® VLSI TECHNOLOGY, INC. VY86C060

ARCHITECTURAL OVERVIEW
32-BIT SINGLE-CHIP MICROPROCESSOR

FEATURES

Fully static operation
* 32-hit data bus
s 32-bit address bus

¢ Coprocessor interface for instruction
set extension

¢ High-level language compiler support

¢ Fast interrupt response for real-time
applications

* Big and Little Endian operating modes

* Boundary Scan for device and system
testing

* Low power consumption

DESCRIPTION

The VY86C060 microprocessor is
based on the ARM™ processor core
from Advanced RISC Machines, Ltd.
The VY86C060 is a general-purpose
32-bit, single-chip microprocessor. The
architecture is based on Reduced In-
struction Set Computer (RISC) prin-
ciples, and the instruction set and re-
lated decode mechanism are greatly
simplified compared with micropro-
grammed Complex Instruction Set Com-
puters (CISC). This simplification results
in a high-instruction throughput and a
real-time interrupt response from a
small and cost-effective chip.

The instruction set comprises ten basic
instruction types. Two of these make
use of the on-chip arithmetic logic unit
(ALU), barrel shifter and multiplier to
perform high-speed operations on the
data in a bank of 32-bit registers. Three
instruction types control the transfer of

FUNCTIONAL DIAGRAM

MCLK
CLOCKS { NWAIT
—>

PROG32
DATA32
CONFIGURATION
BIGEND

LATEABT

NIRQ
INTERRUPTS { NFIQ

NRESET

ABE

BUS CONTROL | — ALE]
DBE

vDD

POWER { vss

VY86C060

o BOUNDARY
l«———— 1SCAN

« NTRST INTERFACE

LOCK

AlB1:0 MEMORY
> | INTERFACE
10[31:01 [

| NTRANS } MEMORY

ABORT MANAGEMENT
INTERFACE
NOPC
| NCPL o COPROCESSOR
cPA INTERFACE
e
CPB

data between main memory and the
register bank. One is optimized for flex-
ibility of addressing, another for rapid
context switching, and the third for indi-
visible semaphore operations. Two in-
structions control the flow and privilege
level of execution, and the remaining
three types are dedicated to the control
of external coprocessors, which allow
the functionality of the instruction set to
be extended off-chip in an open and
uniform way.

The VY86C060 instruction set has
proved to be a good target for compilers
of many different high-level languages.
Where required for critical code seg-
ments, assembly code programming

is also straightforward, unlike some
RISC processors that depend on so-
phisticated compiler technology to man-
age complicated instruction interdepen-
dencies.

Pipelining is employed allowing for all
parts of the processing and memory
systems to operate continuously. Typi-
cally, while one instruction is being ex-
ecuted, its successor is being decoded,
and a third instruction is being fetched
from memory.

The VY86C060 is based on the
VY86C006 FSB™ library element, and is
software compatible with the instruction
set of earlier ARM processors (ARM2,
ARM2aS, and ARM3). Unlike these
processors, which have a 26-bit address
bus, the VY86C060 has a 32-bit ad-
dress bus. For backwards compatibility,
it can also be configured to use a 26-bit
address bus. It is a fully static imple-
mentation that allows the clock to be
stopped in any part of the cycle with
minimal residual power consumption
and no loss of state.

January 1994

M 93448347 0010993 220 mm

VLSI Technology, Inc. « 1109 McKay Drive » San Jose, CA 95131 « 408-434-3100

w VLSI "TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

BLOCK DIAGRAM

ALE —

ABE —

A[31:0]

= ||

ADDRESS REGISTER

N

ADDRESS
INCREMENTER

wcw O7T

REGISTER BANK
(31 32-BIT REGISTERS)
(6 STATUS REGISTERS)

ﬁcm IM—HZMIMIOZ—

nco »

=

BOOTH'S
MULTIPLIER

F

BARREL
SHIFTER

N

mwcmo w

Z
\

32-BIT ALU

/

|

S

l«——— TCK

l«—— TMS

BOUNDARY
SCAN l«— TDI
LOGIC l«——— NTRST
I » TDO
l«——— MCLK
la———— NWAIT
[—— NBW
— NRW
l«——— NIRQ
l«—— NFIQ
«——— NRESET
l«———— ABORT
———>» NOPC
——» NTRANS
INSTRUCTION
DECODER
&
CONTROL fj«—— PROG32
LOGIC

l«——— DATA32
l«— BIGEND

l«——— LATEABT

— NMREQ
— SEQ

—— LOCK

——— > NCPI
«—— CPA

l«——— CPB

A

DBE ——>

WRITE DATA REGISTER

INSTRUCTION PIPELINE
& READ DATA REGISTER

D[31:0]

mR 9384347 001

099y 1657 MR

& VLSI TECHNOLOGY, INC. VY86C060

ARCHITECTURAL OVERVIEW

SIGNAL DESCRIPTIONS

Name

Type

Description

A[31:0]

ABE

ABORT

ALE

BIGEND

CPA!

cPB?

D[31:0]

DATA32

DBE

LATEABT?

LOCK

MCLK

Notes:

0838

/0S8

0S8

Address Bus. If ALE is HIGH, the addresses become valid during phase 2 of the cycle before the
one to which they refer and remain so during phase 1 of the referenced cycle. Their stable period
may be controlled by ALE as described below.

Address bus enable. When this input is LOW, the address bus drivers (A[31:0]) are put into a high
impedance state.

Memory abort. This input allows the memory system to tell the processor that a requested access
is not allowed. For ARM6x, the signal must be valid before the end of phase 1 of the cycle during
which the memory transfer is attempted. On ARM7x and beyond, this signal must be valid before
the end of phase 2.

Address latch enable. This input to the processor is used to control transparent latches on the
address outputs. Normally the addresses change during phase 2 to the value required during the
next cycle, but for direct interfacing to ROMs they are required to be stable to the end of phase 2.
Taking ALE LOW until the end of phase 2 will ensure that this happens. If the system does not
require address lines to be held in this way, ALE may be held permanently HIGH. The ALE latch is
static, so ALE may be held LOW indefinitely.

Big Endian configuration. When this signal is HIGH, the processor treats words in memory as being
in Big Endian format. When it is LOW, words in memory are treated as Little Endian.

Coprocessor absent. A coprocessor which is capable of performing the operation that is requested,
should take CPA LOW immediately. If CPA is high and NCP!| is low at the rising edge of phase 2,
then the VY86C060 will abort the coprocessor handshake, and take the undefined instruction trap.
If CPA is LOW, the VY86C060 will busy-wait until CPB is LOW, and then complete the coprocessor
instruction. If no coprocessors are fitted, CPA must be driven high.

Coprocessor busy. A coprocessor which is capable of performing the operation that is requested,
but cannot commit to starting it immediately, should indicate this by driving CPB HIGH. When the
coprocessor is ready to start, it should drive CPB LOW. The VY86C060 samples CPB on the rising
edge of phase 2 whenever NCPI is low. If no coprocessors are fitted, CPB must be driven HIGH.

Data bus. These are bidirectional signal paths which are used for data transfers between the
processor and external memory. During read cycles {(when NRW is LOW), the input data must be
valid before the end of phase 2 of the transfer cycle. During write cycles (when NRW is HIGH), the
output data will become valid during phase 1 and remain valid throughout phase 2 of the transfer
cycle.

32-bit Data configuration. When this signal is HIGH, the processor can access data in a 32-bit
address space using address lines A[31:0]. When it is LOW the processor can access data from a
26-bit address space using A[25:0]. In this latter configuration the address lines A[31:26] are not
used. Before changing DATA32, ensure that the processor is not about to access an address
greater than &3FFFFFF in the next cycle.

Data bus enable. When this input is LOW, the data bus drivers (D[{31:0]) are put into a high
impedance state. The drivers will always be high impedance except during write operations, and
DBE may be tied HIGH in systems that do not require the data bus for DMA or similar activities.

Late Abort. This signal controls the action of the processor on an ABORT exception. When it is
HIGH (Late Abort), the modified base register of an aborted LDR, LDM, STR, or STM instruction is
written back. This signal has no effect on when the ABORT signal is sampled. It is recommended
that the Late Abort scheme be used where possible as only this scheme is used in ARM7x proces-
sors and beyond. However, ARM2, ARM2a$S, and ARM3 support the Early Abort mechanism.

Locked operation. When LOCK is HIGH, the processor is performing a “locked” memory access
and the memory controller should wait until LOCK goes LOW before allowing another device to
access the memory. LOCK changes during phase 2, and remains HIGH for the duration of the
locked memory accesses. It is active only during the data swap instruction.

Memory clock input. This clock times all memory accesses. The LOW (phase 1) or HIGH (phase 2)
periods of MCLK may be stretched indefinitely when accessing slow peripherals; alternately, the
NWAIT input may be used with a free-running MCLK to achieve the same effect.

1. CPA must default HIGH when coprocessor cycles are not executed in order to enter the Undefined Instruction Exception.
2. CPB must default HIGH when coprocessor cycles are not executed in order to enter the Undefined Instruction Exception.
3. This pin only exists on the ARM6x processors, ARM7x processors and beyond are always configured for late abort.

3

M 93858347 0010995 OT3 A

& VLSI TECHNOLOGY, INC. VY86C060

ARCHITECTURAL OVERVIEW

SIGNAL DESCRIPTIONS (Cont.)

Name

Type

Description

NBW

NCPI

NFIQ

NIRQ

NMREQ

NOPC

NRESET

NRW

NTRANS

NTRST

NWAIT

PROG32

SEQ

0S8

04

04

04

0S8

0S8

04

NOT byte/word. This is an output signal used by the processor to indicate to the external memory
system when a data transfer of a byte length is required. The signal is HIGH for word transfers and
LOW for byte transfers and is valid for both read and write cycles. The signal will become valid
during phase 2 of the cycle before the one during which the transfer will take place. It will remain
stable throughout phase 1 of the transfer cycle.

NOT coprocessor instruction. When the VY86C060 executes a coprocessor instruction, it will take
this output LOW. The action taken will depend on the CPA and CPB inputs.

NOT fast interrupt request. Same as NIRQ, but with higher priority. May be taken LOW asynchro-
nously to interrupt the processor when the appropriate enable is active.

NOT interrupt request. An asynchronous interrupt request to the processor which causes it to be
interrupted if taken LOW when the appropriate enable in the processor is active. The signal is level-
sensitive and must be held LOW until a suitable response is received from the processor.

NOT memory request. This signal, when LOW, indicates that the processor requires memory
access during the following cycle. The signal becomes valid during phase 1, remaining valid
through phase 2 of the cycle preceding that to which it refers.

NOT op-code fetch. When LOW, this signal indicates that the processor is fetching an instruction
from memory. When HIGH, data is either being transferred or the VY86CO060 is performing an
internal cycle. The signal becomes valid during phase 2 of the previous cycle, remaining valid
through phase 1 of the referenced cycle.

NOT reset. This is a level-sensitive input signal that is used to start the processor from a known
address. A LOW level will cause the instruction being executed o terminate abnormailly. When
NRESET becomes HIGH for at least one clock cycle, the processor will restart from address 0.
NRESET must remain LOW (and NWAIT must remain HIGH) for at least two clock cycles. During
the LOW period, the processor will perform dummy instruction fetches with the address increment-
ing from the point where reset was activated. The address value will overfiow to zero if NRESET is
held beyond the maximum address limit.

NOT read/write. When HIGH this signal indicates a processor write cycle; when LOW, a read cycle.
It becomes valid during phase 2 of the cycle prior to the referenced cycle, and remains valid to the
end of phase 1 of the referenced cycle.

NOT memory translate. When this signal is LOW, it indicates that the processor is in user mode. It
may be used to tell memory management hardware when translation of the addresses should be
turned on, or as an indicator of non-user mode activity.

NOT Test Reset. Active-low reset signal for the boundary scan logic. This input has an on-chip pull-
up resistor to VDD. The timing of this and the following four boundary-scan signals are described in
more detail later in this document.

NOT wait. When accessing slow peripherals, the VY86C060 can be made to walit for an integer
number of MCLK cycles by driving NWAIT LOW. Internaily, NWAIT is ANDed with the MCLK clock,
and must only change when MCLK is LOW. If NWAIT is not used in a system, it may be tied HIGH.

32-bit Program configuration. When this signal is HIGH, the processor can fetch instructions from a
32-bit address space using address lines A[31:0]. When it is LOW the processor feiches instruc-
tions from a 26-bit address space using A[25:0]. In this latter configuration the address lines
A[31:26] are not used for instruction fetches. Before changing PROGS32, ensure that the processor
is in a 26-bit mode, and is not about to write to an address in the range 0 to &1F (inclusive) in the
next cycle.

Sequential address. Will become HIGH when the address of the next memory cycle will be related
to that of the last memory access. The new address will either be the same as, or four greater than
the old one.

The signal becomes valid during phase 1 and remains so through phase 2 of the cycle preceding
that to which it refers. It may be used in combination with the low-order address lines to indicate
that the next cycle can use a fast memory mode (for example DRAM page mode) and/or to bypass
the address translation system.

B 9388347 0010996 T3T M

® VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

SIGNAL DESCRIPTIONS (Cont.)

Name Type Description

TCK iP Test Clock. This input to the boundary-scan logic has an on-chip pull-up resistor to VDD.

TDI IP Test Data Input. This input to the boundary-scan logic has an on-chip pull-up resistor to VDD.
TDO 088 Test Data Qutput. Output from the boundary-scan logic.

™S IP Test Mode Select. This input to the boundary-scan logic has an on-chip pull-up resistor to VDD.
vDD P Positive supply.

VSS P Supply ground.

Key to Signal Types
] Input (TTL threshold)

P Input (TTL threshold) with pull-up resistor

04 Output (4 mA drive) for VY86C06020FC-2/VY86C06040 and (8 mA drive) for VY86C060A
0S8 Qutput (8 mA slew-limited drive)

P Power supply

MR 93488347 0010997 97?:L MR

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

CONFIGURATION AND
MODE SELECTION

The VY86C060 supports a variety of
operating configurations. Some are con-
trolled by signal inputs and are known
as the Hardware Configurations. Others
may be controlled by software and are
known as operating modes.

HARDWARE CONFIGURATION

The VY86CO060 provides four hardware
configuration inputs that may be
changed while the processor is running.
The inputs may only change during
phase 2 of the clock cycle.

Two of the inputs (DATA32 and
PROG32) allow one of three processor
configurations to be selected as follows:

(1) 26-bit program and data space —
(DATA32 LOW, PROG32 LOW).
This configuration forces the
VY86C060 to operate like the earlier
ARM processors with 26-bit address
space. The programmer’s model for
these processors applies, but the
new instructions to access the
CPSR and SPSR registers operate
as detailed later in this document. In
this configuration, it is impossible to
select a 32-bit operating mode. All
exceptions (including address ex-
ceptions) enter the exception han-
dler in the appropriate 26-bit mode.

(2) 26-bit program space and 32-bit
data space — (DATA32 HIGH,
PROG32 LOW). This is the same as
the 26-bit program and data space
configuration, but with address ex-
ceptions disabled to allow data
transfer operations to access the full
32-bit address space.

Notes:

(3) 32-bit program and data space —
(DATA32 HIGH, PROG32 HIGH).
This configurations extends the ad-
dress space to 32-bits, introduced
broad changes in the programmer’s
model (as described below), and
provides support for running existing
26-bit programs in the 32-bit environ-
ment.

The fourth processor configuration which
is possible (26-bit data space and 32-bit
program space) should not be selected.

The BIGEND signal controls whether the
VY86CO060 treats words in memory as
being stored in Big Endian or Little En-
dian format. Memory is viewed as a lin-
ear collection of bytes numbered up-
wards from zero. Bytes O to 3 hold the
first stored word, Bytes 4 to 7 the sec-
ond, and so on.

In the Little Endian scheme, the least
significant byte of a word is stored at the
lowest numbered byte, and the most
significant byte is stored at the highest
numbered byte. Byte 0 of the memory
system should be connected to data

lines 7 through 0 (D[7:0]) in this scheme.

In the Big Endian scheme, the most sig-
nificant byte of a word is stored at the
lowest numbered byte, and the least sig-
nificant byte is stored at the highest
numbered byte. Byte 0 of the memory
system should therefore be connected to
data lines 31 through 24 (D[31:24]).

The LATEARBT signal controls the
processor’s behavior when a data abort
exception occurs. It only affects the be-
havior of LDR and STR instructions and
is discussed more fully in the section
about exceptions and the description of
data transfer instructions.

