
Fast14 Technology: Design Technology for the Automation of Multi-Gigahertz Digital Logic

Steve Horne (presenter), Don Glowka, Scott McMahon, Paul Nixon, Mike Seningen, Gopal Vijayan

The authors are with Intrinsity, Inc. in Austin, Texas, USA (www.intrinsity.com)

INTRODUCTION

Fast14
® Technology is a new design technology

developed by Intrinsity, Inc., a US-based
semiconductor and design technology company
located in Austin, Texas. Fast14 Technology
automates the implementation of multi-GHz digital
logic circuits in standard CMOS fabrication
processes.

Fast14 Technology derives its name from the atomic
number of silicon (which translates to “Fast Silicon
Technology”). Fast14 Technology is comprised of five
critical design elements:

 Multiphase Overlapped Clocking
 1-of-N Dynamic Logic (NDL® family)
 Expert Routing Technology™
 Unified Design Database
 Design Methodology and Electronic Design

Automation (EDA) Tools Suite

Fast14 Technology enables a significant improvement
in chip design productivity for high-speed digital
logic. Fast14 Technology also provides significant
power and silicon area efficiency benefits over other
design methodologies in the high-performance logic
design space.

These benefits enable embedded processors and
special-purpose digital logic products to achieve the
levels of performance previously achieved only
through custom design flows while maintaining
efficient levels of power. These high performance
levels are achieved at greatly reduced development
costs and with lower risk of circuit problems as
compared to the custom design flows used for
desktop processors.

FASTMATH/FASTMIPS PROCESSORS

Initially proven in August of 2001 with test chip
results, Fast14 Technology is now commercially
deployed through Intrinsity’s first products, the
FastMATH® and FastMIPS® processors. Both
products operate at 2 GHz at 1.0 V in the TSMC 130-
nm LV CMOS process. The FastMATH processor,
which contains approximately 70 million transistors,
was selected by In-Stat/MDR as the 2002 Extreme
Performance Product of the Year.

Figure 1: FastMATH Processor

These processors were the first processors developed
for the embedded market to break the 1-GHz barrier
and remain the highest frequency embedded
processors in existence today.

Desktop processors from Intel and then AMD were
the first to attain multi-GHz speeds. However, the
FastMATH processor remains the first and only
processor to achieve 2-GHz operating frequencies in
a 130-nm process at a nominal VDD of only 1.0 V.

This low operating voltage and the advantages of
Fast14 Technology permit the FastMATH processor to
operate at a typical power of only 15 W at 2 GHz. At
lower operating voltages and frequencies (.85 V and
1 GHz), typical operating power levels of less than 6
W are achieved. Multi-GHz desktop processors
typically consume over 50 W.

The FastMATH processor was designed by 45 chip
designers in 16 months. First silicon was functional
and booted a Linux kernel within 2 months of
receiving the first samples. First silicon also met the 2
GHz speed goal at the target voltage and with
predicted manufacturing yields. Other high-
performance processors have required over 150
engineers and take 36 to 48 months of development
time.

BACKGROUND: STATIC VS. DYNAMIC LOGIC

Historically, two primary digital logic techniques
have been available to CMOS chip designers: static
logic and dynamic logic.

Dynamic logic was a popular design style for digital
logic in the 1970s and early 1980s, before CMOS
processes became economical. Prior to CMOS
processes, a designer had only NMOS or PMOS
manufacturing choices. In these older processes, a
static-logic gate consumed significant DC power,
which drove the need to design with a dynamic-logic
gate. However, dynamic logic was more error prone
and hazardous to use than static logic because of
various timing sensitivities.

With the advent of CMOS process technology, the
DC power of a static gate became very small,
removing one of the main advantages of dynamic
logic at that time.

Starting in the 1980s, Electronic Design Automation
(EDA) tools were created that enabled automated,
correct-by-construction layout for static logic. The
tenfold productivity gain enabled mass deployment of
new classes of digital circuits. Over the last two
decades, the development and use of EDA tools for
static-logic design has resulted in high design
productivity and the ability to create electrically
correct circuits with a very low risk of failure. For this
reason, static logic has become the workhorse of the
semiconductor industry.

