
Intel® Advanced Vector Extensions
2015/2016
Support in GNU Compiler Collection
GNU Tools Cauldron 2014

Presented by Kirill Yukhin of Intel, July 2014

(kirill.yukhin@intel.com)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

New ISA: What Is Where?

Complex & versatile big cores

•Big focus on latency and single-thread

•State-of-the-art SIMD support: AVX-512 F + CDI + AVX-512 {VL, DQ, BW}

•Best balance of performance for any workload

Small & efficient cores

•Big focus on throughput and many-threads

•State-of-the-art SIMD support for HPC: AVX-512 F + CDI + ERI + PFI

• Industry performance-per-watt leadership

KNL Xeon Phi

SSE*

AVX

AVX2

AVX-512 F

Skylake Xeon

SSE*

AVX

AVX2

AVX-512 F

AVX-512
VL,BW,DQ

SNB

SSE*

AVX

HSW

SSE*

AVX

AVX2

NHM

SSE*

ERI & PFI

CDI

ERI & PFI

Will stay exclusive to
the Xeon Phi line

AVX-512 (Xeon ISA) Public: Here

CDI

http://goo.gl/TGQIKE

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Advanced Vector Extensions

Roadmap illustration - subject to change

Since 2001:

128-bit Vectors

AVX 1.0: 2X flops: 256-bit wide floating-point vectors

Half-float support, Random Numbers

AVX2: FMA (2x peak flops)

256-bit integer SIMD. “Gather” Instructions.

Sandy Bridge

(32 nm Tock)

P
e

rf
o

rm
a

n
ce

 /
 c

o
re

2010 2011 2012 2013

Ivybridge

(22nm Tick)

Haswell

(22 nm Tock)

Knights Landing

/Skylake Xeon

512- bit Vectors

32 registers

Masking, Broadcast Goal: 8X peak FLOPs over 4 generations

2015/16

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Introducing AVX-512

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

512b AVX-512

64SP / 32 DP
 Flops/Cycle (FMA)

256b AVX2

32 SP / 16 DP
 Flops/Cycle (FMA)

in planning, subject to change

AVX-512

512-bit FP/Integer

32 registers

8 mask registers

Embedded rounding

Embedded broadcast

Scalar/SSE/AVX “promotions”

HPC additions

Transcendental support

Gather/Scatter

AVX AVX2

256-bit basic FP

16 registers

NDS (and AVX128)

Improved blend

MASKMOV

Implicit unaligned

Float16 (IVB 2012)

256-bit FP FMA

256-bit integer

PERMD

Gather

SNB
2011

HSW
2013

Future Processors (KNL & SKX)

Intel® AVX Technology

256b AVX1

16 SP / 8 DP
 Flops/Cycle

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 Mask Registers
8 Mask registers of size 64-bits

 k1-k7 can be used for predication

 k0 can be used as a destination or source for mask
manipulation operations

4 different mask granularities.
For instance, at 512b:

 Packed Integer Byte use mask bits [63:0]

 VPADDB zmm1 {k1}, zmm2, zmm3

 Packed Integer Word use mask bits [31:0]

 VPADDW zmm1 {k1}, zmm2, zmm3

 Packed IEEE FP32 and Integer Dword use mask bits
[15:0]

 VADDPS zmm1 {k1}, zmm2, zmm3

 Packed IEEE FP64 and Integer Qword use mask bits
[7:0]

 VADDPD zmm1 {k1}, zmm2, zmm3

a7 a6 a5 a4 a3 a2 a1 a0 zmm1

b7 b6 b5 b4 b3 b2 b1 b0 zmm2

zmm3

k1

b7+c7 a6 b5+c5 b4+c4 b3+c3 b2+c2 a1 a0 zmm1

+ + + + + + + +

1 0 1 1 1 1 0 0

c7 c6 c5 c4 c3 c2 c1 c0

128 256 512

Byte 16 32 64

Word 8 16 32

Dw ord/SP 4 8 16

Qw ord/DP 2 4 8

Vector Length

element

size

VADDPD zmm1 {k1}, zmm2, zmm3

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 Features (II): Masking
VADDPS ZMM0 {k1}, ZMM3, [mem]

 Mask bits used to:

1. Suppress individual elements read from
memory

 hence not signaling any memory fault

2. Avoid actual independent operations
within an instruction happening

 and hence not signaling any FP fault

3. Avoid the individual destination elements
being updated,

 or alternatively, force them to zero
(zeroing)

for (I in vector length)
{
 if (no_masking or mask[I]) {
 dest[I] = OP(src2, src3)
 } else {
 if (zeroing_masking)
 dest[I] = 0
 else
 // dest[I] is preserved
 }
}

Caveat: vector shuffles do not suppress memory fault

Exceptions as mask refers to “output” not to “input”

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Embedded Broadcasts
VFMADD231PS zmm1, zmm2, C {1to16}

 Scalars from memory are first class citizens

 Broadcast one scalar from memory into all
vector elements before operation

 Memory fault suppression avoids fetching the
scalar if no mask bit is set to 1

Other “tuples” supported

 Memory only touched if at least one consumer
lane needs the data

 For instance, when broadcast a tuple of 4
elements, the semantics check for every
element being really used

 E.g.: element 1 checks for mask bits 1, 5, 9,
13, …

float32 A[N], B[N], C;

for(i=0; i<8; i++)
{
 if(A[i]!=0.0)
 A[i] = A[i] + C* B[i];
}

VBROADCASTSS zmm1 {k1}, [rax]
VBROADCASTF64X2 zmm2 {k1}, [rax]
VBROADCASTF32X4 zmm3 {k1}, [rax]
VBROADCASTF32X8 zmm4, {k1}, [rax]
…

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 Features: Embedded Rounding
Control & SAE (Suppress All Exceptions)
Embedded Rounding Control :

 MXCSR.RC can be overridden on all FP instructions

 VADDPS ZMM1 {k1}, ZMM2, [mem] {116} {rne-sae}

 “Suspend All Exceptions”

 Always implied by using embedded RC

 NO MXCSR updates / exception reporting for any lane

 Changes to RC without SAE via LDMXCSR

 Not needed for most common case (truncating FP convert to int)

Only available for reg-reg mode and 512b operands

Main application:

 Saving, modifying and restoring MXCSR is usually slow and cumbersome

 Being able to avoid suppressions and set the rounding-mode on a per instruction basis simplifies
development of high performance math software sequences (math libs)

 E.g.: avoid spurious overflow/underflow reporting in intermediate computations

 E.g: make sure that RM=rne regardless of the contents of MXCSR

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512F, CDI, ERI & PRI

 Comprehensive vector extension for HPC and enterprise

 All the key AVX-512 features: masking, broadcast…

 32-bit and 64-bit integer and floating-point instructions

 Promotion of many AVX and AVX2 instructions to AVX-512

 Many new instructions added to accelerate HPC workloads

AVX-512 F: 512-bit instructions common between Xeon Phi and Xeon

 Allow vectorization of loops with possible address conflict

 Will show up on Xeon in SKL or CNL (follow up to SKL)

AVX-512 CDI (Conflict Detection): Available on Xeon Phi first

 28-bit precision RCP, RSQRT and EXP transcendentals

 New prefetch instructions: gather/scatter prefetches and PREFETCHWT1

AVX-512 ERI & PRI: Available on Xeon Phi only

AVX-512 F

CDI

ERI & PRI

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512F Designed for HPC

Quadword integer
arithmetic

Including
gather/scatter
with D/Qword

indices

Math support

IEEE division and
square root

DP transcendental
primitives

New
transcendental

support
instructions

New permutation
primitives

Two source
shuffles

Compress &
Expand

Bit manipulation

Vector rotate

Universal ternary
logical operation

New mask
instructions

• Promotions of many AVX and AVX2 instructions to AVX-512

− 32-bit and 64-bit floating-point instructions from AVX

− Scalar and 512-bit

− 32-bit and 64-bit integer instructions from AVX2

• Many new instructions to speedup HPC workloads

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512{VL,DQ,BW}:
Complements AVX-512F

Vector Length
Orthogonality

AVX-512 features
available at 128-bit and

256-bit sizes
(XMM and YMM)

Instructions down-
promoted to

EVEX.128/EVEX.256

New HPC
instructions

Missing 64-bit
arithmetic

functionality

Improved math
support

Missing datatype
data manipulation

(tuples, maskvec)

Byte & word
support

Promotion of AVX2
byte and word

instructions

New byte/word
instructions

introduced in
AVX-512

Complete vector ISA extension shows up in Skylake Xeon
− Main focus on simplifying the task of auto-vectorization for *any* compiler