OPERATING MODE SELECTION
When configured for 26-bit program
space, the VY86CO060 is limited to oper-
ating in one of four modes known as the
26-bit modes. These modes correspond
to the modes of the earlier ARM proces-
sors and are known as User26, FIQ26,
IRQ26, and Supervisor26.

When using a 32-bit program space,
there are a total of 10 modes available.
These are the four 26-bit modes de-
scribed above, plus six more known as
the 32-bit modes. These are User32,
FIQ32, IRQ32, Supervisord2, Abort32,
and Undefined32. These are the normal
operating modes in this configuration.
The 26-bit modes are only provided for
backwards compatibility to allow execu-
tion of programs originally written for
earlier ARM processors.

1. The remainder of this document describes the VY86C060 when configured for 32-bit program and data space and operating in one of the 32-bit
modes. It is recommended that all new designs using the VY86C060 should configure the processor in this way by setting PROG32 and DATA32
HIGH, and that all new code should be written to use only the 32-bit operating modes. It is also recommended that the LATEABT input be set
HIGH so that the Late Abort exception mechanism is used.

2. Because the original VY86CO060 instruction set has been modified to accommodate 32-bit operation, there are certain additional restrictions

programmers must be aware of. These are indicated in the text by the words “shall” and “shall not”.

MR 9388347 0010998 302 =

6

w VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

PROGRAMMER’S MODEL

INTRODUCTION

The VY86C060 has a 32-bit data bus
and a 32-bit address bus. The data
types the processor supports are Bytes
(eight bits) and Words (32 bits), where
words must be aligned to four byte
boundaries. Instructions are exactly one
word, and data operations (e.g. ADD)
are only performed on word quantities.
Load and store operations can transfer
either bytes or words.

The VY86C060 supports six modes of
operation:

(1) User mode: the normal program
execution state

(2) FIQ mode (fiq): designed to support
a data transfer or channel process

(3) IRQ mode (irq): used for general-
purpose interrupt handling

(4) Supervisor mode (svc): a protected
mode for the operating system

(5) Abort mode (abt): Entered after a
data or instruction prefetch abort

(6) Undefined mode (und): entered
when an undefined instruction is
executed

Mode changes may be made under
software control or may be brought
about by external interrupts or exception
processing. Most application programs
will execute in User mode. The other
modes, known as privileged modes, will
be entered to service interrupts or ex-
ceptions or to access protected re-
sources.

REGISTERS

The processor has a total of 37 registers
made up of 31 general-purpose 32-bit
registers and six status registers. At any
one time, 16 general-purpose registers
(RO to R15) and one or two status regis-
ters are visible to the programmer. The
visible registers depend on the proces-
sor mode, and the other registers (the
banked registers) are switched in to
support IRQ, FIQ, Supervisor, Abort,
and Undefined mode processing. The
register bank organization is shown be-
low. The banked registers are shaded in
the diagram.

All registers except R15 are general-
purpose and may be used to hold data
or address values. Register R15 holds
the Program Counter (PC). When R15
is read, bits [1:0] are zero and bits [31:2]
contain the PC. A seventeenth register
the Current Program Status Register
(CPSRY) is also accessible. It contains
condition code flags and the current
mode bits, and may be thought of as an
extension to the PC.

R14 is used as the subroutine link regis-
ter and receives a copy of R15 when a
Branch and Link instruction is executed.
It may be treated as a general-purpose
register at all other times. R14_svc,
R14_irq, R14_fiq, R14_abt, and
R14_und are used similarly to hold the
return values of R15 when interrupts
and exceptions arise, or when Branch
and Link instructions are executed
within interrupt or exception routines.

REGISTER ORGANIZATION

GENERAL REGISTERS AND PROGRAM COUNTER

Supervisor32 Undefined32
User32 Mode FiQ32 Mode Mode Abort32 Mode IRQ32 Mode Mode
RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7
R8 R8_fiq R8 R8 R8 R8
R9 R9_fiq R9 R9 R9 R9
R10 R10_fig R10 R10 R10 R10
R11 R11_fig R11 R11 R11 R11
R12 R12_fig R12 R12 Ri12 R12
R13 R13_fiq R13_svc R13_abt R13_irqg R13_und
R14 Ri4_fig R14_svc R14_abt R14_irg R14_und
R15 (PC) R15(PC) R15(PC) R15(PC) R15(PC) R15(PC)
PROGRAM STATUS CPSR REGISTERS
| cPsR | CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

W 9388347 0010999 7?49 WA

w VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

FiQ mode has seven banked registers
mapped to R8 - R14 (R8_fiq - R14_fiq).
Many FIQ programs will not need to
save any registers.

User mode, IRQ mode, Supervisor
mode, Abort mode, and Undefined
mode each have two banked registers
mapped to R13 and R14. The two
banked registers allow these modes to
each have a private stack pointer and a
link register. Supervisor, IRQ, Abort,
and Undefined mode programs which
require more than these two banked
registers are expected to save some or
all of the caller’s registers (R0 to R12)
on their respective stacks. They are
then free to use these registers, which
they will restore before returning to the
caller. In addition, there are five SPSRs
(Saved Program Status Registers)
which are loaded with the CPSR when
an exception occurs. There is one
SPSR for each privileged mode.

The format of the Program Status Reg-
isters is shown below. The N, Z, C, and
V bits are the condition code flags. The
condition code flags in the CPSR may
be changed as a result of arithmetic and
logical operations in the processor and
may be tested by all instructions to de-
termine if the instruction is to be ex-
ecuted.

The | and F bits are the interrupt disable
bits. The | bit disables IRQ interrupts
when it is set, and the F bit disables FIQ
interrupts when it is set. The (M[4:0)]
mode bits determine the mode in which
the processor operates. The interpreta-
tion of the mode bits is shown below.
Not all combinations of the mode bits
define a valid processor mode. Only
those explicitly described shall be used.

The bottom 28 bits of a PSR (incorpo-
rating |, F and M[4:0]) are known collec-
tively as the control bits. The control bits
will change when an exception arises

and can be manipulated by software
when the processor is in a privileged
mode. Unused bits in the PSRs are re-
served and their state shall be pre-
served when changing the flag or con-
trol bits. Programs shall not rely on
specific values from the reserved bits
when checking the PSR status, since
they may read as one or zero in future
processors.

EXCEPTIONS

Exceptions arise whenever there is a
need for the normal flow of program
execution to be broken, so that (for ex-
ample) the processor can be diverted to
handle an interrupt from a peripheral.
The processor state just prior to han-
dling the exception must be preserved
so that the original program can be re-
sumed when the exception routine has
completed. Many exceptions may arise
at the same time.

FORMAT OF THE PROGRAM STATUS REGISTER (PSR)

Flags C Control
I > |
31 30 29 28 s 7 6 5 4 3 2 1 0
N z c v . . SS = . 1 F N M4 M3] M2} M| MO
|-— Overflow

Carry/Borrow/Extend — Mode bits
Zero FIQ Disable
Negative/Less than IRQ Disable

MODE BITS

M[4:0] Mode Accessible Register Set

10000 usr PC, R14.. RO CPSR

10001 fig PC, R14_fiq..R8_fiq, R7..RO CPSR, SPSR_fiq
10010 irq PC, R14_irq..R13_irq, R12..R0O CPSR, SPSR_irq
10011 SVeC PC, R14_svc..R13_svc, R12..R0O CPSR, SPSR_svc
10111 abt PC, R14_abt..R13_abt, R12..RO CPSR, SPSR_abt
11011 und PC, R14_und..R13_und, R12..RO CPSR, SPSR_und

ms 9334347 0011000 0L9 W

& VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

The VY86C060 handles exceptions by
making use of the banked registers to
save state. The old PC and CPSR con-
tents are copied into the appropriate
registers (R14 and SPSRY), and the PC
and mode bits in the CPSR bits are
forced to a value that depends on the
exception. Interrupt disable flags are set
where required to prevent otherwise
unmanageable nestings of exceptions.
In the case of a re-entrant interrupt han-
dler, R14 and the SPSR should be
saved onto a stack in main memory be-
fore re-enabling the interrupt. When
transferring the SPSR register to and
from a stack, it is important to transfer
the whole 32-bit value, not just the flag
or control fields. When multiple excep-
tions arise simultaneously, a fixed prior-
ity determines the order in which they
are handled.

FIQ

The FIQ (Fast Interrupt reQuest) excep-
tion is externally generated by taking the
NFIQ input LOW. This input can accept
asynchronous transitions, and is de-
layed by one clock cycle for synchroni-
zation before it can affect the processor
execution flow. It is designed to support
a data transfer or channel process, and
has sufficient private registers to re-
move the need for register saving in
such applications, minimizing the over-
head of context switching. The FIQ ex-
ception may be disabled by setting the F
flag in the CPSR (note that this is not
possible from User mode). If the F flag
is clear, the VY86C060 checks for a
LOW level on the output of the FIQ syn-
chronizer at the end of each instruction.

When a FIQ is detected, the VY86C060

performs the following:

(1) Saves the address of the nextin-
struction to be executed plus four in
R14_fig; saves CPSR in SPSR_fig

(2) Forces M[4:0]=%10001 (FIQ mode)
and sets the F and | bits in the
CPSR

(8) Forces the PC to fetch the next in-
struction from address &1C

To return normally from FIQ, use SUBS
PC, R14_fiq,#4 which will restore both
the PC (from R14) and the CPSR (from
SPSR_fig) and resume execution of the
interrupted code.

IRQ

The IRQ (Interrupt ReQuest) exception is
a normal interrupt caused by a LOW
level on the NIRQ input. This input can
accept asynchronous transitions, and is
delayed by one clock cycle for synchroni-
zation before it can affect the processor
execution flow. It has a lower priority
than FIQ, and is masked out when a FIQ
sequence is entered. Its effect may be
masked out at any time by setting the |
bit in the PC (note that this is not pos-
sible from User mode). If the | flag is
clear, VY86C060 checks for a LOW level
on the output of the IRQ synchronizer at
the end of each instruction.

When an IRQ is detected, the VY86C060
performs the following:

(1) Saves the address of the next in-
struction to be executed plus four in
R14_irg; saves CPSR in SPSR_irq

(2) Forces M[4:0]=%10010 (IRQ mode)
and sets the | bit in the CPSR

(3) Forces the PC to fetch the next in-
struction from address &18

To return normally from IRQ, use SUBS
PC,R14_irq, #4 which will restore both
the PC and the CPSR and resume ex-
ecution of the interrupted code.

Abort

The Abort signal comes from an external
memory management system, and indi-
cates that the current memory access
cannot be completed. For instance, in a
virtual memory system the data corre-
sponding to the current address may
have been moved out of memory onto a
disk, and considerable processor activity
may be required to recover the data be-
fore the access can be performed suc-
cessfully. The VY86C060 checks for an
Abort during memory access (N and S)
cycles and distinguishes between two
types of aborts.

(i) If the abort occurred during an in-
struction prefetch (a Prefetch Abort),
the prefetched instruction is marked
as invalid but the abort exception
does not occur immediately. If the

instruction is not executed, for ex-
ample, as a result of a branch being
taken while it is in the pipeline, no
abort will occur. An abort will take
place if the instruction reaches the
head of the pipeline and is about to
be executed.

(i) If the abort occurred during a data
access (a Data Abort), the action
depends on the instruction type.

(a) Data transfer instructions (LDR,
STR) are aborted as though the
instruction had not executed if the
processor is a VY86C060 and is
configured for Early Abort. When
configured for Late Abort or the
processor is a VY86CO070, these
instructions are able to write-back
modified base registers and the
Abort handler must be aware of
this.

(b) The swap (SWP) instruction is
aborted as though it had not ex-
ecuted.

(c) LDM and STM instructions com-
plete, and if write-back is set, the
base is updated. If the instruction
would normally have overwritten
the base with data (i.e. LDM with
the base in the transfer list), this
overwriting is prevented. All regis-
ter overwriting is prevented after
the Abort is indicated. R15 (which
is always last to be transferred) is
preserved in an aborted LDM in-
struction.

When either a prefetch or data abort oc-
curs, the VY86C060 performs the follow-
ing:

(1) Saves the address of the aborted
instruction plus 4 (for prefetch aborts)
or 8 (for data aborts) in R14_abt;
saves CPSR in SPSR_abt.

(2) Forces M[4:0]=%10111 (Abort mode)
and sets the | bit in the CPSR

(3) Forces the PC to fetch the next in-
struction from either address &0C
(prefetch abort) or address &10 (data
abort).

To return after fixing the reason for the
abort, use SUBS PC,R14_abt, #4 (for a
prefetch abort) or SUBS PC,R14_abt, #8
(for a data abort). This will restore both
the PC and the CPSR and retry the
aborted instruction.

I 9384347 0011001 TTS mm

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

The abort mechanism allows a demand
paged virtual memory system to be
implemented when a suitable memory
manager is available. The processor is
allowed to generate arbitrary addresses.
When the data at an address is unavail-
able, the memory manager signals an
abort. The processor traps into system
software, which must work out the
cause of the abort, make the requested
data available, and retry the aborted
instruction. The application program
needs no knowledge of the amount of
memory available to it, nor is its state in
any way affected by the abort.

Software Interrupt

The software interrupt instruction (SWI)
is used for getting into Supervisor mode,
usually to request a particular supervi-
sor function. When a SWI is executed,
the VY86C060 performs the following:

(1) Saves the addresses of the SWiI
instruction plus 4 in R14_svc; saves
CPSR in SPSR_svc

(2) Forces M[4:0]=%10011 (Supervisor
mode) and sets the | bit in the CPSR

(3) Forces the PC to fetch the next in-
struction from address &08

To return from a SWI, use MOVS
PC,R14_svc. This will restore the PC
and CPSR and return to the instruction
following the SWI.

Undefined Instruction Trap

When the VY86C060 executes a copro-
cessor instruction or an undefined in-
struction, it offers it to any coprocessors
that may be present. If a coprocessor
signals that it can perform this instruc-
tion but is busy at that moment, the
VY86CO060 will wait until the coproces-
sor is ready. If no coprocessor can
handle the instruction, the VY86C060
will take the undefined instruction trap.

The trap may be used for software emu-
lation of a coprocessor in a system that
does not have the coprocessor hard-
ware, or for general-purpose instruction
set extension by software emulation.

When the VY86C060 takes the unde-
fined instruction trap, it performs the
following:

(1) Saves the address of the Undefined
or coprocessor instruction plus 4 in
R14_und; saves CPSR in
SPSR_und

(2) Forces M[4:0]=%11011 (Undefined
mode) and sets the | bit in the CPSR

(3) Forces the PC to fetch the next in-
struction from address &04

To return from this trap after emulating
the failed instruction, use MOVS
PC,R14_und. This will restore the CPSR
and return to the instruction following the
undefined instruction.

Reset

When the NRESET signal goes LOW,
the VY86C060 abandons the currently
executing instruction and continues to
fetch instructions from memory which it
interprets as NOPs.

When NRESET goes HIGH again, the
VY86C060 does the following:

(1) Overwrites R14_svc and SPSR_svc
by copying the current values of the
PC and CPSR into them. The value
of the saved PC and CPSR is not
defined.

(2) Forces M[4:0]=%10011 (Supervisor
mode) and sets the | and F bits in
the CPSR

(3) Forces the PC to fetch the next in-
struction from address &00

VECTOR SUMMARY

Address Exception Mode on Entry
&00000000 Reset Supervisor
&00000004 Undefined instruction Undefined
&00000008 Software interrupt Supervisor
&0000000C Abort (prefetch) Abort
&00000010 Abort (data) Abort
&00000014 —reserved— —

&00000018 IRQ IRQ
&0000001C FIQ FIQ

These are byte addresses, and will nor-
mally contain a branch instruction point-
ing to the relevant routine. The FIQ rou-
tine might reside at &1C onwards, and
thereby avoid the need for (and execu-
tion time of) a branch instruction.

The reserved entry is for an Address
Exception vector which is only operative
when the processor is configured for a
26-bit program space.

m 9388347 0011002 931 W

10

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

Exception Priorities

When multiple exceptions arise at the
same time, a fixed priority system deter-
mines the order in which they will be
handled:

(1) Reset (highest priority)
(2) Data abort
(3) FIQ

4) IRQ

(5) Prefetch abort
(6)

6) Undefined Instruction, Software in-
terrupt (lowest priority)

Note that not all exceptions can occur at
once. Undefined instruction and soft-
ware interrupt are mutually exclusive
since they each correspond to particular
{non-overlapping) decodings of the cur-
rent instruction.