One significant disadvantage of static logic is its
relatively slow gate speed. Dynamic circuit speeds are
two to three times faster than static circuit speeds.
Only engineers who designed circuits in the 1970s
remember the speed ‘lost’ when dynamic circuits
were abandoned in favor of the more productive static
logic. Of course, any engineer who has experience
designing dynamic logic is also aware of the difficulty
and high risk involved in designing electrically
correct dynamic circuits.

Dynamic logic differs from static logic in that a clock
is used in every gate (or almost every gate) and
regulates the data flow through the gate. During one
state of the clock, the gate is in a precharge state and
the outputs are driven to an inactive state (their state
conveys no logical state information). During the
opposite phase of the clock, the input signals are
evaluated and the outputs are driven to the
appropriate state. With each clock cycle, the dynamic
gate transitions from the precharge state to the
evaluate state and then back to the precharge state. As
in the case with static logic, after a series of dynamic
gates, the final results are latched in preparation for
the next set of logic gates. The following figure shows
the components of a typical dynamic gate.

Figure 2: Dynamic-Gate Structure

The speed of dynamic gates comes in large part from
the use of NMOS transistors to perform the logic
function of the gate. In a CMOS gate, the logic
function is duplicated in NMOS and CMOS transistor
networks. PMOS transistors have one half to one
third the mobility of NMOS transistors, and need to
be designed with larger channel widths than the
NMOS transistors to achieve optimum speed. The
elimination of the complementary PMOS logic
network from the dynamic gate reduces its size and
also removes a large parasitic load from the gate.
Additionally, because the preferred logic evaluation
direction is through the NMOS network to ground,
the gate can be sized to speed up the evaluation
operation versus the precharge operation.

With this significant speed advantage, it would seem
that dynamic logic and not static logic would have
become the dominant design technology. However,
dynamic logic has two fundamental technical
challenges that limit its usability in logic devices.
These two technical challenges are the main reasons
why dynamic logic has been abandoned in favor of
static logic. Each technical issue results in circuits
that take longer to design, are difficult to design
correctly the first time, and are challenging to
manufacture over a standard process specification.

The first technical issue with traditional dynamic
logic involves timing problems. The nature of the
timing problems varies with the specific style of
dynamic logic. Once a dynamic gate evaluates, it
cannot evaluate its inputs again until after the
precharge phase. This causes a large number of
timing problems. Other problems are caused by the
need to latch or register the result of a logic operation
at the end of a cycle. There is a risk that the dynamic
gate precharge state will race through the latch before
it closes.

Some dynamic-logic styles require careful and error-
prone tuning of clock delays to prevent these timing
problems. Signal delay variability due to load and RC

delay variability has also been a recurring problem
with traditional dynamic-logic styles.

The second technical issue with dynamic logic is
noise sensitivity. As previously mentioned, dynamic
logic cannot reverse a logic evaluation except by
going through a precharge phase. Signal and power or
ground noise can cause an inadvertent discharge of
the dynamic gate, resulting in a logic malfunction.

For example, consider a dynamic gate that is not
expected to discharge its dynamic node through its
NMOS network because one of the inputs is low. If
this input glitches above ground for a short time, the
dynamic gate may falsely evaluate. The input noise
glitch might be caused by capacitive coupling from a
nearby, unrelated signal route. It may also be caused
simply by a slight difference in ground potentials
between the driving and receiving gate.

Another well-known noise risk involves charge
sharing inside the NMOS network of the dynamic
gate. In this case, the inputs to the gate may be noise-
free, but the circuit design of the gate can result in a
false evaluation due to charge sharing between the
top-of-stack dynamic node and one or more of the
internal NMOS network nodes.

Because of these two classes of problems, timing
issues and noise issues, commercially available EDA
tools have not been developed to automate the design
of dynamic logic. Until now, only high-end, large
processor design companies have been able to afford
the labor-intensive design effort required to design
dynamic logic on any significant scale. Even these
processor teams typically use dynamic logic only in
the most critical speed paths, as it is too costly in
terms of productivity and design risk to use it
everywhere.