− Support for all data types: including 8-bit (byte) and 16-bit (word) integers

− Useful for media and other workloads
− Support for all vector lengths
− Some instructions to speedup HPC workloads: closing KNL’s AVX-512 gaps

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512VL: Vector Length Orthogonality

Some algorithms are “natural” at certain element counts

 Scalar = 1 element count

 float4 = 128-bit

 word 4x4 (media) = 256-bit

 32 registers / broadcast / masking cannot be retroactively added to AVX

Auto-vectorization of loops with mixed datatypes

 Choose target for number of elements per iteration

 16 Single Precisions is one ZMM register, but…

 16 Words is a half a ZMM register aka YMM

But… why not just use the mask?

 potential mask bookkeeping overhead

 potential performance pitfalls now and in the future

Solution: Add vector length support for all AVX-512 packed instructions

 Every instruction is supported at 128-bit, 256-bit and 512-bit vector length

 Ex: VADDPS xmm1 {k1}{z}, xmm2, xmm3 {1toN}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512DQ: New HPC ISA (vs AVX512F)

AVX-512 HPC

VBROADCAST{F32X8,F64X2,I32X8,I64X2}

VBROADCAST{I32X2}

VEXTRACT{F32X8,F64X2,I32X8,I64X2}

VINSERT{F32X8,F64X2,I32X8,I64X2}

VCVT{,T}{PS,PD}2{QQ,UQQ}

VCVT{QQ,UQQ}2{PS,PD}

VCVT{,T}{PS,PD}2{QQ,UQQ}

VFPCLASS{PS,PD}

VRANGE{PS,PD}

VREDUCE{PS,PD}

VPMULLQ

K{AND,ANDN,OR,XNOR,XOR,NOT}B

K{MOV,ORTEST,SHIFR,SHIFTL}B

K{ADD,TEST}{B,W}

VPMOV{D2M,Q2M}, VPMOV{M2D,M2Q}

64

Extended Tuple support:
32X8, 64X2, 32X2

Int64 FP conversions

Transcendental package enhancements

INT64 arithmetic support

Byte support for mask instructions

Expanded mask functionality

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512BW: Byte and Word Support

AVX-512BW

VPBROADCAST{B,W}

VPSRLDQ, VPSLLDQ

VP{SRL,SRA,SLL}{V}W

VPMOV{WB,SWB, USWB}

VPTESTM{B,W}

VPMADW

VPABSDIFFW

VDBPSADBW

VPERMW, VPERM{I,T}2W

KADD{D,Q}

VPMOV{B2M,W2M,M2B,M2W}

VPCMP{,EQ,GT}{B,W,UB,UW}

VP{ABS,AVG}{B,W}

VP{ADD,SUB}{,S,US}{B,W}

VPALIGNR

VP{EXTR,INSR}{B,W}

VPMADD{UBSW,WD}

VP{MAX,MIN}{S,U}{B,W}

AVX-512BW

VMOVDQU{8,16}

VPBLENDM{B,W}

{KAND,KANDN}{D,Q}

{KOR,KXNOR,KXOR}{D,Q}

KNOT{D,Q}

KORTEST{D,Q}

KTEST{D,Q}

KSHIFT{L,R}{D,Q}

KUNPACK{WD,DQ}

VPMOV{SX,ZX}BW

VPMUL{HRS,H,L}W

VPSADBW

VPSHUFB, VPSHUF{H,L}W

VP{SRA,SRL,SLL}{,V}{B,W}

VPUNPCK{H,L}{BW,WD}

131

zmm1

zmm2

k1

zmm1

a31 a30 a29 a28 a27 a26 a25 a24

b31 b30 b29 b28 b27 b26 b25 b24

|b31| a30 |b29| |b28| |b27| |b26| a25 a24

|| || || || || || || ||

1 0 1 1 1 1 0 0

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7 a6 |b5| |b4| |b3| |b2| |b1| |b0|

|| || || || || || || ||

0 0 1 1 1 1 1 1

…

VPABSW zmm1 {k1}, zmm2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Enabling of AVX-512 in GNU toolchain

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

KNL support in GNU toolchain overview
Support in binutils (gas/objdump) available from v2.24

glibc tuning not done so far

 memcpy, memset etc.

 Use of transcendental instructions from AVX-512ERI

Basic support in GCC available from GCC 4.9.x (see next slides)

Embedded rounding control autogeneration is not going to be
supported in GCC

 fe[get|set]round () is not acting as FP barrier in GCC

Usage of advanced encoding features supported in back-end
only

 New meta-pattern called `define_subst’ introduced from GCC 4.8.x

 Using `subst’ embedded masking, broadcasting and embedded rounding
control were easily described in the backend

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512: New Patterns
 Specific new patterns (est.)