If a data abort occurs at the same time
as a FIQ, and FIQs are enabled (i.e. the
F flag in the CPSR is clear), the

VY86C060 will enter the data abort han-
dler and immediately proceed to the FIQ
vector. A normal return from FIQ will
cause the data abort handler to resume
execution. Placing the data abort at a
higher priority than FIQ is necessary to
ensure that the transfer error does not
escape detection. The time for this ex-
ception entry should be added to worst-
case FIQ latency calculations.

Interrupt Latencies

The worst-case latency for FIQ consists
of the longest time the request can take
to pass through the synchronizer
(TSYNCMAX), plus the time for the
longest instruction to complete (TLDM),
plus the time for address exception or
data abort entry (TEXC), plus the time
for FIQ entry (TF/Q). At the end of this
time, the VY86C060 will be executing
the instruction at &1C.

TSYNCMAX is three processor cycles,
TLDM is 20 cycles, TEXC is three
cycles, and TFIQ s two cycles. The total
time is therefore 28 processor cycles
(just over one microsecond in a system
which uses a continuous 25- MHz pro-
cessor clock). In a DRAM-based system
running at 4 and 8 MHz, this time be-
comes 4.5 microseconds. If bus band-
width is being used to support video or
other DMA activity, the time will in-
crease accordingly.

The maximum IRQ latency calculation is
similar, but must allow for the fact that
FIQ has higher priority and could delay
entry into the IRQ handling routine for
an arbitrary length of time.

The minimum latency for FIQ or IRQ
consists of the shortest time the request
can take through the synchronizer
(TSYNCMIN) plus TFIQ. This is four
processor cycles.

INSTRUCTION SET
INSTRUCTION SET SUMMARY

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 8 7 4 3 0
cond | 0o |i| opcode [s| mn Rd Operand 2 gg‘; fr':::f?ring
Cond 000000 AlS Rd Rn Rs 1001 Rm | Multiply
Cond 00010 B| 00 Rn Rd 0000 1001 BRm] Single Data Swap
Cond o1 [jPjUlB|W|L Rn Rd Offset Single Data Transfer
Cond 011 XXXXXXXXXXXXXXXXXXXXX 1] xxxx { Undefined
Cond 100 JPjU wWlL Rn Register List Block Data Transfer
Cond 101 L Offset Branch
Cond 110 JPJUIN]W]L Rn CRd CP# Offset Coproc Data Transfer
Cond 1110 CP Opc CRn CRd CP# 0] CRm | Coproc Data Operation
Cond 1110 CPOpc|L CRn Rd CP# 1] CRm | Coproc Register Transter
Cond 1111 Ignored by Processor Software Interrupt

m 93568347 00L1003 675 WA

11

w VLSI TECHNOLOGY, INC. VY86C060

ARCHITECTURAL OVERVIEW

THE CONDITION FIELD

31

28 27

Cond

|_‘_I——— Condition Field

0000 = EQ ~ Z set (equal)

0001 = NE - Z clear (not equal)

0010 = CS ~ C set (unsigned higher or same)

0011 = CC — C clear (unsigned lower)

0100 = MI — N set (negative)

0101 = PL — N clear (positive or zero)

0110 = VS - V set (overflow)

0111 = VC - V clear (no overfiow)

1000 = HI - C set and Z clear (unsigned higher)

1001 = LS — C clear or Z set (unsigned lower or same)

1010 = GE — N set and V set, or N clear and V clear (greater or equal)

1011 = LT — N set and V clear, or N clear and V set (less than)

1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE — Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL — always

1111 = NV — never (reserved)

All VY86C060 instructions are condition- tion codes shall not be used as they will set. This would correspond to the case
ally executed (their execution may or be redefined in future variants of the where a compare (CMP) instruction had
may not take place depending on the ARM architecture. If a NOP is required it found the two operands to be eqgual. If
values of the N, Z, C and V flags in the is suggested that MOV R0, RO be used. the two operands were different, the
CPSR). The other condition codes have mean- compare mstructlo_n woulq havg cleared
If the ALways condition is specified, the ings as detailed above. For instance, the Z flag and the instruction will not be
instruction will be executed irrespective code 0000 (EQual) causes the instruc- executed.
of the flags. The NeVer class of condi- tion to be executed only if the Z flag is

12

B 9384347 0011004 704 B

® VLSI TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

BRANCH AND BRANCH WITH LINK (B, BL)

31 28 27

25 24 23 0

Cond 101

L

Offset

1

I_ Link Bit

0 = Branch
1 = Branch with Link

Condition Field

The instruction is only executed if the
condition specified in the condition field
is true.

Branch instructions contain a signed
two’s-complement 24-bit offset. This is
shifted left two bits, sign extended to 32
bits, and added to the PC. The instruc-
tion can therefore specify a branch of
+/— 32 Mbytes. The branch offset must
take into account the prefetch opera-
tion, which causes the PC to be two
words (eight bytes) ahead of the current
instruction.

Branches beyond +/- 32 Mbytes must
use an offset or absolute destination
that has been previously loaded into a
register. In this case, the PC should be
manually saved in R14 if a Branch with
Link type operation is required.

The Link Bit

Branch with Link writes the old PC into
the link register (R14) of the current
bank. The PC value written into R14 is
adjusted to allow for the prefetch, and
contains the address of the instruction
following the branch and link instruction.
Note that the CPSR is not saved with
the PC.

To return from a routine called by
Branch with Link use MOV PC, R14 if
the link register is still valid or LDM Rn!,
{..PC} if the link register has been saved
onto a stack pointed to by Rn.

Assembler Syntax
B{L}{cond} <expression>

{L} is used to request the Branch with Link form of the instruction. If absent, R14 will
not be affected by the instruction.

{cond} is a two-character mnemonic as shown in the Condition Field (EQ, NE, VS,
etc.). If absent, then AL (ALways) will be used.

<expression> is the destination. The assembler calculates the offset.
ltems in {} are optional. ltems in <> must be present.

Examples

here BAL here ; assembles to &EAFFFFFE (note effect of PC offset)
B there ; ALways condition used as default

CMP R1,#0 ; compare R1 with zero and branch to fred if R1

BEQ fred ; was zero otherwise continue to next instruction

BL sub + ROM ; call subroutine at computed address

ADDS R1,#1 ; add 1 to register 1, setting CPSR flags on the
BLCC sub ; result then call subroutine if the C flag is clear,

; which will be the case unless R1 held &FFFFFFFF

R 9388347 0011005 L4O MW

w VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

DATA PROCESSING

31 28 27 26 25 24 21 20 19 16 15 12 1 0

Cond 00 OpCode |S Rn Rd Operand 2
L1 L1 1 | | | [1

|— Destination Register
1st Operand Register

Set Condition Codes
0 = Do Not Alter Condition Codes
1 = Set Condition Codes

Operation Code
0000 = AND — Rd:= Op1 AND Op2
0001 = EOR — Rd:= Op1 EOR Op2
0010 = SUB — Rd:= Op1—-0p2
0011 = RSB — Rd:= Op2 — Op1
0100 = ADD - Rd:= Op1 + Op2
0101 =ADC - Rd:=0p1 +0p2 +C
0110 =8BC - Rd:=0p1-0p2 + C -1
0111 =RSC-Rd:=0p2-0p1 +C -1
1000 = TST - Set Condition Codes on Op1 AND Op2
1001 = TEQ - Set Condition Codes on Op1 EOR Op2
1010 = CMP — Set Condition Codes on Op1 — Op2
1011 = CMN - Set Condition Codes on Op1 + Op2
1100 = ORR — Rd: = Op1 OR Op2
1101 = MOV - Rd: = Op2
1110 =BIC — Rd: = Op1 AND NOT Op2
1111 = MVN — Rd: = NOT Op2
Immediate Operand
0 = Operand 2 is a Register
11 4 3 0

Shift Rm

2nd Operand Register
Shift Amount and Type Applied to Rm

1 = Operand 2 is an Immediate Value
11 8 7 0

Rotate Imm

T I |
I

Unsigned 8-Bit Immediate Value
Rotate Right Amount Applied to Imm

Condition Field

The instruction is only executed if the shifted register (Rm) or a rotated 8- bit tions (TST, TEQ, CMP, CMN) do not

condition specified in the condition field immediate value (Imm) according to the write the result to Rd. They are used

is true. value of the I bit in the instruction. The only to perform tests and to set the con-

The instruction produces a result by condition codes in the CPSR may be dition codes on the result and always
preserved or updated as a result of this have the S bit set.

performing a specified arithmetic or logi-
cal operation on one or two operands.
The first operand is always a register
(Rn). The second operand may be a

instruction, according to the value of the
S bit in the instruction. Certain opera-

BN 9388347 001100k 547 WM

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

Operations
The operations supported are:

ASSEMBLER MNEMONICS

Shifts

When the second operand is specified
to be a shifted register, the operation of
the barrel shifter is controlled by the
Shift field in the instruction. This field

Mnemonic OpCode Action indicates the type of shift to be per-
AND 0000 operand1 AND operand?2 forrr]ned (logical left or right, arithmetic
right or rotate right). The amount by
EOR 0001 operand1 EOR operand2 which the register should be shifted may
SUB 0010 operand1 — operand?2 be contained in an immediate field in the
RSB 0011 operand? — operand1 instructiop, or in the bottom byte of an-
other register (other than R15):
ADD 0100 operand1 + operand?2 i 7 65 a
ADC 0101 operandt + operand2 + carry (CPSR C flag)
0
SBC 0110 operand1 — operand2 + carry — 1
RSC 0111 operand2 — operand1 + carry — 1 L 1 LEI
TST 1000 as AND, but result is not written Shift Type
. . 00 = Logical Left
TEQ 1001 as EOR, but result is not written 01 = Logtcal Right
CMP 1010 as SUB, but result is not written 10 = Arithmetic Right
. . 11 = Rotate Right
CMN 1011 as ADD, but result is not written Shift Amount
ORR 1100 operand1 OR operand2 5-bit Unsigned Integer
MOV 1101 operand2 (operand1 is ignored) » s 7 6 5 4
BIC 1110 operand1 AND NOT operand2 (Bit clear) RS . ;
MVN 1111 NOT operand2 (operand1 is ignored)
— T
Shift Type
CPSR Flags 00 = Logical Left

The data processing operations may be

classified as logical or arithmetic. The
logical operations (AND, EOR, TST,
TEQ, ORR, MOV, BIC, MVN) perform
the logical action on all corresponding
bits of the operand or operands to pro-
duce the result. If the S bit is set (and
Rd is not R15, see below), the V flag in
the CPSR will be unaffected, the C fiag
will be set to the carry out from the bar-
rel shifter (or preserved when the shift
operation is LSL #0), the Z flag will be
set if and only if the result is all zeros,
and the N flag will be set to the logical
value of Bit 31 of the result.

The arithmetic operations (SUB, RSB,
ADD, ADC, SBC, RSC, CMP, CMN)
treat each operand as a 32-bit integer

(either unsigned or two’s-complement
signed, the two are treated in the same
manner). If the S bit is set (and Rd is not
R15), the V flag in the CPSR will be set
if a carry occurs into Bit 31 of the resuit;
this may be ignored if the operands
were considered unsigned, but can be
used to determine an overflow condi-
tion, if the operands were two’s-comple-
ment signed. The C flag will be set to
the carry out of Bit 31 of the ALU, the Z
flag will be set if and only if the result
was zero, and the N flag will be set to
the value of Bit 31 of the result (indicat-
ing a negative result if the operands are
considered to be two's-complement
signed).

01 = Logical Right
10 = Arithmetic Right
11 = Rotate Right

Shift Register
Shift amount specified
in bottom byte of Rs

MR 9384347 0011007 U4

15
13 =

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

Instruction Specified Shift Amount
When the shift amount is specified in
the instruction, it is contained in a five-
bit field which may take any value from
0 to 31. A logical shift left (LSL) takes
the contents of Rm and moves each bit
by the specified amount to a more sig-

31 27 26

nificant position. The least significant
bits of the result are filled with zeros,
and the high bits of Rm (which do not
map into the result) are discarded. How-
ever, the least significant discarded bit
becomes the shifter carry output that

may be latched into the C bit of the
CPSR when the ALU operation is in the
logical class (see previous page). For
example, the effect of LSL #5 is:

Contents of Rm

Carry Out]

Value of Operand 2

00000

Note that LSL #0 is a special case,
where the shifter carry out is the old
value of the CPSR C flag. The contents
of Rm are used directly as the second
operand.

31

A logical shift right (LSR) is similar, but
the contents of Rm are moved to less
significant positions in the result. LSR
#5 has this effect:

Contents of Rm

L Carry Out

00000

Value of Operand 2

The form of the shift field that might be
expected to correspond to LSR #0 is
used to encode LSR #32, which has a
zero result with Bit 31 of Rm as the
carry output. Logical shift right zero is

3

redundant as it is the same as logical
shift left zero, so the assembler will con-
vert LSR #0 (and ASR #0 and ROR #0)
into LSL #0, and allow LSR #32 to be
specified.

An arithmetic shift right (ASR) is similar
to logical shift right, except that the high
bits are filled with Bit 31 of Rm instead
of zeros. This preserves the sign in
two’s-complement notation. For ex-
ample, ASR #5:

5 4 0

Contents of Rm

L Carry Out

Value of Operand 2

16

R 9344347 00112008 35T WA

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

The form of the shift field that might be
expected to give ASR #0 is used to en-
code ASR #32. Bit 31 of Rm is again
used as the carry output, and each bit of
operand 2 is also equal to Bit 31 of Rm.
The result is therefore all ones or all
zeros, according to the value of Bit 31

of Rm.

Rotate right (ROR) operations reuse the
bits that ‘overshoot’ in a logical shift
right operation by reintroducing them at

the high end of the result, in place of the

zeros used to fill the high end in logical
right operations. For example, ROR #5:

31 5 4 0
Contents of Rm
Carry Out
Value of Operand 2

The form of the shift field that might be This is a rotate right by one bit position
expected to give ROR #0 is used to en- of the 33-bit quantity formed by append-
code a special function of the barrel ing the CPSR C flag to the most signifi-
shifter, rotate right extended (RRX). cant end of the contents of Rm:

31 1 0

Contents of Rm

Cin

\ Carry Out

y

Value of Operand 2

Register Specified Shift Amount
Only the least significant byte of the
contents of Rs is used to determine the
shift amount. Rs can be any general
register other than R15.

If this byte is zero, the unchanged con-
tents of Rm will be used as the second
operand, and the old value of the CPSR
C flag wili be passed on as the shifter
carry output.

If the byte has a value between 1 and
31, the shifted result will exactly match
that of an instruction specified shift with
the same value and shift operation.

If the value in the byte is 32 or more, the
result will be a logical extension of the
shifting processes described above:

(i} LSL by 32 has result zero, carry out
equal to bit 0 of Rm.

(i) LSL by more than 32 has resuit
zero, carry out zero.

(iif) LSR by 32 has result zero, carry out
equal to Bit 31 of Rm.

(iv) LSR by more than 32 has result
zero, carry out zero.

(v) ASR by 32 or more has result filled
with, and carry out equal to, Bit 31
of Rm.

(vi) ROR by 32 has result equal to Rm,
carry out equal to Bit 31 of Rm.

(vii)ROR by n where n is greater than
32 will give the same result and
carry out as ROR by n-32; therefore,
repeatedly subtract 32 from n until
the amount is in the range 1 to 32
and see above.

Note that a zero in Bit 7 of an instruction
with a register controlled shift is man-
datory; a one in this bit will cause the
instruction to be a multiply or a data
swap instruction.

H 93438347 0011009 29 WM

& VLSI TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

Immediate Operand Rotates

The Immediate Operand Rotate field is
a four-bit unsigned integer that specifies
a shift operation on the eight bit immedi-
ate value. The immediate value is zero
extended to 32 bits, and then subject to
a rotate right by twice the value in the
rotate field. This enables many common
constants to be generated, for example
all powers of two.

Writing to R15

When Rd is a register other than R15,
the condition code flags in the CPSR
may be updated from the ALU flags as
described above.

When Rd is register R15, and the S flag
in the instruction is not set, the result of
the operation is placed in R15 and the
CPSR is unaffected.

When Rd is register R15, and the S flag
is set, the result of the operation is
placed in R15 and the SPSR corre-
sponding to the current mode is moved
to the CPSR. This allows state changes
that atomically restore both PC and
CPSR. This form of instruction is not a
valid instruction in User mode.