For the first time, Fast14 Technology has solved the
problem of automating multi-GHz logic design.
Additionally, it does so in a way that provides
significant power savings over conventional dynamic
logic and significant performance improvements over
static logic.

MULTIPHASE OVERLAPPED CLOCKS

One of the key elements of Fast14 Technology is the
use of multiphase overlapped clocks with a nominal
50 percent duty cycle. The patented scheme requires
at least three uniformly overlapping clock phases. For
example, the FastMATH processor employs a four-
phase clocking scheme. In the four-phase scheme,
each phase clock is delayed 90 degrees from the
preceding clock. Schemes have been studied with
three to six phases. Multiphase overlapped clocks

provide a number of benefits, as described below.

Figure 3: Multiphase Overlapping Clocks

One of the most important benefits of this clocking
scheme is that synchronizing latches or registers are
not required at cycle boundaries. At high frequencies,
latches and registers in static and traditional dynamic-
logic styles represent a large percentage of time in the
clock cycle that cannot be used for performing useful
work. The Fast14 Technology design palette does
include latches and register elements, but these are
used primarily for efficient data storage and
transmission purposes. Critical paths such as
arithmetic units, control logic, decode logic and
SRAM interfaces can cross cycle boundaries as
needed without incurring the penalty of a register
delay.

Figure 4: No Need for Registers

Another, more subtle, advantage of removing
registers and latches from logic paths is that the
designer has greater flexibility in arranging pipelines
and logic feedback paths. This is because a pipeline
stage and logic feedback path may begin and end at
any of the phase clocks, not just at a cycle boundary.

The second critical benefit derived from this clocking
scheme is a tolerance for moderate amounts of clock

uncertainty. The primary types of clock uncertainty in
digital logic are clock-period jitter, duty-cycle error,
and clock skew. Because the successive clock phases
are overlapped, moderate amounts of uncertainty in
the location of the clock edges does not affect the
operating speed of the logic. Additionally, hold time
problems and race conditions are virtually eliminated.
This fact enabled the automation of logic design using
a rich mixture of dynamic and static-logic elements
by the Fast14 Technology EDA tools.

The nature of the clock distribution system allows this
clocking scheme to be applied to large chip areas, if
desired. The multiphase clocking domain also
interfaces easily to slower speed clock domains.

1-OF-N DYNAMIC LOGIC (NDL) FAMILY

The second critical element of Fast14 Technology is
the novel 1-of-N dynamic logic (NDL) family.

Traditional static logic encodes data values on signals
in binary format. For example, the four data values 0,
1, 2 and 3 are encoded in binary on two signal nets.
Traditional dynamic logic does not include the
inversion function (gates are non-inverting), and so
both the true and complement values of a bit of
information must be generated and maintained. This
logic style is known as dual-rail dynamic logic, and
can be thought of as a 1-of-2 logic encoding. In dual
rail dynamic logic, two signal nets are needed to
represent one bit of information. It is apparent that
with twice the number of nets needed to represent a
value, this is a more costly method for representing
data than the binary encoding method. Another
disadvantage to the dual-rail dynamic-logic scheme is
that one of the two wires switches every cycle,
whether the data value is changing or not. This is not
as power efficient as static logic, where the wire
switches only when the data value is changing.
Therefore, while dual rail dynamic logic provides
significant speed advantages over static logic, it has
the disadvantages of higher power consumption and
higher wiring density.

The NDL logic family, on the other hand, represents
data values in a 1-of-N format, where the radix N can
be between one and eight. Radix values greater than
eight are possible as well, but this sometimes
introduces excessive wiring complexity. The radix
value of four is preferred for many logic operations.
However, other radix values are very valuable and
allow for efficient, dense logic design.

Figure 5: NDL Data Representation

As can be seen in Figure 5, radix-4 NDL logic has
half the switch factor of dual-rail dynamic logic.
Fast14 Technology provides additional features
beyond the scope of this paper that reduce this switch
factor even further. Due in part to the NDL logic
family, Fast14 Technology provides better power
efficiency than static-logic styles when comparing
designs that operate above 500 MHz.

