comprise the butterfly building block used in a radix2 DIF FFT.

Figure 2. Radix2 Butterfly Computations

The computations performed by each butterfly tile are defined as:

� C1 = a + bj;
� C2 = c + dj;
� T = e + fj;
� RC1 = g + jh;
� RC2 = r + js;

Where RC1 and RC2 are the result complex numbers from butterfly operation.

� RC1 = C1 + C2;
� RC2 = (C1 - C2) * T;

The derivation of these equations can be found in any text covering FFTs.

Substituting the definition of C1, C2, and T into the expression of RC1 and RC2 we have:

� RC1 = (a+c) + (b+d)j;
� RC2 = ((a-c) + (b-d)j) * (e+fj)

 = ((a-c)e - (b-d)f) + ((a-c)f + (b-d)e)j;

This yields the desired outputs:

� G = a + c;
� H = b + d;

X

a+jb

c+jd

e+jf

g+jh

r+js-1

g=(a+c)
h=(b+d)
r=(a-c)e-(b-d)f
s=(b-d)e+(a-c)f

C1

C2

T

RC1

RC2

4 Silicon Objects Application Note 040625

Fast Silicon, Faster Solutions

� R = ((a-c)e - (b-d)f);
� S = ((b-d)e + (a-c)f);

Where a, b, c, d, e, and f, are inputs; g, h, r, and s are the outputs.

The radix2 butterfly DIF execution sequence is illustrated here describing the per-clock
cycle operation of the butterfly tile.

Figure 3. Butterfly Tile DIF Execution by Clock Cycle

Butterfly Operation and Tile Structure

Each butterfly tile consists of two Multiply/Accumulate (MAC), two Register File (RF),
and six Arithmetic Logic Unit (ALU) silicon objects. They are arranged in the following
configuration.

R0

R1

A0

A1

M0

M1

A0

A1

M0

M1

A0

A1

ain

din

cin

bin

bin - din

ain - cin

bin + din

ain + cin

(bin - din)e

(ain - cin)e

ain+1 - cin+1

bin+1 - din+1

(ain - cin)f

(bin - din)f

CYCLE 0 CYCLE 1 CYCLE 2 CYCLE 3

040625 Silicon Objects Application Note 5

Fast Silicon, Faster Solutions

Figure 4. Butterfly Tile Configuration (1 of 32)

These ten silicon objects, in this configuration, comprise a single butterfly tile. The
SOA13D40-01 FPOA can support up to 32 of these tiles using a four column x eight tile
matrix as illustrated in Figure 1. The following is a brief description of the operation of
each silicon object and the data flow within the butterfly tile as illustrated in Figure 6.

 The radix2 DIF data flow within the butterfly tile is shown here.

ALU0 Processes a-c and a+c and sends result g out.

ALU1 Processes b-d and b+d and sends result h out.

RF0 Provides a and b inputs to ALU0 and ALU1. It receives inputs from a
previous butterflie�s ALU3 and ALU4.

RF1 Provides c and d inputs to ALU0 and ALU1. It receives inputs from a
previous butterflie�s ALU3 and ALU4.

MAC0 Processes (b-d)e and (a-c)f and then accumulates.

MAC1 Processes (a-c)e and (b-d)f and then accumulates.

ALU2 Generates the write address to RF0

ALU5 Generates the write address to RF1

ALU3 Muxes the results of h, s.

ALU4 Muxes the results of g, r.

RFMAC ALU

RF1 ALU5ALU1ALU3

ALU4ALU0ALU2 RF0

MAC0

MAC1

6 Silicon Objects Application Note 040625

Fast Silicon, Faster Solutions

Figure 5. Radix2 DIF Data Flow Within the 8K Point FFT Butterfly

Inter-butterfly Data Flow and Routing

Data must be moved between butterflies after the execution of each butterfly stage.
Butterfly 0 (BF0) takes input from the LVDS interface directly (LVDS to IRAM). BF0
takes 16 pairs of data each time and repeats this cycle 256 times to complete the 8K points
for the first stage processing. BF0 always sends its results to BF1. BF0, BF1, BF2, BF3,
and BF4 are connected exactly as in a 32 point FFT. There are 13 butterflies and the
number of data points to be processed is 8K, each butterfly will repeat its operation 256
times to complete the one stage. The butterfly distribution and numbering for the FPOAs
is shown here.

The data pairs that BF0 will initially process are as follows:

FPOA 1 FPOA 2 FPOA 3

BF0 BF5 BF10

BF1 BF6 BF11

BF2 BF7 BF12

BF3 BF8

BF4 BF9

A2 R0 A0 M1 A4

A3 M0 A1 R1 A5

wr_addr a

b

a-c

r

b-d

a-c

b-d

d

b

wr_addr

Twiddle_in Twiddle_in

h (party line)

hs_out

g (party line)

data inputs/gr, hs

data inputs/gr, hs
gr_out

040625 Silicon Objects Application Note 7

Fast Silicon, Faster Solutions

 BF0 <= [0/16, 1/17 2/18, �15/31]

The following tables shows how the data is moving between stages and FPOAs in the 8K
point FFT.