Using R15 as an Operand

if R15 (the PC) is used as an operand in
a data processing instruction the regis-
ter is used directly.

The PC value will be the address of the
instruction, plus eight or 12 bytes due to
instruction prefetching. If the shift
amount is specified in the instruction,
the PC will be eight bytes ahead. If a
register is used to specify the shift
amount, the PC will be 12 bytes ahead.

The TEQ, TST, CMP, and CMN
Opcodes

These instructions do not write the re-
sult of their operation to any register but
do set flags in the CPSR. An assembler
shall always set the S flag for these in-
structions even if it is not specified in the
mnemonic.

The TEQP form of the instruction used
in earlier versions of the architecture
shall not be used in the VY86C060
while using 32-bit modes. The PSR
transfer operations should be used in-
stead. If the TEQP form of instruction is
used in these modes, its effect is to
move SPSR_<mode> to CPSR if the
processor is in a privileged mode, and
to do nothing if in User mode.

Assembler Syntax

(i) MOV, MVN - single operand instructions
<opcode>{cond}{S} Rd,<Op2>

(i) CMP,CMN,TEQ,TST - instructions which do not produce a resuit.
<opcode>{cond} Rn,<Op2>

(i) AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, ORR, BIC
<opcode>{cond}{S} Rd,Rn,<Op2>

where <Op2> is Rm{,<shift>} or, <#expression>

{cond} — two-character condition mnemonic.

{S} — set condition codes if S present (implied for CMP, CMN, TEQ, TST).

Rd, Rn and Rm are expressions evaluating to a register number.

If <#expression> is used, the assembler will attempt to generate a shifted immediate
8-bit field to match the expression. If this is impossible, it will give an error.

<shift> is <shiftname> <register> or <shiftname> #expression, or RRX (rotate right
one bit with extend).

<shiftname>s are: ASL, LSL, LSR, ASR, ROR.
(ASL is a synonym for LSL, the two assemble to the same code.)

Examples
ADDEQ R2,R4,R5 ; if the Z flag is set make R2:=R4+R5
TEQS R4,#3 ; test R4 for equality with 3

; (The S is redundant, it is automatically

; inserted by the assembler)

; logical right shift R7 by the number in

; the bottom byte of R2, subtract the result
; from R5, and put the answer into R4

SUB R4, R5, R7, LSR R2

MOV PC, R14
MOVS PC, R14

; return from subroutine
; return from exception & restore CPSR_<mode>

mm 9388347 0011010 TOS WA

® VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

PSR TRANSFER (MRS, MSR)

MRS (Transfer PSR Contents to a Register)

31 28 27 23 22 21 16 15 12 11 0
Cond 00010 Pg 001111 Rd 000000000000
L1
Destination Register
Source PSR
0=CPSR

1 = SPSR_<Current Mode>
Condition Field

MSR (Transfer Register Contents to PSR)
31 28 27 23 22 21 1211 0

Cond 00010 Pd 1010011111 00000000 Rm

L I_I_I

L Source Register

Destination PSR
0=CPSR
1 = SPSR_<Current Mode>

Condition Field

MSR (Transfer Register Contents or Inmediate Value to PSR Flag Bits Only)
31 28 27 23 22 21 12 1 0

Cond 00 1] 10 |Pd 1010001111 Source Operand
L1 [|

Destination PSR
0=CPSR
1 = SPSR_<«<Current Mode>

Immediate Operand
0 = Source Operand 1s a Register

11 4 3 0

00000000 Rm

l_l_l

Source Register

1 = Source Operand 1s an Immediate Value
11 8 7 0

Rotate Imm

Unsigned 8-Bit Immediate Value
Rotate Amount Applied to Imm

Condition Field

19

B 9384347 0011011 944 W

® VLSI TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

The PSR transfer instructions allow ac-
cess to the CPSR and SPSR registers,
and are only executed if the condition is
true.
TheMRSinstructionallowsthecontents of
the CPSR or SPSR_<mode> to be
moved to a general register. The MSR
instruction allows the contents of a gen-
eral register to be moved to the CPSR
or SPSR_<mode> register. R15 shall
not be specified as the source or desti-
nation register.

The MSR instruction also allows an im-
mediate value, or register contents, to
be transferred to the condition code
flags (N,Z,C, and V) of CPSR or
SPSR_<mode> without affecting the
control bits. In this case, the top four
bits of the specified register contents, or
32-bit immediate value, are written to
the top four bits of the relevant PSR.

Operand Restrictions

In User mode, the control bits of the
CPSR are protected from change, so
only the condition code flags of the
CPSR can be changed. In privileged
modes the entire CPSR can be
changed.

Which SPSR register is accessed de-
pends on the mode at the time of ex-
ecution. For example, only SPSR_fiq is
accessible when the processor is in FIQ
mode.

No attempt shall be made to access an
SPSR in User mode, since no such reg-
ister exists.

Reserved Bits

Only 11 bits of the PSR are defined in
the VY86C060 (N,Z,C,V,|,F & M[4:0]).
The remaining bits (= PSR[27:8,5]) are
reserved for use in future versions of
the processor. To ensure the maximum
compatibility between VY86C060 pro-
grams and future processors, the follow-
ing rules should be observed:

(a) The reserved bits shall be preserved
when changing the value in a PSR.

(b) Programs shall not rely on specific
values from the reserved bits when
checking the PSR status, since they
may read as one or zero in future
processors.

A read-modify-write strategy should therefore be used when altering the control bits of
any PSR register. This involves transferring the appropriate PSR register to a general
register using the MRS instruction, changing only the relevant bits and then transfer-
ring the maodified value back to the PSR register using the MSR instruction.

e.g. The following sequence performs a mode change:
MRS Rtmp,CPSR ; take a copy of the CPSR
BIC Rtmp,Rtmp,#&1F ; clear the mode bits
ORR Rtmp,Rtmp,#new_mode : select new mode
MSR CPSR,Rtmp ; write-back the modified CPSR

When the aim is simply to change the condition code flags in a PSR, an immediate
value can be written directly to the flag bits without disturbing the control bits.
e.g. The following instruction sets the N,Z,C and V flags:

MSR CPSR_flg,#&F0000000 ; set all the flags regardless of
; their previous state (does not

; affect any control bits)

No attempt shall be made to write an 8-bit immediate value into the whole PSR since
such an operation cannot preserve the reserved bits.

Assembler Syntax
(1} MRS - transfer PSR contents to a register

MRS{cond} Rd,<psr>

(2) MSR - transfer register contents to PSR
MSR{cond} <psr>,Rm

(3) MSR - transfer register contents to PSR flag bits only
MSR{cond} <psrf>,Rm

The most significant four bits of the register contents are written to the N,Z,C & V
flags respectively.

(4) MSR - transfer immediate value to PSR flag bits only
MSR{cond} <psrf>,<#expression>

The expression should symbolize a 32-bit value of which the most significant four
bits are written to the N,Z,C & V flags respectively.

{cond} - two-character condition mnemonic.
Rd and Rm are expressions evaluating to a register number other than R15.

<psr> is CPSR, CPSR_all, SPSR or SPSR_all. (CPSR and CPSR_all are synonyms
as are SPSR and SPSR_all)

<psrf> is CPSR_flg or SPSR_flg

20

B 9338347 0011012 &40 mm

& VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

Where <#expression> is used, the assembler will attempt to generate a shifted imme-
diate 8-Dbit field to match the expression. If this is impossible, it will give an error.

Examples

In User mode the instructions behave as follows:
MSR CPSR_all,Rm ; CPSR[31:28] <- Rm [31:28]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm [31:28]

MSR CPSR_flg,#&A0000000 ; CPSR[31:28] <- &A
; (i.e. set N,C; clear Z,V)
MRS Rd,CPSR ; Rd[31:0] <- CPSR[31:0]

In privileged modes the instructions behave as follows:

MSR CPSR_al,Rm ; CPSR[31:0] <- Rm[31:0]
MSR CPSR_flg,Rm ; CPSR[31:28] <- Rm([31:28]
MSR CPSR_fig,#&50000000 ; CPSR[31:28] <- &5

; (i.e. set Z,V; clear N,C)

MRS Rd,CPSR ; Rd[31:0] <- CPSR[3!:0]
MSR SPSR_all,Rm ; SPSR_<mode>[31:0] <- Rm[31:0]
MSR SPSR_flg,Rm ; SPSR_<mode>[31:28] <- Rm[31:28]

MSR SPSR_flg,#&C0000000 ; SPSR_<mode>[31:28] <- &C
; (i.e. set N,Z; clear C,V)
MRS Rd,SPSR ; RA[31:0] <- SPSR_<mode>[31:0]

21

= 5388347 0031013 717 HA

& VLSI TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

31 28 27

22 21 20 19 16 15 12 11 8 7 4 3 0

Cond 000000

AlS Rd Rn Rs 1001 Rm

L1

] I [J [1

LEE Operand Registers

Destination Register
Set Condition Codes
0 = Do Not Alter Condition Codes
1 = Set Condition Codes
Accumulate Bit
0 = Muitiply
1 = Multiply and Accumulate

l_l_l

Condition Field

The instruction is only executed if the
condition specified in the condition field
is true.

The multiply and multiply-accumulate
instructions use a two-bit modified
Booth’s algorithm to perform integer
multiplication. They give the least sig-
nificant 32 bits of the product of two 32-
bit operands, and may be used to syn-
thesize higher precision multiplications.

The multiply form of the instruction is
Rd:=Rm*Rs. Rn is ignored, and should
be set to zero for compatibility with pos-
sible future upgrades to the instruction
set.

The multiply-accumulate form is
Rd:=Rm*Rs+Rn, which can save an
explicit ADD instruction in some circum-
stances.

Both forms of the instruction work on
operands which may be considered as
signed (two’s-complement) or unsigned
integers.

Operand Restrictions

Due to the way the Booth’s algorithm
has been implemented, certain combi-
nations of operand registers should be
avoided. (A warning will be issued by
the assembler.)

The destination register (Rd) should not
be the same as the Rm operand regis-
ter, as Rd is used to hold intermediate
values and Rm is used repeatedly dur-
ing the multiply. A MUL will give a zero
result if Rm=Rd, and a MLA will give a
meaningless result. R15 shall not be
used as an operand or as the destina-
tion register.

CPSR Flags

Setting the CPSR flags is optional, and is controlled by the S bit in the instruction.
The N and Z flags are set correctly on the result (N is equal to Bit 31 of the result, Z is
set if and only if the result is zero), the V flag is unaffected by the instruction (as for
logical data processing instructions), and the C flag is set to a meaningless value.

Assembler Syntax

MUL{condH{S} Rd, Rm, Rs

MLA{cond}{S} Rd, Rm, Rs, Rn

{cond} — two-character condition mnemonic.

{8} — set condition codes if S present.

Rd, Rm, Rs and Rn are expressions evaluating to a register number other than R15.

Examples
MUL R1, R2, R3

MLAEQS R1, R2, R3, R4

; R1:=R2*R3

; conditionally R1:=R2*R3+R4,
; setting condition codes

The multiply instruction may be used to synthesize higher precision multiplications.
For instance, to multiply two 32-bit integers and generate a 64-bit result:

MUL64 MOV al, A, LSR #16 ;at:=top half of A
MOV D, B, LSR #16 ; D:=top half of B
BIC A, A, at, LSL #16 : A:=bottom half of A
BIC B, B, D, LSL #16 : B:=bottom half of B
MUL C,A B ; low section of result
MUL B, a1,B ;) middle sections
MUL A DA ;) of result
MUL D, a1, D ; high section of result
ADDS A B A ; add middle sections

; {(couldn’t use MLA as we
need C correct)

ADDC S D, D, #&10000 ; carry from above add
ADDS C,C,A LSL#16 ; C is now bottom 32 bits of product
ADC D, D, A, LSR #16 ; D is top 32 bits

(A, B are registers containing the 32-bit integers; C, D are registers for the 64-bit re-
sult; at is a temporary register. A and B are overwritten during the multiply.)

M 9388347 00110)4 k53

22

® VLSI TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

SINGLE DATA TRANSFER (LDR, STR)

31 28 27 26 25 24 23

22 21 20 19 16 15 12 1 0

Cond 01 IfpPlu

BIwW]| L Rn Rd Oftset

L1

1] L | | r]
I— Source/Destination Register
Base Register
L oad/Store Bit

0 = Store to Memory

1 = Load from Memory
Write-Back Bit

0 = No Write-Back

1 = Write Address into Base
Byte/Word Bit

0 = Transfer Word Quantity
1 = Transfer Byte Quantity

Up/Down Bit
0 = Down; Subtract Offset from Base
1 = Up; Add Offset to Base

Pre/Post Indexing Bit

0 = Post; Add Offset after Transfer
1 = Pre; Add Offset before Transfer

Immediate Offset

0 = Offset is an Immediate Value

11

Immediate Offset

Unsigned 12-Bit Inmediate Offset
1 = Offset 1s a Register

11

4 3 Q

Shift Rm

Offset Register

Shift Amount and Type Applied to Rm

The instruction is only executed if the
condition specified in the condition field
is true.

The singie data transfer instructions are
used to load or store single bytes or
words of data. The memory address
used in the transfer is calculated by
adding an offset to or subtracting an
offset from a base register. The result of
this calculation may be written back into
the base register if ‘auto-indexing’

is required.

Offsets and Auto-Indexing

The offset from the base may be either
a 12-bit unsigned binary immediate
value in the instruction, or a second reg-
ister (possibly shifted in some way). The
offset may be added to (U=1) or sub-
tracted from (U=0) the base register Rn.
The offset modification may be per-
formed either before (pre-indexed, P=1)
or after (post-indexed, P=0) the base is
used as the transfer address.

The W bit gives optional auto increment
and decrement addressing modes. The
modified base value may be written
back into the base (W=1), or the old

Condition Field

base value may be kept (W=0). In the
case of post-indexed addressing, the
write-back bit is redundant (and usually
set to zero), since the old base value
can be retained by setting the offset to
zero. Therefore, post-indexed data
transfers always write-back the modified
base. The only use of the W bitin a
post-indexed data transfer is in privi-
leged mode where setting the W bit
forces non-privileged mode for the
transfer, allowing the operating system
to generate a user address in a system
where memory management hardware
makes suitable use of this hardware.

M 9348347 0011015 S9T

23
m

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

Shifted Register Offset

The eight shift control bits are described
in the data processing instructions. The
register specified shift amounts are not
available in this instruction class.

Bytes and Words

This instruction class may be used to
transfer a byte (B=1) or a word (B=0)
between a VY86C060 register and
memory.

The action of LDR(B) and STR(B) in-
structions is influenced by the bigend
configuration signal to the processor.
The two possible configurations are de-
scribed below.

Little Endian Configuration

A byte load (LDRB) expects the data on
D[7:0] if the supplied address is on a
word boundary, on D[15:8] if it is a word
address plus one byte, and so on. The
selected byte is placed in the bottom
eight bits of the destination register, and
the remaining bits of the register are
filled with zeros.

A byte store (STRB) repeats the bottom
eight bits of the source register four
times across D[31:0]. The external
memory system should activate the ap-
propriate byte subsystem to store the
data.

A word load (LDR) will normally use a
word aligned address. However, an ad-
dress offset from a word boundary will
cause the data to be rotated into the
register so that the addressed byte oc-
cupies Bits 0 to 7. Half-words accessed
at offsets 0 and 2 from the word bound-
ary will be correctly loaded into Bits 0
through 15 of the register. Two shift op-
erations are then required to clear or to
sign extend the upper 16-bits.

A word store (STR) should generate a
word aligned address. The word pre-
sented to the data bus is not affected if
the address is not word aligned. That is,
Bit 31 of the register being stored al-
ways appears on D[31].

Big Endian Configuration

A byte load (LDRB) expects the data on
D[31:24] if the supplied address is on a
word boundary, on D[23:16] if it is a
word address plus one byte, and so on.
The selected byte is placed in the bot-
tom eight bits of the destination register
and the remaining bits of the register
are filled with zeros.

A byte store (STRB) repeats the bottom
eight bits of the source register four
times across D[31:0]. The external
memory system should activate the ap-
propriate byte subsystem to store the
data.