NDL gates (and traditional static elements such as
latches, registers, and static combinatorial logic) are
generated at compile-time. Unlike standard-cell based
design flows, the designer is not limited to a fixed
library of gate functions. The designer codes the
desired function of the logic, but does not need to
code or design the details of the gate. From this
source code, Fast14 Technology EDA tools create the
detailed transistor-level netlist of the gates and
optimize the size of all the transistors for the desired
speed goal. This process is described in further detail
later.

As in traditional dynamic logic, NDL gates perform
their logic functions using NMOS transistors. The
capacitive loading and area impact of the
complementary PMOS transistor network found in
static logic is not present, resulting in significant
speed gains over static logic.

The 1-of-N encoding of NDL logic provides a further
advantage over classical dual-rail dynamic logic. As
noted before, representing data in a high radix 1-of-N
format reduces the switching factor of the signals.
This signal encoding, when applied to the inputs of an
NDL gate, also result in a relatively high fraction of
the NMOS transistors in the logic network remaining
in the off state. Consequently, when the NMOS
network evaluates, less electrical charge needs to be
discharged to ground. This improves the speed of the
gate, making it more power efficient, and reducing its
area. This also allows designers to create more
complex functions in a single gate than is possible in
conventional design styles, reducing the number of
stages needed to implement a logic function.

Fast14 Technology also provides for the integration of
scan functionality directly into NDL gates as well as
static gates. This is done in such a way as to have no
impact on the performance of the logic family. The
designer can choose no scan, full scan, or partial scan
as appropriate for the block or project.

The NDL logic family can operate at arbitrarily low
frequencies and has a wide voltage operating range
(of course, frequency is reduced at very low operating
voltages).

NDL GATE EXAMPLE

As an example, a 1-of-4 adder gate is shown in Figure
6: NDL Adder Gate. This gate generates a 1-of-3
result from two 1-of-4 operands (from two 2-bit
operands). The encoding of each operand is the same
as in Figure 5. The 1-of-3 output of the adder gate is
propagate (PROP), generate (GEN), and halt
(HALT). The propagate and generate terms are not
dissimilar from normal Boolean adders. The halt term
provides the complementary function to propagate
and generate.

Figure 6: NDL Adder Gate

The PROP output is asserted if the input values
propagate a carry-in condition to a carry-out
condition (for instance, if the sum of A and B is 3).

PROP = A0&B3|A1&B2|A3&B0|A2&B1

The GEN output is asserted if the input values
generate a carryout condition (for example, if the sum
of A and B is greater than 3).

GEN = B3&(A1|A2|A3)|B2&(A2|A3)|B1&A3.

HALT is the logical complement of PROP | GEN
(that is, the terms that sum to less than 3).

HALT = B0&(A0|A1|A2)|B1&(A0|A1)|B2&A0

A full 32-bit adder can be designed using only three

levels of logic using these and similar NDL gates.

As can be seen from this example, some logic
functions are naturally represented in high-radix
signal encodings. In addition to being efficient
logically, NDL gate designers also find this encoding
flexibility to be very natural. High-radix
representation allows designers to translate their
concepts into logic in an intuitive and efficient
manner.

As another example of this encoding power, a 6-state
state machine can be represented by a single 1-of-6
NDL gate. The high logic density possible in the
NMOS network means that the combinatorial logic
affecting the next state can also be put into this single
gate (though it is sometimes convenient to spread this
logic over two or three NDL gates - still well within
one clock cycle).

EXPERT ROUTING TECHNOLOGY

The third critical element of Fast14 Technology is an
advanced expert routing technology. For the past four
or five process generations, the wiring of an
integrated circuit has played a more and more
dominant role in the circuit's performance, size and
electrical robustness. This trend is expected to
continue for the foreseeable future. Fast14 Technology
addresses this problem with a sophisticated and
cohesive set of routing features that include the
following components:

 EM/IR-Aware power and ground routing
 Speed/noise-aware signal and clock routing
 Automatic, on-demand signal shielding
 Bundle routing and wire Twizzling™ method
 Redundant via insertion

This routing technology not only enables complex
logic to operate at multi-GHz frequencies, but also
provides product reliability, deterministic and rapid
timing closure, and high degrees of electrical
robustness in an automated design flow.