Data Movement for Butterflies in FPOA1 & FPOA2 in the 8K FFT Implementation

BF0/BF5 BF1/BF6 BF2/BF7 BF3/BF8 BF4/BF9

0/16 0/8 0/4 0/2 0/1

1/17 16/24 8/12 4/6 2/3

2/18 1/9 15/20 8/10 4/5

3/19 17/25 24/28 12/14 6/7

4/20 2/10 1/5 16/18 8/9

5/21 18/26 9/13 20/22 10/11

6/22 3/11 17/21 24/26 12/13

7/23 19/27 25/29 28/30 14/15

8/24 4/12 2/6 1/3 16/17

9/25 20/28 10/14 5/7 18/19

10/26 5/13 18/22 9/11 2//21

11/27 21/29 26/30 13/15 22/23

12/28 6/14 3/7 17/19 24/25

13/29 22/30 11/15 21/23 26/27

14/30 7/15 19/23 25/27 28/29

15/31 23/31 27/31 29/31 30/31

Data Movement for Butterflies in FPOA3 in the 8K FFT Implementation

BF10 BF11 BF12

0/4 0/2 0/1

1/5 4/6 2/3

2/6 1/3 4/5

3/7 5/7 6/7

8 Silicon Objects Application Note 040625

Fast Silicon, Faster Solutions

Twiddle Factors

All the twiddle factors are pre-calculated and stored in the IRAM on the FPOA device.
They are read out in the order needed. There are eight IRAMS used for the 1024 FFT
application. Six of those used in this design are at the top of the array and the two IRAMs
are at the bottom of the array.

Each IRAM is 768x76 bits.

Figure 6. Phase (Twiddle) Factor and Data Flow for BF0 through BF4 (FPOA 1 & 2)

The number of phase (twiddle) factors required for each stage of the FFT dictates the
number of IRAM blocks that must be dedicated for processing. There are only twelve

R1 A5A1A3

A4A0A2 R0

M0

M1

R1 A5A1A3

A4A0A2 R0

M0

M1

R1 A5A1A3

A4A0A2 R0

M0

M1

R1 A5A1A3

A4A0A2 R0

M0

M1

R1 A5A1A3

A4A0A2 R0

M0

M1

phase0

inputs
inputs

phase0
phase1 phase1

phase2

phase3 phase4 outputoutput

phase2

phase4

040625 Silicon Objects Application Note 9

Fast Silicon, Faster Solutions

768x76 internal SRAM (IRAM) blocks in the FPOA. The number of IRAM blocks, per
stage, is as follows:

The first stage uses 4K 16-bit Complex phase factors (two cycles = 32-bits total). This
stage requires three IRAMs.

The second stage requires 2K 16-bit Complex phase factors (two cycles = 32-bits total).
This stage requires two IRAM blocks.

The third stage requires 1K 16-bit Complex phase factors (two cycles = 32-bits total). This
stage requires one IRAM block.

The fourth stage requires 512 16-bit Complex phase factors (two cycles = 32-bits total).
This stage requires one IRAM block.

The fifth stage requires 256 16-bit Complex phase factors (two cycles = 32-bits total).
This stage requires one IRAM block.

Because the five stages are fully pipelined, and the existing IRAM has only one read port,
stages four and five cannot be combined. Though we could easily use the additional
computational power of the remaining butterflies on the first chip to perform additional
stages in the processing, the number of additional IRAMs required exceeds the total of the
twelve IRAM available. Thus, only five stages of processing will be performed on the
first, and second, FPOAs.

Register File objects are used to relay the data between stages. Rx/Tx LVDS ports are used
to tie the FPOAs together. On the seconf FPOA, two sets of IRAM blocks are being ping-
ponged to dump results to one IRAM block, while the FPOA consumes data from a
second IRAM block.

10 Silicon Objects Application Note 040625

Fast Silicon, Faster Solutions

Figure 7. The 8k Complex Pipelined FFT - An Overview

B
F
0

R
F
0

B
F
1

R
F
1

B
F
2

R
F
2

B
F
3

R
F
3

B
F
4

R
F
4

BF0 processes 16 pairs of data for first stage
RF0 stores the result of the first stage

BF1 processes 16 pairs of data for second stage
RF1 stores the result of the second stage

BF2 processes 16 pairs of data for third stage
RF2 stores the result of the third stage

BF3 processes 16 pairs of data for fourth stage
RF3 stores the result of the fourth stage

BF4 processes 16 pairs of data for fifth stage
RF4 stores the result of the fifth stage

L
V
D
S

MathStar FPOA

MathStar FPOA

L
V
D
S

IRAM

IRAM

B
F
5

R
F
5

B
F
6

R
F
6

B
F
7

R
F
7

B
F
8

R
F
8

B
F
9

R
F
9

L
V
D
S

L
V
D
S

SampleIn

B
F
1
0

R
F
1
0

B
F
1
1

R
F
1
1

B
F
1
2

R
F
1
2

L
V
D
S

IRAM

IRAM

L
V
D
S

DataOut

MathStar FPOA