A word load (LDR) should generate a
word aligned address. An address offset
of 0 or 2 from a word boundary will
cause the data to be rotated into the
register so the addressed byte occupies
Bits 31 through 24. Half-words ac-
cessed at these offsets will be correctly
loaded into Bits 16 through 31 of the
register. A shift operation is then re-

* quired to move (and optionally sign ex-

tend) the data into the bottom 16 bits.
An address offset of 1 or 3 from a word
boundary will cause the data to be ro-
tated into the register so the addressed
byte occupies Bits 15 through 8.

A word store (STR) should generate a
word aligned address. The word pre-
sented to the data bus is not affected if
the address is not word aligned. That is,
Bit 31 of the register being stored al-
ways appears on D[31].

Use of R15

Write-back shall not be specified if R15
is specified as the base register (Rn).
When using R15 as the base register,
one must remember that it contains an
address eight bytes on from the address
of the current instruction.

R15 shall not be specified as the regis-
ter offset (Rm).

When R15 is the source register (Rd) of
a register store (STR) instruction, the
stored value will be the address of the
instruction plus 12.

Data Aborts

A transfer to or from a legal address
may cause problems for a memory
management system. For instance, in a
system that uses virtual memory, the
required data may be absent from main
memory. The memory manager can
signal a problem by taking the proces-
sor abort signal HIGH, whereupon the
data transfer instruction will be pre-
vented from changing the processor
state and the Data Abort trap will be

taken. It is up to the system software to
resolve the cause of the problem, then
the instruction can be restarted ard the
original program continued.

The VY86C060 supports two types of
Data Abort processing (depending on
the lateabt configuration input). When
configured for Early Aborts, any base
register write-back which would have
occurred is prevented from happening
in the event of an Abort. When config-
ured for Late Aborts, this write-back is
allowed to take place and the Abort han-
dler must correct this before allowing
the instruction to be re-executed.

Restriction on the Use of Base
Register

When configured for late aborts, the
following code is very difficult to unwind
as Rm gets updated before the abort
handler is entered. In certain circum-
stances it may be impossible to calcu-
late the initial value.

<LDR | STR> Rd, [Rn], {+/~}Rn{,<shift>}

A post-indexed LDR/STR where
Rm=Rn shall not be used.

M 93848347 00110}k u2hL

24

® VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

Assembler Syntax
<LDR | STR>{cond}{B} {T}Rd,<Address>

LDR - load from memory into a register.

STR — store from a register into memory.

{cond} — two-character condition mnemonic.

{B} —if B is present then byte transfer, otherwise word transfer.

{T} - if T is present the W bit will be set in a post-indexed instruction forcing non-
priviledged mode for the transfer cycle. T is not allowed when a pre-indexed address-
ing mode is specified or implied.

Rd is an expression evaluating to a valid register number.

<Address> can be:
() An expression which generates an address:

<expression>

The assembler will attempt to generate an instruction using the PC as a base and
a corrected immediate offset to address the location given by evaluating the ex-
pression. This will be a PC relative, pre-indexed address. If the address is out of
range, an error will be generated.

(i) A pre-indexed addressing specification:

[Rn] offset of zero

[Rn,<#expression>]{!} offset of <expression> bytes

[Rn,{+/-}Rm{,<shift>}]{!} offset of +/— contents of index register, shifted by <shift>.
(iif) A post-indexed addressing specification:

[Rn],<#expression> offset of <expression> bytes

[Rn],{+/—}Rm{,<shift>} offset of +/— contents of index register, shifted as by
<ghift>.
Rn and Rm are expressions evaluating to a valid register number. NOTE if Rn is R15
then the assembler will subtract eight from the offset value to allow for pipelining. In
this case, base write-back shall not be specified.
<shift> is a general shift operation (see section on Data Processing Instructions on
page 13). Note that the shift amount may not be specified by a register.
{1} write-back the base register (set the W bit) if ! is present.

Exampies STR R1, [BASE,INDEX]! ; store R1 at BASE+INDEX (both of which are
; registers) and write-back address to BASE
STR R1, [BASE],INDEX ; store R1 at BASE and write-back
; BASE+INDEX to BASE
LDR R1, [BASE, #16] ; load R1 from contents of BASE+16.
; Don’t write-back
LDR R1, [BASE,INDEX,LSL #2] ; load R1 from contents of BASE+INDEX*4
LDREQB R1, [BASE,#5] ; conditionally load byte at BASE+5 into
; R1 bits 0 to 7, filling Bits 8 to 31
; with zeros
PLACE STR R1, PLACE ; generate PC relative offset to address
; PLACE
25

IR 5334347 0011017 3L2 W

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

BLOCK DATA TRANSFER (LDM, STM)

31 28 27

25 24 23 22 21 20 19

16 15

Cond 100 PlU

S

willL Rn

Register List

Base Register
Load/Store Bit

0 = Store to Memory

1 = Load from Memory
Write-Back Bit

0 = No Write-Back
1 = Write Address into Base

PSR & Force User Bit

0 = Do Not Load PSR or Force User Mode
1 = Load PSR or Force User Mode

Up/Down Bit

0 = Down; Subtract Offset from Base
1 = Up; Add Offset to Base

Pre/Post Indexing Bit

0 = Post; Add Offset after Transfer
1 = Pre; Add Offset before Transfer

The instruction is only executed if the
condition specified in the condition field
is true.

Block data transfer instructions are used
to load (LDM) or store (STM) any subset
of the currently visible registers. They
support all possible stacking modes,
maintaining full or empty stacks which
can grow up or down memory. These
are very efficient instructions for saving
or restoring context, or for moving large
blocks of data around main memory.

The Register List

The instruction can cause the transfer of
any registers in the current bank. (Non-
user mode programs can also transfer

to and from the user bank. See page
26). The register list is a 16-hit field in
the instruction, with each bit corre-
sponding to a register. A logical one in
Bit 0 of the register field will cause RO to
be transferred, a logical zero will cause
it not to be transferred. Similarly, Bit 1
controls the transfer of R1, and so on.

Any subset of the registers, or all the
registers, may be specified. The only
restriction is that the register list should
not be empty.

Whenever R15 is stored to memory the
stored value is the address of the STM
instruction plus 12.

Condition Field

Addressing Modes

The transfer addresses are determined
by the contents of the base register
(Rn), the pre/post bit (P) and the up/
down bit (U). The registers are trans-
ferred in the order lowest to highest, so
R15 (if in the list) will always be trans-
ferred last. The lowest register also gets
transferred to/from the lowest memory
address.

Address Alignment

The address should normally be a word
aligned quantity and non-word aligned
addresses do not affect the instruction.
However, the bottom two bits of the ad-
dress will appear on A[1:0] and might be
interpreted by the memory system.

M 9388347 0011018 279

26

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

By way of illustration, consider the

transfer of R1, R5, and R7 in the case
where Rn=1000H and write-back of th
modified base is required (W=1). The

POST-INCREMENT ADDRESSING

e

following figures show the sequence of
register transfers, the addresses used,
and the value of Rn after the instruction

has completed.

0x100C

Rn =

0x1000

O0xOFF4

)

0x100C

R5

R1

0x1000

Ox0FF4

PRE-INCREMENT ADDRESSING

@)

0x100C

Rn —>»

0x1000

0xOFF4

(1

0x100C

R5

R1

0x1000

O0xOFF4

(3)

Rn —»

Rn —»

(In all cases, had write-back of the
modified base not been required (W=0),
Rn would have retained its initial value
of 1000H unless it was also in the trans-
fer list of a load multiple register instruc-
tion, when it would have been overwrit-
ten with the loaded value.)

R1

(2

R7

R5

R1

@

R1

2

R7

R5

R1

(4)

0x100C

0x1000

0xOFF4

0x100C

0x1000

OxOFF4

0x100C

0x1000

O0xOFF4

0x100C

0x1000

0x0FF4

m 59388347 0011019 135 M

® VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

POST-DECREMENT ADDRESSING

0x100C 0x100C
Rn —> 0x1000 R1 0x1000
O0xO0FF4 OXOFF4
m @
0x100C 0x100C
R1 0x1000 R1 0x1000
R5 R5
R7
OxOFF4 Rn —> OXOFF4
3) S
PRE-DECREMENT ADDRESSING
0x100C 0x100C
Rn —» 0x1000 0x1000
R1
OxO0FF4 OxOFF4
m @
0x100C 0x100C
0x1000 0x1000
R1 R1
RS R5
0XOFF4 Rn —» R7 O0XOFF4

3 @

28

M 9388347 0011020 957 W

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

Use of the S Bit

When the S bit is setin a LDM/STM
instruction, its meaning depends on
whether or not R15 is in the transfer list
and on the type of instruction. The S bit
should only be set if the instruction is to
execute in a privileged mode.

LDM With R15 in Transfer Listand S
Bit Set (Mode Changes)

If the instruction is a LDM then
SPSR_<mode> is transferred to CPSR
at the same time as R15 is loaded.

STM With R15 in Transfer List and S
Bit Set (User Bank Transfer)

The registers transferred are taken from
the User bank rather than the bank cor-
responding to the current made. This is
useful for saving the user state on pro-
cess switches. Base write-back shall
not be used when this mechanism is
employed.

R15 Not in List and S Bit Set (User
Bank Transfer)

For both LDM and STM instructions, the
User bank registers are transferred
rather than the register bank corre-
sponding to the current mode. This is
useful for saving the user state on pro-
cess switches. Base write-back shall
not be used when this mechanism is
employed.

When the instruction is LDM, care must
be taken not to read from a banked reg-
ister during the following cycle (inserting
a NOP after the LDM will ensure
safety).

Inclusion of the Base in the

Register List

When write-back s specified, the base
is written back at the end of the second
cycle of the instruction. During a STM,
the first register is written out at the start
of the second cycle. A STM which in-
cludes storing the base, with the base
as the first register to be stored, will
therefore store the unchanged value,
whereas with the base second or iater
in the transfer order, will store the modi-
fied value. A LDM will always overwrite
the updated base if the base is in the
list.

Use of R15 as the Base
R15 shall not be used as the base reg-
ister in any LDM or STM instruction.

DATA ABORTS

Some legal addresses may be unac-
ceptable to a memory management
system, and the memory manager can
indicate a problem with an address by
taking the abort signal HIGH. This can
happen on any transfer during a mul-
tiple register load or store, and must be
recoverable if the VY86CO060 is to be
used in a virtual memory system.

The state of the fateabt input does not
affect the behavior of LDM and STM
instructions in the event of an Abort ex-
ception.

ABORTS DURING STM INSTRUCTIONS

If the abort occurs during a store mul-
tiple instruction, the VY86C060 takes
little action until the instruction com-
pletes, whereupon it enters the data
abort trap. The memory manager is re-
sponsible for preventing erroneous
writes to the memory. The only change
to the internal state of the processor will
be the modification of the base register
if write-back was specified. This must
be reversed by software (and the cause

of the abort resolved) before the instruc-

tion may be retried.

Assembler Syntax

ABORTS DURING L.LDM INSTRUCTIONS
When the VY86CO060 detects a data
abort during a load multiple instruction, it
modifies the operation of the instruction
to ensure that recovery is possible.

(i) Overwriting of registers stops when
the abort happens. The aborting load
will not take place but earlier ones
may have overwritten registers. The
PC is always the last register to be
written and will always be preserved.

(i) The base register is restored, to its
modified value if write-back was re-
quested. This ensures recoverability
in the case where the base register
is also in the transfer list, and may
have been overwritten before the
abort occurred.

The data abort trap is taken when the
load multiple has compieted. The system
software must undo any base modifica-
tion (and resolve the cause of the abort)
before restarting the instruction.

<LDM | STM>{cond}<FD | ED | FATEAIA11B | DA | DB> RN{!},<Rlist>{"}

{cond} — two character condition mnemonic.

Rn is an expression evaluating to a valid register number.

<Rlist> can be either a list of registers and register ranges enclosed in {} (e.g. {R0,
R2-R7, R10}), or an expression evaluating to the 16-bit operand.

{1} if present requests write-back (W=1), otherwise W=0.
{~} if present set S bit to load the CPSR along with the PC, or force transfer of user

bank when in privileged mode.

B 93585347 0011021 893

29

® VLSI TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

ADDRESSING MODE NAMES

There are different assembler mnemon-
ics for each of the addressing modes,
depending on whether the instruction is
being used to support stacks or for
other purposes. The equivalences be-
tween the names and the values of the
bits in the instruction are:

FD, ED, FA, EA define pre/post indexing
and the up/down bit by reference to the
form of stack required. The F and E re-
fer to a “full” or “empty” stack, i.e.
whether a pre-index has to be done
(full) before storing to the stack. The A
and D refer to whether the stack is as-
cending or descending. If ascending, a
STM will go up and LDM down. If de-
scending, the opposite is true.

IA, 1B, DA, DB allow control when LDM/
STM are not being used for stacks and
simply mean Increment After, Increment
Before, Decrement After, Decrement
Before.

Name Stack Other L Bit P Bit U Bit
Pre-increment [oad LDMED LDMIB 1 1 1
Post-increment load LDMFD LDMIA 1 0 1
Pre-decrement load LDMEA LDMDB 1 1 0]
Post-decrement load LDMFA LDMDA 1 0 0
Pre-increment store STMFA STMIB 0 1 1
Post-increment store STMEA STMIA 0 0 1
Pre-decrement store STMFD STMDB 0 1 0
Post-decrement store STMED STMDA 0 0 0

Examples
LDMFD SP!, {RO, R1, R2}

STMIA BASE, {R0O-R15}
LDMFD SP!, {R15}
LDMFD SP!, {R15}*

; unstack 3 registers

; save all registers

; R15 <- (SP), CPSR unchanged

; R15 <- (SP), CPSR <- SPSR_mode (allowed only
; in privileged modes)

STMFD R13, {RO-R14}» : Save user mode regs on stack (allowed only

; in privileged modes)

These instructions may be used to save state on subroutine entry, and restore it effi-
ciently on return to the calling routine:

STMED SP!, {R0-R3, R14} ; save RO to R3 to use as workspace
; and R14 for returning

BL somewhere
LDMED SP!, {R0-R3, R15}

; this nested call will overwrite R14
; restore workspace and return

30

B 9348347 0011022 7227 WA

w VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

SINGLE DATA SWAP (SWP)

31 28 27

23 22 21 20 19

16 15 12 11

Cond 00010

B

00 Rn Rd

0000

1001 Rm

L1

I_l_J

I- Source Register
Destination Register
Base Register
Byte/Word Bit

0 = Swap Word Quantity
1 = Swap Byte Quantity

This instruction is only executed if the
condition specified in the condition field
is true.

The data swap instruction is used to
swap a byte or word quantity between a
register and external memory. This in-
struction is implemented as a memory
read followed by a memory write that
are locked together. The processor can-
not be interrupted until both operations
have completed, and the memory man-
ager is warned to treat them as insepa-
rable. This class of instruction is particu-
larly useful for implementing software
semaphores.

The swap address is determined by the
contents of the base register (Rn). The
processor first reads the contents of the
swap address. Then it writes the con-
tents of the source register (Rm) to the
swap address, and stores the old
memory contents in the destination reg-
ister (Rd). The same register may be
specified as both the source and desti-
nation.

The lock output goes HIGH for the dura-
tion of the read and write operations to
signal to the external memory manager
that they are locked together, and
should be allowed to complete without
interruption. This is important in multi-
processor systems where the swap in-
struction is the only indivisible instruc-
tion which may be used to implement
semaphores. Control of the memory
must not be removed from a processor
while it is performing a locked operation.

Bytes and Words

This instruction class may be used to
swap a byte (B=1) or a word (B=0) be-
tween a VY86C060 register and
memory. The SWP instruction is imple-
mented as a LDR followed by a STR,
and the action of these is as described
in the section on single data transfers.
In particular, the description of Big and
Little Endian configuration applies to the
SWP instruction.

Use of R15
R15 shall not be used as an operand
(Rd, Rn or Rs) in a SWP instruction.

Assembler Syntax
<SWP=>{cond}{B} Rd, Rm, [Rn]

{cond} — two-character condition mnemonic.

Condition Field

Data Aborts

If the address used for the swap is un-
acceptable to a memory management
system, the memory manager can flag
the problem by driving abort HIGH. This
can happen on either the read or the
write cycle (or both). In either case, the
data swap instruction will be prevented
from changing the processor state and
the Data Abort trap will be taken. It is up
to the system software to resolve the
cause of the problem, then the instruc-
tion can be restarted and the original
program continued.

Because no base register write-back is
allowed, the behavior of an aborted
SWP instruction is the same regardless
of the state of the LATEABT configura-
tion input.