The routing process begins at the cell level, where
signal and power/ground connections inside the gate
are sized to handle the specific operating currents of
the gate. This includes metallization width and
contact/via counts. Depending on the specific
technology and the design goals, either EM
(electromigration) or IR (voltage) drop limits may set
the power/ground routing requirements.

After gates are constructed and placed in a block of
logic, the interconnect of the block (power, ground
and signals) is built in a methodical and context-
sensitive manner. The timing, noise characteristics,

and power consumption information associated with
each gate and net is readily accessible from a unified
design database which is described later. This
information is used to precisely size the signal and
power routes among the gates in the block. In this
way, predictable timing closure, noise immunity, and
reliability are achieved without being over designed.

Bundle routing is an efficient and robust way to route
NDL signals. The N wires of a radix-N NDL signal
are often routed together as a bundle for most of their
route length. This provides several advantages. First,
the 1-of-N signal encoding requires that, at most, only
one of the N wires of this signal will assert at a given
time. The result is that an actively switching wire has
quiet neighbors and a quiet (victim) wire has at most
one switching neighbor (aggressor). At the edge of a
bundle, shields may be inserted to protect the edge
wires from unrelated signals. While at first this may
seem to be a costly use of interconnect resources, in
practice the shields (which are tied to power or
ground) become part of the power/ground grid. A
second advantage to bundle routing is that the routing
of the design is more regular. All wires of a bundle
have the same source and destinations, and routing
them together reduces blockages for unrelated routes.

The wire twizzling technique is a patented method for
routing NDL signals. This technique further reduces
coupling noise beyond the benefits provided by
bundle routing. The wire twizzling method changes
the order of the wires in a bundle to reduce by another
factor of two the exposure of a victim wire to an
aggressor wire. Usually, this signal re-ordering is
opportunistic, occurring without cost when a signal
changes metallization layers during a direction
change. The routing tools keep track of the twizzle
state of the route, attempting to keep half the route
length in one state and half the length in the alternate
state. Wire twizzling is shown schematically in Figure
7.

Figure 7: Wire Twizzling (Conceptual Diagram)

Note that in many radix cases (for example, radix-2
and radix-3), a ground or power shield needs to be
routed in the bundle to participate in the twizzling
process. In practice, however, wire spacing in

combination with bundle routing is usually sufficient
to solve noise problems. The routing tools
automatically choose the lowest cost method to route
each signal or bundle, employing wire spacing, wire
width, shielding, bundle routing and wire twizzling as
appropriate for the specific signal and the noise
sensitivity of the attached gates.

The final step in the routing process is the insertion of
redundant vias wherever space allows. Note that
multiple vias are used in the initial signal or
power/ground route when required for signal speed,
electromigration or voltage drop reasons. The
redundant vias are not required for these purposes,
but rather to improve the yield and manufacturability
of the chip.

FAST14 TECHNOLOGY UNIFIED DESIGN DATABASE

Fast14 Technology implementations are managed by a
powerful, unified design database. This state-of-the-
art database was developed by Intrinsity using
industry-standard data models. It offers logical
(netlist) and physical (layout) capabilities very similar
to those found in popular design environments such
as those offered by Cadence, Mentor or Synopsys.
Intrinsity's database is optimized for storing
geometrical data and provides an efficient platform
for tools like routers and layout generators.

In addition to the normal netlist and layout data, the
database-programming interface provides
sophisticated methods for managing hierarchy and
occurrence properties. These features allow the
database to store timing and wiring constraints and
help solve the problem of managing such constraints
across the design hierarchy.

This design database can output netlists in many
industry-standard formats such as Verilog, CDL, and
SPICE. The database can also output standard GDSII
layout data.

Third-party logic and layout tools are used to create
custom circuits such as SRAM arrays and I/O buffers.
Conventional third-party synthesis and place-and-
route EDA tools are used for low-speed logic blocks.
All of the resultant data from the three design styles
(Fast14 Technology, custom, synthesis) is translated
into and managed by the Fast14 Technology unified
design database.