 # of instructions: 651 (w/ masking: 500, w/ rounding: 114, w/
msk and rnd: 100)

Total

 (400 × 2) + (100 × 3) + (14 × 2) + (651 – 514) ≈ 1300

~ 5000 new intrinsics

Solution: introduce `define_subst’

 Generate new pattern from existing

 E.g. add masking and rounding

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example (original pattern)
(define_insn "*<plusminus_insn><mode>3"
 [(set (match_operand:VF_AVX512 0 "register_operand" "=x,v")
 (plusminus:VF_AVX512 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example (+mask)

(define_insn "*<plusminus_insn><mode>3_mask"
 [(set (match_operand:VF_AVX512 0 "register_operand" "=x,v")
 (vec_merge:VF_AVX512
 (plusminus:VF_AVX512 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))
 (match_operand:VF_AVX512 3 "nonimmediate_or_const0_operand" "0C,0C")
 (match_operand:DI 4 "register_operand" "k,k")

(define_insn "*<plusminus_insn><mode>3"
 [(set (match_operand:VF_AVX512 0 "register_operand" "=x,v")
 (plusminus:VF_AVX512 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example(+rounding)

(define_insn "*<plusminus_insn><mode>3_round"
 [(parallel [(set (match_operand:VF_AVX512 0 "register_operand" "=x,x")
 (plusminus:VF_AVX512 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))
 (match_operand:SI 3 "const_4_to_8_operand" "n,n")

(define_insn "*<plusminus_insn><mode>3_mask"
 [(set (match_operand:VF_AVX512 0 "register_operand" "=x,v")
 (vec_merge:VF_AVX512
 (plusminus:VF_AVX512 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))
 (match_operand:VF_AVX512 3 "nonimmediate_or_const0_operand" "0C,0C")
 (match_operand:DI 4 "register_operand" "k,k")

(define_insn "*<plusminus_insn><mode>3"
 [(set (match_operand:VF_AVX512 0 "register_operand" "=x,v")
 (plusminus:VF_AVX512 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example (+both)

(define_insn "*<plusminus_insn><mode>3_mask_round"
 [(parallel (set (match_operand:VF_AVX512 0 "register_operand" "=x,v")
 (vec_merge:VF_AVX512
 (plusminus:VF_AVX512 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))
 (match_operand:VF_AVX512 3 "nonimmediate_or_const0_operand" "0C,0C")
 (match_operand:DI 4 "register_operand" "k,k")
 (match_operand:SI 3 "const_4_to_8_operand" "n,n")

(define_insn "*<plusminus_insn><mode>3_round"
 [(parallel [(set (match_operand:VF_AVX512 0 "register_operand" "=x,x")
 (plusminus:VF_AVX512 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))
 (match_operand:SI 3 "const_4_to_8_operand" "n,n")

(define_insn "*<plusminus_insn><mode>3_mask"
 [(set (match_operand:VF_AVX512 0 "register_operand" "=x,v")
 (vec_merge:VF_AVX512
 (plusminus:VF_AVX512 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))
 (match_operand:VF_AVX512 3 "nonimmediate_or_const0_operand" "0C,0C")
 (match_operand:DI 4 "register_operand" "k,k")

(define_insn "*<plusminus_insn><mode>3"
 [(set (match_operand:VF_AVX512 0 "register_operand" "=x,v")
 (plusminus:VF_AVX512 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

define_subst (example)

(define_subst "mask"

 [(set (match_operand 0)

 (match_operand 1))]

 "TARGET_MASK"

 [(set (match_dup 0)

 (vec_merge:VF_512

 (match_dup 1)

 (match_operand:VF_512 2 “register_operand" "0C")

 (match_operand:<at> 3 "register_operand" “Yk")))])

iterators

Constraints
(duplicated for each

alternative)

Parts of
original
pattern

iterator_attribute

Added to
condition of
new pattern

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example (using subst)
(define_insn "*<plusminus_insn><mode>3<mask_name>"
 [(set (match_operand:VF_AVX512 0 "register_operand" "=x,v")
 (plusminus:VF_AVX512
 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))