{B} — if B is present then byte transfer, otherwise word transfer.
Rd, Rm, Rn are expressions evaluating to valid register numbers.

Examples
SWP R0, R1, [BASE]

; load RO with the contents of BASE, and

; store R1 at BASE

SWPB R2, R3, [BASE]

; load R2 with the byte at BASE, and

; store Bits 0 to 7 of R3 at BASE

SWPEQ RO, RO, [BASE]
; with RO

; conditionally swap the contents of BASE

M 9384347 0011023 bbkhb

31

& VLSI TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

SOFTWARE INTERRUPT (SW1)

31 28 27

24 23

Cond 111

Comment Field (Ignored by Processor)

L

The instruction is only executed if the
condition specified in the condition field
is true.

The software interrupt instruction is
used to enter Supervisor mode in a con-
trolled manner. The instruction causes
the software interrupt trap to be taken,
which effects the mode change. The PC
is forced to a fixed value (&08) and the
CPSR is saved in SPSR_svc.

If this address is suitably protected (by
external memory management hard-
ware) from modification by the user, a
fully protected operating system may
be constructed.

Return From the Supervisor

The PC is saved in R14_svc upon en-
tering the software interrupt trap, with
the PC adjusted to point to the word
after the SWI instruction. MOVS
PC,R14_svc will return to the calling
program and restore the CPSR.

Note that the link mechanism is not re-
entrant, so if the supervisor code wishes
to use software interrupts within itself, it
must first save a copy of the return ad-
dress and SPSR.

Comment Field

The bottom 24 bits of the instruction are
ignored by the processor, and may be
used to communicate information to the
supervisor code. For instance, the su-
pervisor may look at this field and use it
to index into an array of entry points for
routines that perform the various super-
visor functions.

Condition Field

Assembler Syntax
SWil{cond} <expression>

{cond} — two character condition mnemonic.

<expression> is evaluated and placed in the comment field (which is ignored
by VY86C060).

Examples

SWI ReadC ; get next character from read stream
SWI Writel+“K” ; output a “k” to the write stream
SWINE 0 ; conditionally call supervisor

; with 0 in comment field

The above examples assume that suitable supervisor code exists, for instance:
&08 B Supervisor ; SWI entry point

EntryTable
& ZeroRtn
& ReadCRin
& WritelRtn

; addresses of supervisor routines

Zero *0

ReadC * 256

Writel * 512

Supervisor

; SWI has routine required in Bits 8-23 and data (if any) in Bits 0-7.
; Assumes R13_svc points to a suitable stack

STM R13, {R0-R2, R14}
LDR RO, [R14, #-4]

BIC RO, RO, #&FF000000
MOV R1, RO, LSR #8
ADR R2, EntryTable

LDR R15, [R2, Rt1, LSL #2]

WritelRtn

; save work registers and return address
; get SWl instruction

; clear top 8 bits

; get routine offset

; get start address of entry table

; branch to appropriate routine

; enter with character in RO Bits 0-7

LDM R13, {R0O-R2, R15}» ; restore workspace and return

I 9333347 0011024 ST

32

® VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

COPROCESSOR DATA OPERATIONS

31 28 27 24 23 20 19 16 15 12 1 8 7 S 4 3 0

Cond 1110 CP Opc CRn CRd CP# cP [0]| cRm
L1 |] L | I |1 1 |1 J

t Coprocessor Operand Register
Coprocessor Information
Coprocessor Number
Coprocessor Destination Register
Coprocessor Operand Register
Coprocessor Operation Code

Condition Field

COPROCESSOR DATA OPERATIONS Assembler Syntax
(CDP) CDP{cond} CP#,<expression1>,CRd, CRn, CRm{,<expression2>}

The instruction is only executed if the {cond} — two character condition mnemonic.
F:otr1d|t|on specified in the condition field CP# — the unique number of the required coprocessor.
IS frue. <expression1> — evaluated to a constant and placed in the CP Opc field.

CRd, CRn and CRm are expressions evaluating to a valid coprocessor register num-
ber.

<expression2> — where present is evaluated to a constant and placed in the CP field.

This class of instruction is used to tell a
coprocessor to perform some internal
operation. No result is communicated
back to the VY86C060, and it will not

walit for the operation to complete. The Examples

coprocessor could contain a queue of CDP 1, 10, CR1, CR2, CR3 ; request coproc 1 to do operation 10

such instructions awaiting execution, ; on CR2 and CR3, and put the result in CR1
and their execution can overlap CDPEQ 2, 5, CR1, CR2, CR3, 2 ;if Z flag is set request coproc 2 to do

other VY86C060 activity allowing the operation 5 on CR2 and CR3,

coprocessor and the VY86C060 to per-

s) ; and put the result in CR1
form independent tasks in parallel.

The Coprocessor Fields

Only Bit 4 and Bits 24 to 31 are signifi-
cant to VY86CO060; the remaining bits
are used by coprocessors. The above
field names are used by convention,
and particular coprocessors may rede-
fine the use of all fields except CP# as
appropriate. The CP# field is used to
contain an identifying number (in the
range O to 15) for each coprocessor,
and a coprocessor will ignore any in-
struction which does not contain its
number in the CP# field.

The conventional interpretation of the
instruction is that the coprocessor
should perform an operation specified in
the CP Opc field (and possibly in the CP
field) on the contents of CRn and CRm,
and place the resuit in CRd.

33
R 93884347 0011025 439 MR

VY86C060
ARCHITECTURAL OVERVIEW

w VLSI TECHNOLOGY, INC.

COPROCESSOR DATA TRANSFERS (LDC, STC)

31 28 27

25 24 23 22 21 20 19

16 15 12 11

8 7 0

Cond 110 PJU

N|W]L Rn CP#

Offset

I_l_l

L Unsigned 8-Bit Inmediate Offset
Coprocessor Number

Coprocessor Source/Destination Register
Base Register

Load/Store Bit

0 = Store to Memory
1 = Load from Memory

Write-Back Bit

0 = No Write-Back
1 = Write Address into Base

Transfer Length
Up/Down Bit

0 = Down; Subtract Offset from Base
1 = Up; Add Offset to Base

Pre/Post Indexing Bit

0 = Post; Add Offset after Transfer
1 = Pre; Add Offset before Transfer

The instruction is only executed if the
condition specified in the condition field
is true.

This class of instruction is used to trans-
fer one or more words of data between
a coprocessor and main memory. The
VY86C060 is responsible for supplying
the memory address, and the coproces-
sor supplies or accepts the data and
controls the number of words trans-
ferred. This class of instruction is used
to load (LDC) or store (STC) a subset of
a coprocessor’s registers directly to
memory.

The Coprocessor Fields

The CP# field is used to identify the co-
processor that is required to supply or
accept the data. A coprocessor will only
respond if its number matches the con-
tents of this field.

The CRd field and the N bit contain in-
formation for the coprocessor which
may be interpreted in different ways by
different coprocessors, but by conven-
tion CRd is the register to be transferred

(or the first register where more than
one is to be transferred), and the N bit is
used to choose one of two transfer
length options. For instance, N=0 could
select the transfer of a single register,
and N=1 could select the transfer of all
the registers for context switching.

Addressing Modes

The VY86CO060 is responsible for pro-
viding the address used by the memory
system for the transfer, and the ad-
dressing modes available are a subset
of those used in single data transfer
instructions. Note, however, that the
immediate offsets are 8 bits wide and
specify word offsets for coprocessor
data transfers, whereas they are 12 bits
wide and specify byte offsets for single
data transfers.

The 8-bit unsigned immediate offset is
shifted left 2 bits and either added to
(U=1) or subtracted from (U=0) the base
register (Rn); this calculation may be
performed either before (P=1) or after
(P=0) the base is used as the transfer
address. The modified base value may
be overwritten back into the base regis-

Condition Field

ter (if W=1), or the old value of the base
may be preserved (W=0). Note that
post-indexed addressing modes require
explicit setting of the W bit, unlike LDR
and STR which always write-back when
post-indexed.

The value of the base register, modified
by the offset in a pre-indexed instruc-
tion, is used as the address for the
transfer of the first word. The second
word (if more than one is transferred)
will go to or come from an address one
word (4 bytes) higher than the first
transfer, and the address will be
incremented by one word for each sub-
sequent transfer.

B 9388347 001102k 375 WM

34

w VLSI TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

Address Alignment

The base address should normally be a
word-aligned quantity. The bottom 2 bits
of the address will appear on A{1:0] and
might be interpreted by the memory
system.

Use of R15

If Rn is R15, the value used will be the
address of the instruction plus 8 bytes.
Base write-back shali not be specified.

Data Aborts

If the address is legal but the memory
manager generates an abort, the data
abort trap will be taken. The write-back
of the modified base will take place, but
all other processor state will be pre-
served. The coprocessor is partly re-
sponsible for ensuring that the data
transfer can be restarted after the cause
of the abort has been resolved, and
must ensure that any subsequent ac-
tions it undertakes can be repeated
when the instruction is retried.

The state of the lateabt input does not
affect the behavior of LDC and STC
instructions in the event of an Abort ex-
ception.

Assembler Syntax
<LDCISTC>{cond}{L} CP#,CRd,<Address>
LDC - load from memory to coprocessor.
STC — store from coprocessor to memory.
{L} — when present perform long transfer (N=1), otherwise perform short transfer
(N=0).
{cond} — two character condition mnemonic.
CP# — the unique number of the required coprocessor.
CRd is an expression evaluating to a valid coprocessor register number.
<Address> can be:
(i) An expression which generates an address:
<expression>
The assembler will attempt to generate an instruction using the PC as a base and
a corrected immediate offset to address the location given by evaluating the ex-

pression. This will be a PC-relative, pre-indexed address. If the address is out of
range, an error will be generated.
(ii) A pre-indexed addressing specification:
[Rn] offset of zero
[Rn,<#expression>[{!} offset of <expression> bytes
(ii) A post-indexed addressing specification:
[Rn],<#expression> offset of <expression> bytes
Rn is an expression evaluating to a valid VY86C060 register number. NOTE if Rn is
R15 then the assembler will subtract 8 from the offset value to allow for VY86C060
pipelining.
{1} write-back the base register (set the W bit) if | is present.

Examples

LDC p1, c2, table ; load c2 of coproc 1 from address table,
; using a PC relative address.

STCEQL p2, c3, [R5,#24]! ; conditionally store ¢3 of coproc 2 into

; an address 24 bytes up from R5, write this
; address back into R5, and use long transfer
; option (probably to store multiple words)

Note that though the address offset is expressed in bytes, the instruction offset field is
in words. The assembler will adjust the offset appropriately.

I 93484347 0011027 201

35

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

31 28 27 24 23 21 20 19 1615 1211 8 7 5 4 3 0
Cond 1110 CPOpc L CRn Rd CP# cpP 1 CRm
L1 LI L | |] L | I {]

i

The instruction is only executed if the
condition specified in the condition field
is true.

This class of instruction is used to com-
municate information directly between
the VY86C060 and a coprocessor. An
example of a coprocessor to VY86C060
register transfer (MRC) instruction
would be a FIX of a floating point value
held in a coprocessor, where the float-
ing point number is converted into a 32-
bit integer within the coprocessor, and
the result is then transferred to a
VY86CO060 register. A FLOAT of a 32-bit
value in a VY86C060 register into a
floating point value within the coproces-
sor illustrates the use of a VYB86C060
register to coprocessor transfer (MCR).

An important use of this instruction is to
communicate control information directly
from the coprocessor into the
VY86C060 CPSR flags. As an example,
the result of a comparison of two float-
ing point values within a coprocessor
can be moved to the CPSR to control
the subsequent flow of execution.

The Coprocessor Fields

pretations are allowed where the copro-
cessor functionality is incompatible with
this one. Conventional interpretation is
that the CP Opc and CP fields specify
the operation the coprocessor is re-
quired to perform, CRn is the coproces-
sor register that is the source or destina-

Coprocessor Operand Register
Coprocessor Information

— Coprocessor Number

ARM Source/Destination Register
Coprocessor Source/Destination Register
Load/Store Bit

0 = Store to Coprocessor
1 = Load from Coprocessor

Coprocessor Operation Mode

Condition Field

Transfers to R15

When a coprocessor register transfer to
VY86C060 has R15 as the destination,
bits 31, 30, 29, and 28 of the transferred
word are copied intothe N, Z, C and V
flags respectively. The other bits of the
transferred word are ignored, and the

PC and other CPSR bits are unaffected
by the transfer.

tion of the transferred information, and
CRm is a second coprocessor register
which may be involved in some way
depending upon the particular operation
specified.

Transfers From R15

A coprocessor register transfer from
VY86C060 with R15 as the source reg-
ister will store the PC+12.

Assembler Syntax
<MCRIMRC>{cond} CP#,<expression1>,Rd,CRn,CRm{,expression2>}

MRC — move from coprocessor to VY86C060 register (L=1).

MCR — move from VY86CO060 register to coprocessor (L=0).

{cond} — two character condition mnemonic.

CP# — the unique number of the required coprocessor.

<expression1> — evaluated to a constant and placed in the CP Opc field.

Rd is an expression evaluating to a valid VY86C060 register number.

CRn and CRm are expressions evaluating to a valid coprocessor register number.
<expression2> — where present is evaluated to a constant and placed in the CP field.

S Examples

The CP.# f;eld tl's usetd , 8s fo; al ﬁprt)]ro- MRC p2, 5, R3, ¢5, c6 ; request coproc 2 to perform operation 5
cessor ins rut_: |gn_s, 0 Sﬁegl yw If ; on ¢5 and ¢6, and transfer the (single
ggg;%cessor IS being called upon to re- ; 32-bit word) result back to R3

' . MCR p6, 0, R4, ¢5, c6 ; request coproc 6 to perform operation 0
The CP Opc, CRn, CP, and CRm fields) \
are used only by the coprocessor, and > on R4 and place the result in c5
the interpretation presented here is de- MRCEQ p3, 9, R3, ¢5, c6, ; conditionally request coproc 2 to perform
rived from convention only. Other inter- ; operation 7 on c5 and ¢6, and

: transfer the result back to R3
36

I 9344347 0011028 148 mA

® VLSI TECHNOLOGY, INC,

VY86C060

ARCHITECTURAL OVERVIEW

UNDEFINED INSTRUCTION

31 28 27 25 24

Cond 011

XXXXXXXXAXXXXXXXXXX XX

1 XXXX

If the condition specified in the condition
field is true, the undefined instruction
trap will be taken.

Note that the undefined instruction
mechanism involves offering this in-
struction to any coprocessors that may
be present, and all coprocessors must
refuse to accept it by driving CPA and
CPB HIGH.

Assembler Syntax

At present, the assembler has no mne-
monics for generating this instruction. If
it is adopted in the future for some
specified use, suitable mnemonics will
be added to the assembler. Until such
time, this instruction shall not be used.

Some instruction codes are not defined
but do not cause the Undefined instruc-
tion trap to be taken. (For instance, a
Multiply instruction with Bit 5 or Bit 6
changed to a 1). These instructions
shall not be used, as their action may
change in future ARM implementations.

B 9384347 0012029 084 WM

37

w VLSI "TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

INSTRUCTION SET EXAMPLES
The following examples describe ways
in which the basic VY86C060 instruc-

tions can combine to give efficient code.

These examples are optimized to in-
crease code density therefore reducing
storage requirements. Execution time
may or may not be reduced.

Using the Conditional Instructions
(1) using conditionals for logical OR

CMP RN, #p
BEQ Label
CMP Rm, #q
BEQ Label
can be replaced by

CMP Rn, #p
CMPNE RM, #q
BEQ Label

(2) absolute value
TEQ Rn, #0
RSBMI Rn, Rn, #0

(3) muttiplication by 4, 5 or 6 (run time)
MOV Re, Ra, LSL #2
CMP Rb, #5
ADDCS Re, Re, Ra
ADDHI Rc, Re, Ra

(4) combining discrete and range tests
TEQ Rc, #127
CMPNE Rc, # "1
MOVLS Rc, #°.”