FAST14 TECHNOLOGY EDA TOOLS

The Fast14 Technology EDA tool suite is designed to
work with the unified design database and automates
the design of high-performance circuits. The EDA
tool suite provides a design environment with the

following features:

 Hybrid cycle/event-driven logic simulation using
inexpensive computer hardware

 Electrical and physical constraint management
across levels of design hierarchy

 Module-level and chip-level floorplanning and
integration

 Automatic netlist generation and transistor sizing
 Rapid, deterministic timing closure to multi-GHz

performance targets
 Automated cell layout
 Block assembly and routing

These tools, including the logic simulator, operate on
inexpensive Linux computer hardware.

Interfaces to various commercially available EDA
tools are provided for the purpose of simulation and
electrical/physical analysis and also to provide
methods to integrate custom or synthesized blocks
into the chip design.

Figure 8 illustrates how the Fast14 Technology EDA
tools work together and interface to commercially
available EDA tools.

Figure 8: Fast14 Technology EDA Tool Overview

The Intrinsity Top-Level Floorplanner tool integrates
blocks of NDL gates, blocks of full-custom logic
(such as SRAM arrays) and blocks of conventional
synthesized static logic. The Floorplanner tool allows
the designers to manage timing and physical
constraints among the various blocks. It is also the
environment in which the top-level route is
performed.

The NDL Automated Flow generates multi-GHz
digital logic and layout from the designer's source

code. This flow includes tools that generate the
transistor netlist, optimize gate placement,
automatically size all of the transistors to meet the
desired speed goal, and generate the layout for the
block. This flow is similar in function to the
conventional synthesis and place-and-route flows,
except that it can generate robust logic circuits
operating at multi-GHz rates.

As part of the NDL Automated Flow, NDL gate
sizing occurs in the context of the block environment,
analyzing all of the gates and the wires connecting the
gates. Taking into account estimated wire (RC)
delays, NDL gates are assigned appropriate delay
goals. Complex NDL gates are allowed to "borrow"
time from more simple gates in the upstream or
downstream cones of logic. This results in significant
power savings in critical paths. This sizing flow
converges to the desired frequency target after one or
two passes. Each sizing pass takes less than an hour
for small blocks of logic, and up to several hours for
large blocks of logic. Because of this rapid and
deterministic timing closure, designers are able to
perform numerous logic optimization iterations on a
daily basis. This level of optimization can be
achieved at lower frequencies with conventional
synthesis tools, but is not achieved in custom design
flows because of the labor-intensive nature of those
flows.

As described earlier, the NDL logic family enables
complex logic functions to operate efficiently at
multi-gigahertz speeds. However, the function of data
storage and long-distance data transmission is
typically best performed by binary-encoded static-
logic elements such as registers, latches and inverters.
The NDL Automated Flow allows NDL logic gates
and static-logic gates to be intermixed in a block.
NDL logic gates and static elements are allowed to
interface to each other according to a prescribed set
of rules. These rules, which are checked automatically
by the Fast14 Technology EDA tools, ensure that the
resulting design is free of timing problems.

The automation of dynamic-logic design in the Fast14

Technology EDA flow is unprecedented in the
industry and allows Intrinsity to generate circuits that
are extremely fast but also highly manufacturable and
robust. The possibility of human error is essentially
eliminated because of this automation. Additionally,
since blocks can be generated quickly from source
code to polygons, designers can evaluate many
solutions to a design problem before deciding which
solution provides the best results.

The Fast14 Technology design flow relies on industry-
standard analysis tools to check the quality of the
design. The design database outputs GDSII layout for

parasitic extraction and analysis. Timing,
electromigration, IR drop analysis, DRC, and LVS
checks are performed by industry-standard third-party
tools (though significant levels of EM, IR and noise
analysis are also performed by Fast14 Technology
EDA tools during the create phase). This ensures the
quality and correctness of the design to a state of the
art level.

FAST14 TECHNOLOGY VALUE

Fast14 Technology represents a significant
breakthrough for the automation of high-speed digital
logic design. The value of a design technology can be
measured by operating speed, power efficiency,
productivity, manufacturability, and risk of design
error.

Figure 9: Design Style Comparison

Fast14 Technology delivers a substantial speed
improvement over conventional static-logic design
styles. When compared to dual-rail dynamic logic, the
removal of registers, the increased tolerance for clock
uncertainty, and the capacitance isolation provided by
the NDL logic family provide a significant speed
improvement.