(define_insn "*<plusminus_insn><mode>3"
 [(set (match_operand:VF_AVX512 0 "register_operand" "=x,v")
 (plusminus:VF_AVX512
 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm")))]

(define_insn "*<plusminus_insn><mode>3_mask"
 [(set (match_operand:VF_AVX512 0 "register_operand" "=x,v")
 (vec_merge:VF_AVX512
 (plusminus:VF_AVX512
 (match_operand:VF_AVX512 1 "nonimmediate_operand" "%0,v")
 (match_operand:VF_AVX512 2 "nonimmediate_operand" "xm,vm"))
 (match_operand:VF_AVX512 3 "nonimmediate_or_const0_operand" "0C,0C")
 (match_operand:DI 4 "register_operand" “Yk,Yk")

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512: Embedded broadcasting

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Embedded broadcasting support in GCC

VBROADCAST (%rax),zmm3
VADDPD zmm3,zmm2,zmm1

VADDPD (%rax){1to8},zmm2,zmm1

GOAL

Implementation

Use substs to generate rtx patterns and rely on combiner

(define_subst "emb_bcst2"

 [(set (match_operand:BCST_V 0)

 (any_operator2:BCST_V

 (match_operand:BCST_V 1)

 (match_operand:BCST_V 2)))]

 "TARGET_AVX512F"

 [(set (match_dup 0)

 (any_operator2:BCST_V

 (vec_duplicate:BCST_V

 (match_operand:<ssescalarmode> 2 "memory_operand" "m"))

 (match_dup 1)))])

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Results

• Internal implementation done

• Performance gain is 0%

• Combiner can’t eliminate broadcasts that are

• Have multiple destinations

• Reside in different BBs

• State of the art embedded broadcasting (icc) shows little
icount gain

• Impact on icache can’t be measured without hardware

Conclusion

• Patch not submitted – no performance gain (for now?)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Support of new `scatter’ instruction
family

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512: Scatters overview

VPSCATTERDD zmm0, ([rax], zmm1, 4) {k1}

Stores up to 16 elements (controlled by mask) to the memory location pointed
by base address, index vector and scale. For successfully stored elements
corresponding mask bits will be set to zero.

Allows vectorization of loops with stores
which addresses can be represented as:
Address [i] = BaseAddress + Index[i] * Scale

for(i=0; i<N; i++)

{

 A[B[i]+3] = C[i];

}

[rax]

12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3 zmm0

0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 k1 = 0x4DB1

lsb

mem lsb

-2 -4 -6 -8 6 4 2 0 14 12 10 8 22 20 18 16 zmm1 lsb

11 14 10 8 7 5 4 0

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Scatter Support in GCC

Patch which adds autogeneration of scatter
instructions in case when one array is indexed
by another array is ready

• Need to add autogeneration of scatter
instructions for strided stores

• Expectations of performance improve from
strided stores using scatters based on ICC
14:

• SPEC 2006

• 434.zeusmp – >1.5%

• NPB 3.3.1-SER.ClassW – more than 1%
of all executed instructions are scatters,
so few percent of performance improve
can be expected

Array indexing another array:

for(i=0; i<N; i++)

{

 A[B[i]+3] = C[i];

}

Strided store:

for(i=0; i<N; i++)

{

 A[5*i+3] = B[i];

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

7% icounts decrease (vs. AVX2 on SPECfp2006, -Ofast, ref data)

 New registers ZMM16–ZMM31 — 0.6% on SPECfp2006

 Extended standard patterns for the vectorizer:

 Arithmetic and logic — 4.0% on SPECfp2006

 expand_vector_init — 1.0% on SPECfp2006

 FP division — 0.6% on SPECfp2006

 FMA — 0.4% on SPECfp2006

 copysign — 0.4% on SPECfp2006

 cmp, vec_perm, unpack, extract, sqrt, rcp, floor, ceil, round, gather,
reduction, etc.

 (No hotspots in SPEC CPU2006 benchmarks, where GCC can vectorize with
VL=256, but can't vectorize with VL=512)

32

512-bit auto-vectorization in GCC

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Most promising feature of new encoding (EVEX)

• Preliminary investigation performed

 Not-for-trunk proof-of-concept patch implemented, which shows
about 1.5% of icount decrease on average in SpecFP2006

 Vectorized loop tails

 Vectorization of loop heads looks promising as well

• Applicable for if-conv optimization

• Masking of operation, not result, hence no redundant side
effects, exceptions, memory accesses etc.