(5) division and remainder
; enter with numbers in Ra and Rb

MOV Rent, #1

Div1 CMP Rb, #&80000000
CMPCC Rb, Ra
MOVCC Rb, Rb, ASL #1
MOVCC Rent, Rent, ASL #1
BCC Div1
MOV Rc,#0

Divz CMP Ra, Rb
SUBCS Ra, Ra, Rb
ADDCS Re, Re, Rent
MOVS Rent, Rent, LSR #1
MOVNE Rb, Rb, LSR #1
BNE Div2

: divide result in Rc
; remainder in Ra

; if Rn=p OR Rm=q THEN GOTO
; Label

; if condition is not satisfied try other
; test

; test sign
; and two’s complement if necessary

; multiply by 4

; test value

; complete multiply by 5
; complete multiply by 6

; discrete test

; range test

: IF Re<=*" OR Rc=CHR$127
: THEN RC:=“"

; bit to control the division
; move Rb until greater than Ra

; test for possible subtraction
; subtract if ok

; put relevant bit into result

: shift control bit

; halve unless finished

38

M 9384347 0011030 &TL A

® VLSI "TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

Pseudo-Random Binary Sequence
Generator

it is often necessary to generate pseudo-
random numbers. The most efficient algo-
rithms are based on shift generators with
exclusive-OR feedback rather like a cyclic

redundancy check generator. Unfortu-

nately, the sequence of a 32-bit genera-

tor needs more than one feedback tap to

be maximal length (i.e., 2/32-1 cycles

before repetition), so this example uses
a 33-bit register with taps at Bits 33 and
20. The basic algorithm is newbit:=bit33

; enter with seed in Ra (32-bits), Rb (1 bit in Rb 1sb), uses Rc

[

TST Rb, Rb, LSR #1
MOVS Rc, Ra, RRX

ADC Rb, Rb, Rb

EOR Rc, Re, Ra, LSL#12
EOR Ra, Rc, Rc, LSR#20

1

; new seed in Ra, Rb as before

; top bit into carry

; 33-bit rotate right

; carry into 1sb of Rb
; (involved!)

; (similarly involved!)

eor bit20, shift left the 33-bit number and
put in newbit at the bottom. This opera-
tion is performed for all the newbits
needed (i.e., 32 bits). The entire opera-
tion can be done in 5 S cycles:

Loading a Word From an Unknown Alignment

; enter with address in Ra (32-bits)
; uses Rb, Rc; result in Rd.
; Note d must be less than ¢ (e.g. 0,1)

]

BIC Rb, Ra, #3

LDMIA Rb, {Rd, Rc}

AND Rb, Ra, #3

MOVS Rb, Rb, LSL #3

MOVNE Rd, Rd, LSR Rb

RSBNE Rb, Rb, #32

ORRNE Rd, Rd, Rc, LSL Rb
Loading a Halfword (Little Endian)

LDR Ra, [Rb, #2]

MOV Ra, Ra, LSL #16

MOV Ra, Ra, LSR #16

Loading a Halfword (Big Endian)

LDR Ra, [Rb, #2]
MOV Ra, Ra, LSR #16

; get word aligned address

; get 64-bits containing answer

; correction factor in bytes

; ...now in bits and test if aligned

; produce bottom of result word

; (if not aligned)

; get other shift amount

; combine two halves to get result

; Get halfword to bits 15:0

; move to top

; and back to bottom

; use ASR to get sign extended version

; Get halfword to bits 31:16
; and back to bottom
; use ASR to get sign extended version

39

8 9388347 D011031 732 M

@ VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

Multiplication by Constant Using the Barrel Shifter
(1) Muittiplication by 2~n (1, 2, 4, 8, 16, 32..)

MOV Ra, Ra, LSL #n
(2) Multiplication by 2/n+1 (3, 5, 9, 17..)
ADD Ra, Ra, Ra, LSL #n
(3) Multiplication by 2~n—1 (3, 7, 15..)
RSB Ra, Ra, Ra, LSL #n
(4) Multiplication by 6
ADD Ra, Ra, Ra, LSL #1 ; multiply by 3
MOV Ra, Ra, LSL #1 ;and then by 2
(5) Multiply by 10 and add in extra number
ADD Ra, Ra, Ra, LSL #2 ; multiply by 5
ADD Ra, Rc, Ra, LSL #1 ; multiply by 2 and add in next digit

(6) General recursive method for Rb:= Ra*C, where C is a constant:
(a) If C even, say C =2™*D, D odd:

D=1: MOV Rb, Ra, LSL #n
D<>1: {Rb := Ra*D}
MOV Rb, Rb, LSL #n
(b) If C MOD 4 =1, say C = 2*n*D+1, D odd, n>1:
D=1: ADD Rb, Ra, Ra, LSL #n
D<>1: {RB := Ra*D}
ADD Rb, Ra, Rb, LSL #n
(c) IfCMOD 4 = 3, say C =2n*D-1, D odd, n>1:
D=1: RSB Rb, Ra, Ra, LSL #n
D<>1: {Rb := Ra*D}
RSB Rb, Ra, Rb, LSL #n
This is not quite optimal, but close. An example of its inefficiency is multiply by 45 which is
done by:
RSB Rb, Ra, Ra, LSL #2 ; multiply by 3
RSB Rb, Ra, Rb, LSL #2 ; multiply by 4*3-1 = 11
ADD Rb, Ra, Rb, LSL #2 ; multiply by 4*11+1 = 45
rather than by:
ADD Rb, Ra, Ra, LSL #3 ; multiply by 9
ADD Rb, Rb, Rb, LSL #2 ; multiply by 59 = 45

40
M 93848347 0011032 L79 =m

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

MEMORY INTERFACE

The VY86C060 reads instructions and
data from, and writes data to, its main
memory via a 32-bit data bus. A separate
32-bit address bus specifies the memory
location to be used for the transfer, and
the NRW signal gives the direction of
transfer. Control signals give additional
information about the transfer cycle, and
they facilitate the use of DRAM page
mode where applicable.

CYCLE TYPES
All memory transfer cycles can be placed
in one of four categories:

(1) Non-sequential cycle. The VY86C060
requests a transfer to or from an ad-
dress which is unrelated to the ad-
dress used in the preceding cycle.

Sequential cycle. The VY86C060
requests a transfer to or from an ad-
dress which is either the same as the
address in the preceding cycle, or is
one word after the preceding ad-
dress.

@

~—

(3) Internal cycle. The VY86C060 does
not require a transfer, as it is per-
forming an internal function and no
useful prefetching can be performed
at the same time.

(4) Coprocessor register transfer. The
VY86C060 wishes to use the data
bus to communicate with a copro-
cessor, but does not require any
action by the memory system.

These four classes are distinguishable
to the memory system by inspection of
the NMREQ and SEQ control lines (see
table below). These control lines are
generated during phase 1 of the cycle
prior to the cycle whose characteristics

they forecast. This pipelining of the con-
trol information gives the memory sys-
tem sufficient time to decide whether or
not it can use a page mode access.

The following diagram shows the
pipelining of the control signals, and
suggests how the DRAM address
strobes (NRAS and NCAS) might be
timed to use page mode for S-cycles.
Note that the N-cycle is longer than the
other cycles. This is to allow for the
DRAM precharge and row access time,
and is not an VY86C060 requirement.

When an S-cycle follows an N-cycle, the
address will always be one word greater
than the address used in the N-cycle.

MEMORY CYCLE TYPES

NMREQ SEQ Cycle Type
0 0 Non-Sequential Cycle (N-cycle)
0 1 Sequential Cycle (S-cycle)
1 0 Internal Cycle (I-cycle)
1 1 Coprocessor Register Transfer (C-cycle)

STRETCHED MEMORY ACCESS TIMING DIAGRAM

N-CYCLE

S-CYCLE I-CYCLE

C-CYCLE

|

NMREQ

MCLK _I—I
_l
_|

SEQ

NRAS I

FIH

NCAS

A[31:0]

D[31:0]

B 9388347 0011033 505 mm

41

w VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

This address (marked “A” in the preced-
ing diagram) should be checked to en-
sure that it is not the last in the DRAM
page before the memory system com-
mits to the S-cycle. If it is at the page
end, the S-cycle cannot be performed in
page mode and the memory system will
have to perform a full access. The pro-
cessor clock must be stretched to match
the full access.

When an S-cycle follows an i- or C-
cycle, the address will be the same as
that used in the I- or C-cycle. This fact
may be used to start the DRAM access
during the preceding cycle, enabling the
S-cycle to run at page mode speed
while performing a full DRAM access.

STANDARD MEMORY ACCESS TIMING DIAGRAM

-CYCLE

S-CYCLE

MCLK I

L

NMREQ

SEQ

NRAS

NCAS

A[31:0] X

D[31:0]

HXFFWL

:>_

BYTE ADDRESSING

The processor address bus gives byte
addresses, but instructions are always
words (where a word is four bytes) and
data quantities are usually words.
Single data transfers (LDR and STR)
can, however, specify that a byte quan-
tity is required. The NBW control line is
used to request a byte from the memory
system; normally it is HIGH, signifying a
request for a word quantity. It goes
LOW during phase two of the preceding
cycle to request a byte transfer.

When the processor is fetching an in-
struction from memory, the state of the
bottom two address lines A[1:0] is unde-
fined.

When a byte is requested in a read
transfer (LDRB), the memory system
can safely ignore that the request is for
a byte quantity and present the whole
word. The VY86CO060 will perform the
byte extraction internally. Alternatively,
the memory system may activate only
the addressed byte of the memory in
order to save power, or to enable the
use of a common decoding system for
both read and write cycles.

If a byte write is requested (STRB), the
VY86C060 will broadcast the byte value
across the data bus, presenting it at
each byte location within the word. The
memory system must decode A[1:0] to
enable writing only to the addressed
byte.

One method of implementing the byte
decode in a DRAM system is to sepa-
rate the 32-bit wide block of DRAM into
four byte wide banks, and generate the
column address strobes independently.

BYTE ADDRESSING

A[0] A[1] NBW

MCLK

When the processor is configured for
Little Endian operation, Byte 0 of the
memory system should be connected to
data lines 7 through 0 (D[7:0]) and
strobed by NCAS0. NCAS1 drives the
bank connected to data lines 15 through
8, and so on. This approach has the
advantage of reducing the load on each
column strobe driver, which improves
the precision of this time critical signal.

In the Big Endian case Byte 0 of the
memory system should be connected to
data lines 31 through 24.

2]
>
7]

NCASO

NCAS2

NCAS3

I A A

>o—
%

mE 9338347 00112034 44l

42

® VLSI "TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

ADDRESS TIMING

Normally, during phase 2, the address
changes to the value which the memory
system should use during the following
cycle. This gives maximum time for driv-
ing the address to large memory arrays,
and for address translation if required.
Dynamic memories usually latch the ad-
dress on chip, and if the latch is timed
correctly will work even though the ad-
dress changes before the access has
completed. Static RAMs and ROMs will
not work under such circumstances, as
they require the address to be stable until
after the access has completed. There-
fore, for use with static memory the ad-
dress transition must be delayed until
after the end of phase 2 of MCLK. An on-
chip address latch, controlled by ALE,
allows the address timing to be modified
in this way.

In a system with a mix of static and dy-
namic memories (which for these pur-
poses means a mixture of devices with
and without address latches), the use of
ALE may change dynamically from one
cycle to the next at the discretion of the
memory system.

MEMORY MANAGEMENT

The VY86C060 address bus may be pro-
cessed by an address translation unit
before being presented to the memory,
and the VY86CO060 is capable of running
a virtual memory system. The abort input
to the processor may be used by the
memory manager to inform the

VY86C060 of page faults. Various other
signals enable different page protection
levels to be supported:

(i) NRW can be used by the memory
manager to protect pages from be-
ing written to.

(i) NTRANS indicates whether the pro-
cessor is in User or a privileged
mode, and may be used to protect
system pages from the user, or to
support completely separate map-
pings for the system and the user.

Address translation may not be neces-
sary on every memory access. This fact
may be exploited to reduce power con-
sumption in the memory manager and
avoid the translation delay at other
times. The occasion when translation is
necessary can be deduced by keeping
track of the cycle types that the proces-
sor uses.

If an N-cycle is matched to a full DRAM
access, it will be longer than the mini-
mum processor cycle time. Stretching
phase 1 rather than phase 2 of MCLK
will give the translation system more
time to generate an abort (which must
be set up to the end of phase 1).

LOCKED OPERATIONS

The VY86C060 includes a data swap
(SWP) instruction that allows the con-
tents of a memory location to be
swapped with the contents of a proces-
sor register. This instruction is imple-
mented as an uninterruptable pair of

accesses. The first access reads the
contents of the memory, and the second
writes the register data to the memory.
These accesses must be treated as a
contiguous operation by the memory
controller to prevent another device
from changing the affected memory lo-
cation before the swap is completed.
The VY86C060 drives the lock signal
HIGH for the duration of the swap op-
eration to warn the memory controller
not to give the memory to another de-
vice.

STRETCHING ACCESS TIMES

All memory timing is defined by MCLK,
and long access times can be accom-
modated by stretching this clock. it is
usual to stretch the LOW period of
MCLK, as this allows the memory man-
ager to abort the operation if the access
is eventually unsuccessful (abort must
be setup to the rising edge of MCLK).

Either MCLK can be stretched before it
is applied to the VY86C060, or the
NWAIT input can be used together with
a free-running MCLK. Taking NWAIT
LOW has the same effect as stretching
the LOW period of MCLK, and NWAIT
must only change when MCLK is LOW.

The VY86CO060 does not contain any
dynamic logic that relies upon regular
clocking to maintain its internal state.
Therefore, there is no limit upon the
maximum period for which MCLK may
be stretched, nor is there a limit to how
jong NWAIT may be held LOW.

43

mm 9388347 0011035 3588 WA

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

COPROCESSOR
INTERFACE

The functionality of the VY86C060 in-
struction set may be extended by the
addition of up to 16 external copro-
cessors. When the coprocessor is not
present, instructions intended for it will
trap, and suitable software may be in-
stalled to emulate its functions. Adding
the coprocessor will increase the system
performance in a software-compatible
way.

INTERFACE SIGNALS

Three dedicated signals control the co-
processor interface, NCPI, CPA and
CPB. The CPA and CPB inputs should
be driven HIGH unless they are being
used for handshaking.

Coprocessor Present/Absent

The VY86CO060 takes NCPI LOW when-
ever it starts to execute a coprocessor
(or undefined) instruction. This will not
happen if the instruction fails to be ex-
ecuted because of the condition codes.
Each coprocessor will have a copy of the
instruction, and can inspect the CP# field
to see which coprocessor it is for. If the
coprocessor's number matches the con-
tents of the CP# field and the coproces-
sor is capable of executing the instruc-
tion, then the coprocessor should drive
the CPA (coprocessor absent) line LOW.
If no coprocessor is capable of executing
the instruction, then CPA and CPB will
remain HIGH, and the VY86C060 will
take the undefined instruction trap. Oth-
erwise, the VY86C060 observes the CPA
line going LOW, and waits until the co-
processor is not busy.

Busy-Waiting

If CPA goes LOW, the VY86C060 will
watch the CPB (coprocessor busy) line.
Only the coprocessor that is driving CPA
LOW is allowed to drive CPB LOW, and
it should do so when it is ready to com-
plete the instruction. The VY86C060 will
busy-wait while CPB is HIGH, unless an
enabled interrupt occurs, in which case it
will break off from the coprocessor hand-
shake to process the interrupt. Normaliy,
the VY86C060 will return from process-
ing the interrupt to retry the coprocessor
instruction.

When CPB goes LOW, the instruction
continues to completion. This will involve
data transfers taking place between the

coprocessor and either the VY86C060
or memory, except in the case of copro-
cessor data operations. Since data op-
erations are performed purely internally
to the coprocessor, the VY86C060
treats these instructions as being com-
pleted as soon as the coprocessor
ceases to be busy. The VY86C060 is
then free to execute subsequent instruc-
tions while the coprocessor completes
its internal operations. Shouid the co-
processor receive another instruction
that requires the same resources, the
coprocessor will signal busy until these
resources are available.

All three interface signals (NCPI, CPA,
and CPB) are sampled by both the
VY86C060 and the coprocessor(s) on
the rising edge of MCLK. If all three are
LOW, the instruction is committed to
execution, and if transfers are involved
they will start on the next cycle. If NCPI
has gone HIGH after being LOW, and
before the instruction is committed, the
VY86C060 has broken off from the
busy-wait state to service an interrupt.
The instruction may be restarted later,
but other coprocessor instructions may
come sooner, and the instruction should
be discarded.

Pipeline Following

In order to respond correctly when a
coprocessor instruction arises, each
coprocessor must have a copy of the
instruction. All the VY86C060 instruc-
tions are fetched from memory via the
main data bus. The coprocessors are
also connected to this bus, so they can
keep copies of all instructions as they
go into the VY86CQ60 pipeline. The
NOPC signal indicates when an instruc-
tion fetch is taking place, and MCLK
gives the timing of the transfer, so these
may be used together to load an instruc-
tion pipeline within the coprocessor.