When considering power efficiency, it is important to
consider the delivered performance. For example, at
low levels of performance (below about 500 MHz in
a 130 nm technology), pure static logic can be a more
power efficient technology than Fast14 Technology.
Above approximately 500 MHz, the power efficiency
of Fast14 Technology exceeds that of a static-logic
design style. This power efficiency advantage
increases further at higher levels of performance. This
is evidenced by the fact that there are no commercial
logic products of significant complexity implemented
in a full static-logic design style above approximately
500 MHz (130 nm, 1.0 V nominal voltage).

NDL gates enjoy a substantial power efficiency
advantage over classical dual-rail dynamic logic at
any level of performance. The 1-of-N logic encoding
provides power savings by reduced interconnect
switching power and also because of the improved
speed/power ratio inside logic gates. Another source
of power savings is the cycle time gained by the

removal of registers from critical paths and by the
increased tolerance for clock uncertainty (this
essentially gives more time to the gates doing the
actual work).

Although Fast14 Technology derives its speed from
the use of the NDL logic family, it allows the
integration of static gates in the design. Static
elements such as registers and normal inverters are
used for power and area-efficient data storage and
transmission. NDL gates are used for combinatorial
logic and computation elements. The unique Fast14

Technology clocking scheme and the supporting EDA
tools allow these styles to be mixed in a seamless
manner without the design risk that accompanies the
interface between static and dynamic logic in
traditional designs.

At high performance levels (above about 500 MHz),
Fast14 Technology has a productivity advantage over
conventional synthesis flows. This is because
synthesis flows require a great deal of time to achieve
timing closure at high clock rates. The effort required
to achieve timing closure offsets the advantage that
synthesis flows have in the level of abstraction of the
source code. At higher levels of performance,
conventional static design is not capable of matching
Fast14 Technology performance with any level of
effort. However, at lower frequencies, the higher level
of abstraction in the source code gives conventional
synthesis flows a design productivity advantage over
Fast14 Technology.

Relative to high-performance custom design (static or
dynamic), Fast14 Technology has a dramatic design
productivity advantage.

The manufacturability of a Fast14 Technology design
is significantly improved over a traditional dynamic-
logic design and over custom static designs. This is
due to the elimination of human error in the circuit
design and layout of these critical circuits. The
robustness of circuits from the NDL logic family, the
expert routing technology, and the powerful Fast14

Technology EDA tools deliver products that have
similar (or in some case, better) manufacturability
than products developed with established static-
design methodologies.

The automation capability of the Fast14 Technology
EDA tools enables a designer to pick a performance
goal and quickly get feedback on power. The power
of the final product depends on speed, voltage, and
function. Fast14 Technology enables such a leap in
speed that often fewer functions are required to
achieve a given performance goal. With the ability to
easily generate multi-GHz circuits, it is also simple to
retarget a design point to 1 GHz at a very low voltage

to achieve a more power-efficient chip.

FUTURE DEVELOPMENTS OF FAST14 TECHNOLOGY

Fast14 Technology is a breakthrough technology that
has reached commercial production status. The
technology will continue development by Intrinsity to
improve speed, power, area, and productivity.

Power is an area that will receive continued
invention. While products from Intrinsity today
deliver breakthrough performance in systems
requiring 3-W to 15-W power budgets, future
products will continue the migration to markets that
require battery power. Fast14 Technology is capable of
delivering significant product advantages where
performance, power efficiency, or cost efficiency are
key market requirements.

Opportunities exist to take the technology to broader
markets. Logic synthesis tools that support dynamic
logic are key to enabling engineers familiar with static
logic to enjoy the two-to-three-times speed
improvement seen with Fast14 Technology.

Intrinsity, Fast14, FastMATH, NDL, and Twizzling are
trademarks/registered trademarks of Intrinsity, Inc. in the
United States and/or other countries. FastMIPS and MIPS32
are among the trademarks/registered trademarks of MIPS
Technologies in the United States and/or other countries. All
other trademarks are the property of their respective owners.