33

Embedded masking autogeneration

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Enabling of SKX in GNU toolchain

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

New ISA were published on July’18 2014

• Patch set for support new ISA in binutils (gas/objdump) was
submitted

• Branch with support for GCC was created (avx512-skx)

 Extended existing patterns (i386/sse.md) to support
AVX-512VL,BW,DQ

 Set of intrinsics covering new ISA was implemented

 … Covered by corresponding testsuite

 Target for GCC 4.10.x

• No performance work was done so far

• glibc work was not performed

35

Enabling of SKX in GNU toolchain

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Backup

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 features (I): More & Bigger
Registers
AVX: VADDPS YMM0, YMM3, [mem]

 Up to 16 AVX registers

 8 in 32-bit mode

 256-bit width

 8 x FP32

 4 x FP64

AVX-512: VADDPS ZMM0, ZMM24, [mem]

 Up to 32 AVX registers

 8 in 32-bit mode

 512-bit width

 16 x FP32

 8 x FP64

But you need many more features
to use all that real estate effectively…

float32 A[N], B[N];

for(i=0; i<8; i++)
{
 A[i] = A[i] + B[i];
}

float32 A[N], B[N];

for(i=0; i<16; i++)
{
 A[i] = A[i] + B[i];
}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why Separate Mask Registers?

Don’t waste away real vector registers for vector of booleans

Separate control flow from data flow

Boolean operations on logical predicates consume less energy
(separate functional unit)

Tight encoding allows orthogonal operand

 Every instruction now has an extra mask operand

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why True Masking?
Memory fault suppression

 Vectorize code without touching
memory that the correspondent scalar code
would not touch

 Typical examples are if-conditional
statements or loop remainders

 AVX is forced to use VMASKMOV*

MXCSR flag updates and fault handlers

 Avoid spurious floating-point exceptions without
having to inject neutral data

Zeroing/merging

 Use zeroing to avoid false dependencies in OOO
architecture

 Use merging to avoid extra blends in if-then-else
clauses (predication) for greater code density

float32 A[N], B[N], C[N];

for(i=0; i<16; i++)
{
 if(B[i] != 0) {
 A[i] = A[i] / B[i];
 else {
 A[i] = A[i] / C[i];
 }
}

VMOVUPS zmm2, A

VCMPPS k1, zmm0, B, 4

VDIVPS zmm1 {k1}{z}, zmm2, B

KNOT k2, k1

VDIVPS zmm1 {k2}, zmm2, C

VMOVUPS A, zmm1

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 Features: Compressed
Displacement
VADDPS zmm1, zmm2, [rax+256]

 Observation is that displacement in generated vector code is a multiple of the actual operand size

 An obvious side effect of unrolling

 Unfortunately, regular IA 8-bit displacement format have limited scope for 512-bit vector sizes
(unrolling look-ahead of +/-2 at most)

 So we would end up using 32-bit displacement formats too often

AVX-512 disp8*N compressed displacement

 AVX-512 implicitly encodes a 8-bit displacement as a multiple of the actual size of the memory
operand

 VADDPD zmm1 {k1}, zmm2, [rax] memory size operand is 512bits

 VADDPD xmm1 {k1}, xmm2, [rax] memory size operand is 128bits

 VADDPD zmm1 {k1}, zmm2, [rax] {1toN} memory size operand is 64 bits

 Assembler/compiler reverts to 32-bit displacement when the real displacement is not a multiple

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 F: Common Xeon Phi (KNL)
and Skylake Xeon Vector ISA Extension

AVX-512 Foundation is the common SIMD foundation
for HPC software development
First on KNL
Planned on SKX (Skylake Xeon)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Quadword Integer Arithmetic

Instruction Description

VPADDQ zmm1 {k1}, zmm2, zmm3 INT64 addition

VPSUBQ zmm1 {k1}, zmm2, zmm3 INT64 subtraction

VP{SRA,SRL,SLL}Q zmm1 {k1}, zmm2, imm8 INT64 shift (imm8)

VP{SRA,SRL,SLL}VQ zmm1 {k1}, zmm2, zmm3 INT64 shift (variable)

VP{MAX,MIN}Q zmm1 {k1}, zmm2, zmm3 INT64 max, min

VP{MAX,MIN}UQ zmm1 {k1}, zmm2, zmm3 UINT64 max, min

VPABSQ zmm1 {k1}, zmm2, zmm3 INT64 absolute value

VPMUL{DQ,UDQ} zmm1 {k1}, zmm2, zmm3 32x32 = 64 integer multiply

Useful for pointer manipulation
64-bit becomes a first class citizen
Removes the need for expensive SW emulation sequences
Note: VPMULQ and int64 <-> FP converts not in AVX-512 F

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Math Support

Instruction

VGETXEXP{PS,PD,SS,SD}

VGETMANT{PS,PD,SS,SD}

VRNDSCALE{PS,PD,SS,SD}

VSCALEF {PS,PD,SS,SD}

VFIXUPIMM{PS,PD,SS,SD}

VRCP14{PS,PD,SS,SD}

VRSQRT14{PS,PD,SS,SD}

VDIV{PS,PD,SS,SD}

VSQRT{PS,PD,SS,SD}

zmm1 {k1}, zmm2 Obtain exponent in FP format

zmm1 {k1}, zmm2 Obtain normalized mantissa

zmm1 {k1}, zmm2, imm8 Round to scaled integral number

zmm1 {k1}, zmm2, zmm3 X*2y , X <= getmant, Y <= getexp

zmm1, zmm2, zmm3, imm8 Patch output numbers based on inputs

zmm1 {k1}, zmm2 Approx. reciprocal() with rel. error 2-14

zmm1 {k1}, zmm2 Approx. rsqrt() with rel. error 2-14

zmm1 {k1}, zmm2, zmm3 IEEE division

zmm1 {k1}, zmm2 IEEE square root

30

Package to aid with Math library writing
• Good value upside in financial applications
• Available in PS, PD, SS and SD data types
• Great in combination with embedded RC

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

New 2-Source Shuffles
2-Src Shuffles

VSHUF{PS,PD}

VPUNPCK{H,L}{DQ,QDQ}

VUNPCK{H,L}{PS,PD}

VPERM{I,D}2{D,Q,PS,PD}

VSHUF{F,I}32X4

H’ G’ F’ E’ D’ C’ B’ A’ H G F E D C B A

zmm2 zmm3
15 0 10 11 2 2 0 9

zmm1

H’ A C’ D’ C C A B’ zmm1

Long standing customer request
• 16/32-entry table lookup (transcendental support)

• AOS SOA support, matrix transpose
• Variable VALIGN emulation

10 9 8 7 6 5 4 3 2 1 0 …

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Expand & Compress

VEXPANDPS zmm0 {k2}, [rax]

Moves compressed (consecutive) elements in register or memory to sparse
elements in register (controlled by mask), with merging or zeroing

 [rax]

Y Y 7 Y 4 Y 5 6 1 2 Y 3 0 Y Y Y zmm0

0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 k2 = 0x4DB1

0 1 2 3 4 5 6 7 8 14 15 … mem lsb

lsb

Allows vectorization of conditional loops
• Opposite operation (compress) in AXV-512
• Similar to FORTRAN pack/unpack intrinsics
• Provides mem fault suppression
• Faster than alternative gather/scatter

for(j=0, i=0; i<N; i++)

{

 if(C[i] != 0.0)

 {

 B[i] = A[i] * C[j++];

 }

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Bit Manipulation

Instruction Description

KUNPCKBW k1, k2, k3 Interleave bytes in k2 and k3

KSHIFT{L,R}W k1, k2, imm8 Shift bits left/right using imm8

VPROR{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits right using imm8

VPROL{D,Q} zmm1 {k1}, zmm2, imm8 Rotate bits left using imm8

VPRORV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits right w/ variable ctrl

VPROLV{D,Q} zmm1 {k1}, zmm2, zmm3/mem Rotate bits left w/ variable ctrl

Basic bit manipulation operations on mask and vector operands
• Useful to manipulate mask registers
• Have uses in cryptography algorithms

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

VPTERNLOG – Ternary Logic Instruction
Mimics a FPGA cell

 Take every bit of three sources to obtain a 3-bit index N

 Obtain Nth bit from imm8

Imm8[7:0]

Dest[i]

Src0[i]
Src1[i]

Src2[i]

Any arbitrary truth table of 3 values can be implemented

 andor, andxor, vote, parity, bitwise-cmov, etc

each column in the right table corresponds to imm8

S1 S2 S3 ANDOR VOTE (S1)?S3:S2
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 0 0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 1 1 1

VPTERNLOGD zmm0 {k2}, zmm15, zmm3/[rax], imm8

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 CDI: Conflict Detection
Instructions

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Motivation for Conflict Detection

Sparse computations are common in HPC, but hard to vectorize
due to race conditions

Consider the “histogram” problem:

index = vload &B[i] // Load 16 B[i]
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence gather-op-

scatter with vector of indexes that contain conflicts

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Conflict Detection Instructions in
AVX512

VPCONFLICT instruction detects elements with
previous conflicts in a vector of indexes

 Allows to generate a mask with a subset of
elements that are guaranteed to be conflict free

 The computation loop can be re-executed with the
remaining elements until all the indexes have been
operated upon

index = vload &B[i] // Load 16 B[i]
pending_elem = 0xFFFF; // all still remaining
do {
 curr_elem = get_conflict_free_subset(index, pending_elem)
 old_val = vgather {curr_elem} A, index // Grab A[B[i]]
 new_val = vadd old_val, +1.0 // Compute new values
 vscatter A {curr_elem}, index, new_val // Update A[B[i]]
 pending_elem = pending_elem ^ curr_elem // remove done idx
} while (pending_elem)

CDI instr.
VPCONFLICT{D,Q} zmm1{k1}, zmm2/mem

VPBROADCASTM{W2D,B2Q} zmm1, k2

VPTESTNM{D,Q} k2{k1}, zmm2, zmm3/mem

VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

8

This not even the fastest version: see backup for details

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 ERI & AVX-512 PRI: Xeon Phi
Only

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Xeon Phi Only Instructions
Set of segment-specific instruction extensions

 First appear on KNL

 Will be supported in all future Xeon Phi processors

 May or may not show up on a later Xeon processor

Address two HPC customer requests

 Ability to maximize memory bandwidth

 Hardware prefetching is too restrictive

 Conventional software prefetching results in instructions overhead

 Competitive support for transcendental sequences

 Mostly division and square root

 Differentiating factor in HPC/TPT

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 ERI & PRI Description

CPUID Instructions Description

A
V

X
-5

1
2

 P
R

I PREFETCHWT1
Prefetch cache line into the L2 cache with intent
to write (RFO ring request)

VGATHERPF{D,Q}{0,1}PS
Prefetch vector of D/Qword indexes into the
L1/L2 cache

VSCATTERPF{D,Q}{0,1}PS
Prefetch vector of D/Qword indexes into the
L1/L2 cache with intent to write

A
V

X
-5

1
2

 E
R

I VEXP2{PS,PD}
Computes approximation of 2x with maximum
relative error of 2-23

VRCP28{PS,PD}
Computes approximation of reciprocal with max
relative error of 2-28

VRSQRT28{PS,PD}
Computes approximation of reciprocal square
root with max relative error of 2-28

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

AVX-512 ERI & PRI Motivation

CPUID Instructions Motivation

A
V

X
-5

1
2

 P
R

I PREFETCHWT1
Reduce ring traffic in core-to-core data
communication

VGATHERPF{D,Q}{0,1}PS
Reduce overhead of software prefetching:
dedicate side engine to prefetch sparse structures
while devoting the main CPU to pure raw flops

VSCATTERPF{D,Q}{0,1}PS

A
V

X
-5

1
2

 E
R

I

VEXP2{PS,PD}
Speed-up key FSI workloads: Black-Scholes,
Montecarlo

VRCP28{PS,PD}
Key building block to speed up most
transcendental sequences (in particular, division
and square root):
Increasing precision from 14=>28 allows to
reduce one complete Newton-Raphson iteration

VRSQRT28{PS,PD}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

define_subst_attr

(define_subst_attr "mask_name" "mask" "" "_mask")

name

Relevant subst

subst not
applied value

subst applied
value

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Summary
AVX512: new 512-bit vector ISA extension

 Common between Xeon (SKL) and Xeon Phi (KNL)

AVX512VL, AVX512DQ, AVX512BW: complements AVX512

 Shows up first on Skylake Xeon

 Provides support for all data types and vector lengths

Conflict detection new instructions

 Improves autovectorization

 Common to Xeon and Xeon Phi

TVX new instructions

 28-bit transcendentals and new prefetch instructions

 On Xeon Phi only

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Mark Charney

• Jesus Corbal

• Roger Espasa

• Milind Girkar

• Moustapha Ould-ahmed-vall

• Ilya Tocar

• Bret Toll

• Bob Valentine

• Ilya Verbin

• Kirill Yukhin

57

Authors

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

58