DATA TRANSFER CYCLES

Once the coprocessor has gone not-
busy in a data transfer instruction, it
must supply or accept data at the
VY86C060 bus rate (defined by MCLK).
It can deduce the direction of transfer by
inspection of the L bit in the instruction,
but must only drive the bus when per-
mitted to by DBE being HIGH. The co-
processor is responsible for determining
the number of words to be transferred;
the VY86CO060 will continue to incre-
ment the address by one word per

transfer until the coprocessor tells it to
stop. The termination condition is indi-
cated by the coprocessor driving CPA
and CPB HIGH.

There is no limit to the number of words
one coprocessor data transfer can
move. However, by convention no co-
processor should allow more than 16
words in one instruction. More than this
would lengthen the worst-case interrupt
latency of the VY86CO060, as the instruc-
tion is not interruptible once the trans-
fers have begun. At 16 words, this in-
struction is comparable with a block
transfer of 16 registers, and therefore
does not affect the worst-case latency.

REGISTER TRANSFER CYCLE

The coprocessor register transfer cycle
is the one case when the VY86C060
requires the data bus without requiring
the memory to be active.

The memory system is informed that the
bus is required by the VY86C060 taking
both NMREQ and SEQ HIGH. When the
bus is free, DBE should be taken HIGH
to allow the VY86CQ60 or the coproces-
sor to drive the bus. The transfer is
timed by MCLK.

PRIVILEGED INSTRUCTIONS

The coprocessor may restrict certain
instructions for use in privileged modes
only. To do this, the coprocessor will
have to track the NTRANS signal.

As an example of the use of this facility,
consider the case of a floating point co-
processor (FPU) in a multi-tasking sys-
tem. The operating system could save
all the floating point registers on every
task switch, but this is inefficient in a
typical system where only one or two
tasks will use floating point operations.
Instead, there could be a privileged in-
struction that turns the FPU on or off.
When a task switch occurs, the operat-
ing system can turn the FPU off without
saving its registers. If the new task at-
tempts an FPU operation, the FPU will
appear to be absent, causing an unde-
fined instruction trap. The operating sys-
tem will then realize that the new task
requires the FPU, so it will re-enable it
and save the FPU registers. The task
can then use the FPU as normal. If,
however, the new task never attempts
an FPU operation, the state saving
overhead will have been eliminated.

B 9338347 001103L 21y mm

44

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

IDEMPOTENCY

A consequence of the implementation of
the coprocessor interface, with the inter-
ruptible busy-wait state, is that all instruc-
tions may be interrupted at any point up
to the time when the coprocessor goes
not-busy. If so interrupted, the instruction
will normally be restarted from the begin-
ning after the interrupt has been pro-
cessed. It is therefore essential that any
action taken by the coprocessor before it
goes not-busy must be idempotent (i.e.,
must be repeatable with identical results).

For example, consider a FIX operation in
a floating point coprocessor that returns
the integer result to an VY86CO060 regis-
ter. The coprocessor must stay busy
while it performs the floating point to fixed
point conversion. The VY86C060 will ex-
pect to receive the integer value on the
cycle immediately following that where it
goes not-busy. The coprocessor must
therefore preserve the original floating
point value and not corrupt it during the
conversion, because it will be required
again if an interrupt arises during the
busy period.

The coprocessor data operation class of
instruction is not generally subject to
idempotency considerations, as the pro-
cessing activity can take place after the
coprocessor goes not-busy. There is no
need for the VY86C060 to be held up
until the result is generated, because the
result is confined to stay within the copro-
cessor.

UNDEFINED INSTRUCTIONS
Undefined instructions are treated by the
VY86C060 as coprocessor instructions.
All coprocessors must be absent (i.e.,
CPA and CPB must be HIGH) when an
undefined instruction is presented. The
VY86C060 will then take the undefined
instruction trap. Note that the coproces-
sor need only look at Bit 27 of the instruc-
tion to differentiate undefined instructions
(which all have 0 in Bit 27) from copro-
cessor instructions (which all have 1 in Bit
27).

INSTRUCTION CYCLE
OPERATIONS

In the following tables, NMREQ and
SEQ (pipelined up to one cycle ahead of
the cycle to which they apply) are shown
in the cycle in which they appear, so
they predict the address of the next
cycle. The address, NBW, NRW, and
NOPC (which appear up to half a cycle
ahead) are shown in the cycle to which
they apply.

BRANCH AND BRANCH WITH LINK

A branch instruction calculates the
branch destination in the first cycle,
while performing a prefetch from the
current PC. This prefetch is done in all
cases, since by the time the decision to
take the branch has been reached it is
already too late to prevent the prefetch.

During the second cycle a fetch is per-
formed from the branch destination, and
the return address is stored in Register
14 if the link bit is set.

The third cycle performs a fetch from
the destination + 4, refilling the instruc-
tion pipeline, and if the branch is with
link then R14 is modified (4 is sub-
tracted from it) to simplify return from
SUB PC,R14,#4 to MOV PC,R14. This
makes the STM . {R14} LDM ..{PC} type
of subroutine work correctly.

BRANCH INSTRUCTION CYCLE OPERATIONS

Cycle Address NBW | NRW Data SEQ | NMREQ| NOPC
1 PC+8 1 0 (PC+8) 0 0 0
2 ALU 1 0 (ALU) 1 0 0
3 ALU+4, 1 0 (ALU+4) 1 0 0
ALU+8

(PC is the address of the branch instruction, ALU is an address calculated by the
VY86C060, (ALU) are the contents of that address, etc.)

mm 9385347 0011037 150

45

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

DATA AND PSR TRANSFER
OPERATIONS

A data operation executes in a single
datapath cycle except where the shift
amount is determined by the contents of
a register. A register is read onto the A
bus, and a second register or the imme-
diate field onto the B bus. The ALU com-
bines the A bus source and the shifted B
bus source according to the operation
specified in the instruction, and the re-
sult is written to the destination register.
(Compares and tests do not produce
results, only the ALU status flags are
used.) An instruction prefetch occurs at
the same time, and the program counter
is incremented.

When the shift length is specified by a
register, an additional datapath cycle is
taken to copy the bottom 8 bits of that
register into a holding latch in the barrel
shifter. The instruction prefetch will oc-
cur during this first cycle, and the opera-
tion cycle will be internal (i.e., will not
request memory). This internal cycle can
be merged with the next sequential ac-
cess by the memory manager since the
address remains stable through

both cycles.

The PC may be one or more of the reg-
ister operands. When it is the destina-
tion, external bus activity may be af-
fected. If the result is written to the PC,
the contents of the instruction pipeline
are invalidated, and the address for the
next instruction prefetch is taken from
the ALU rather than the address
incrementer. The instruction pipeline is
refilled before any further execution
takes place, and during this time excep-
tions are locked out.

PSR Transter operations exhibit the
same timing characteristics as the data
operations except that the PC is never
used as a source or destination register.

MULTIPLY AND MULTIPLY
ACCUMULATE

The multiply instructions make use of
special hardware that implements a two-
bit Booth’s algorithm with early termina-
tion. During the first cycle, the accumu-
late register is brought to the ALU,
which either transmits it or produces
zero (depending on whether the instruc-
tion is MLA or MUL) to initialize the des-
tination register. During the same cycle,
the multiplier (Rs) is loaded into the
Booth’s shifter via the A bus.

DATA AND PSR TRANSFER CYCLES

The datapath then cycles, adding the
multiplicand (Rm) to, subtracting it from,
or just transmitting, the result register.
The multiplicand is shifted in the Nth
cycle by 2N or 2N+1 bits, under control
of the Booth’s logic. The multiplier is
shifted right two bits per cycle, and
when it is zero, the instruction termi-
nates.

All cycles except the first are internal.

Cycle Address | NBW |[NRW | Data [SEQ|NMREQ| NOPC
Normal 1 PC+8 1 0 (PC+8) | 1 0 0
PC+12
Dest=pc 1 PC+8 1 0 (PC+8) | O 0 0]
2 ALU 1 0 (ALU) 1 0 0
3 ALU+4 1 0 [(ALU+4)| 1 0 0
ALU+8
Shift(Rs) PC+8 1 0 |(PC+8) | O 1
PC+12 1 - 1 0 1
PC+12
Shift(Rs), 1 PC+8 1 0 |(PC+8) | O 1 0
dest=pc 2 PC+12 1 0 - 0 0 1
3 ALU 1 0 (ALU) 1 0 0
4 ALU+4 1 0 |(ALU+4)| 1 0 0
ALU+8
MULTIPLY AND MULTIPLY ACCUMULATE CYCLES
Cycle Address | NBW [NRW | Data [SEQ| NMREQ| NOPC
(Rs)=0,1 1 PC+8 1 0O |(PC+8) | O 1 0
2 PC+12 1 0 - 1 0 1
PC+12
(Rs)>1 1 PC+8 1 0O |(PC+8) | O 1 0
2 PC+12 1 0 - 0 1 1
. PC+12 1 0 - 0] 1 1
m PC+12 1 0] - 0 1 1
m+1 PC+12 1 0] - 1 0 1
PC+12

(m is the number cycles required by the Booth’s algorithm; see the section on

Instruction Speeds on page 52.)

@ 938a3u? 0011034 097 WA

46

w VLSI "TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

LOAD REGISTER

The first cycle of a load register instruc-
tion performs the address calculation.
The data is fetched from memory during
the second cycle. The base register
modification is also performed during
this cycle if required. During the third
cycle, the data is transferred to the des-
tination register, and external memory is
unused. This third cycle may normally
be merged with the following prefetch to
form one non-sequential memory cycle.

Either the base or the destination (or
both) may be the PC, and the prefetch
sequence will be changed if the PC is
affected by the instruction.

If the data fetch aborts, the destination
modification is prevented. In addition, if
the processor is configured for Early
Abont, the base register write-back is
also prevented.

STORE REGISTER

The first cycle of a store register is simi-
lar to the first cycle of load register. Dur-
ing the second cycle, the base modifica-
tion is performed, and, at the same time,
the data is written to memory. There is
no third cycle.

The base write-back is prevented during
a Data Abort if the processor is con-
figured for Early Abort. The write-back
is not prevented if Late Abort is config-
ured.

LOAD REGISTER

Cycle Address | NBW | NRW| Data [SEQ!NMREQ| NOPC
Normal 1 PC+8 1 0 [(PC+8)| O 0 0
2 ALU b/w 0 (ALU) 0 1 1
3 PC+12 1 0 - 1 0 1
PC+12
Dest=pc 1 PC+8 1 0 [(PC+8)| © 0 0
2 ALU b/w 0 pPC’ 0 1 1
3 PC+12 1 0 - 0 0 1
4 PC’ 1 0 (PC" 1 0 0
5 PC'+4 1 0 |(PC+4)| 1 0 0
PC’+8
STORE REGISTER
Cycle Address | NBW | NRW | Data | SEQ |NMREQ|NOPC
1 PC+8 1 0 (PC+8) 0 0 0
2 ALU b/w 1 RD 0 0 1
PC+12

m 9353347 0011039 723 M

47

® VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

LOAD MULTIPLE REGISTERS LOAD MULTIPLE REGISTERS
The first cycle of LDM is used to calcu- Cycle | Address | NBW [NRW| Data | SEQ | NMREQ|{NOPC
late the address of the first word to be -
transferred, while performing a prefetch 1 register 1 PC+8 1 0 | (PC+8) 0 0 0
from memory. The second cycle fetches 2 ALY 1 0 (ALU) 0 1 1
the first word and performs the base 3 PC+12 1 0 _ 1 0 1
modification. During the third cycle, the PC412
first word is moved to the appropriate +
destination register while the second 1 register 1 PC+8 1 0 | (PC+8) 0 0 0
wogjfis cflett)ChEd from mgmora/. TA-PLTJ A dest=pc 2 ALU 1 0 PC’ 0 1 1
modified base is moved to the
bus input latch for holding in case it is 3 PC+12 1 0 B 0 0 1
needed to patch up after an abort. The 4 PC 1 0 | (PC) 1 0 0
third cycle is repeated for subsequent 5 PC'+4 1 0 [(PC+4) 1 0 0
fetches until the last data word has been)
. . PC'+8
accessed, then the final (internal) cycle .
moves the last word to its destination n registers 1 PC+8 1 0 [(PC+8)| O 0 0
register. (n>1) 2 ALU 1 0 (ALU) 1 0 1
The last cycle may be merged with the . ALU+. 1 0 | (ALU+) 1 0 1
next instruction prefetch to form a single n ALU+. 1 0 |(ALU+.) 1 0 1
- tial le.
:';on set?”:” 2 me":)ry cycle nel | ALU+. 1 0 |+ o 1 1
an abort occurs, the instruction con-
tinues to completion, but all register writ- n+2 PC+12 1 0 - 1 0 1
ing after the abort is prevented. The PC+12
final cycle is altered to restore the modi- n registers 1 pc+8 1 0 | (PC+8) 0 0 0
fied base register (which may have
been overwritten by the load activity _(n>1) 2 ALU 1 0 (ALU) 1 0 !
before the abort occurred). incl. pc : ALU+. 1 0 |[(ALU+) 1 0 1
When the PC is in the list of registers to n ALU+. 1 0 | (ALU+)| 1 0 1
be loaded, and no abort takes place, the n+1 ALU+. 1 0 PC’ 0 1 1
current instruction pipeline must be in- n+2 PC+12 1 0 - 0 0 1
‘;‘a"dathed' e PG s alware the last n+3 | PC 1 | o | Py | 1 0 0
ote that the is always the last reg- , ,
ister to be loaded, so an abort at any n+4 PC,+4 1 0 | (PC+4) ! 0 0
point will prevent the PC from being PC'+8
overwritten.
STORE MULTIPLE REGISTERS STORE MULTIPLE REGISTERS
Store multiple is similar to load multiple, Cycle | Address | NBW NRW/| Data SEQ | NMREQ | NOPC
without the final cycle. The restart prob- -
lem is straightforward, as there is no 1 register 1 PC+8 1 0 |(PC+8)| © 0 0
wholesale overwriting of registers. 2 ALU 1 1 Ra 0 0 1
PC+12
n registers 1 PC+8 1 0 | (PC+8) 0 0 0
(n>1) 2 ALU 1 1 Ra 1 0 1
. ALU+. 1 1 R. 1 0 1
n ALU+. 1 1 R. 1 0 1
n+1 ALU+. 1 1 R. 0 0 1
PC+12
48

EN 9338347 0011040 ?74S N

® VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

DATA SWAP DATA SWAP

_T?'S is St'm"t'c}f to tget'?:d a”td Sltore reg- Cycle | Address | NBW | NRW | Data |SEQ | NMREQ| NOPC| LOCK
ister instructions, but the actual swap

takes place in cycles 2 and 3. In the 1 PC+8 1 0 (PC+8) 0 0 0 0
second cycle, the data is fetched from 2 Rn b/w 0 (Rm) 0 0 1 1
external memory. In the third cycle, the 3 Rn b/w 1 Rm 0 1 1 1
contents of the source register are writ- 4 PC+12 1 0 _ 1 0 " 0
ten out to the external memory.

The data read in cycle 2 is written into PC+12

the destination register during the

fourth cycle.

The LOCK output of the VY86C060 is

driven HIGH for the duration of the swap

operation (cycles 2 & 3) to indicate that

both cycles should be allowed to com-

plete without interruption.

The data swapped may be a byte or

word quantity (b/w).

The swap operation may be aborted in

either the read or write cycle, and in

both cases the destination register will

not be affected.

SOFTWARE INTERRUPT AND EX- SOFTWARE INTERRUPT AND EXCEPTION ENTRY

CEPTION ENTRY Cycle | Address | NBW | NRW | Data |SEQ | NMREQ |[NOPC | NTRANS
Exceptions (and softvx_/are interrupts) 1 PC+8 1 0 (PC+8) | 0 0 0 1
force the PC to a particular value and

refill the instruction pipeline from there. 2 Xn 1 0 (Xn) 1 0 0 1
During the first cycle, the forced address 3 Xn+4 1 0 (Xn+4) 1 0 0 1

is constructed, and a mode change may Xn+8

take place. The return address is moved

to R14 and the CPSR to SPSR_svc. For software interrupt, PC is the address of the SWI instruction. For interrupts and
During the second cycle, the return ad- reset, PC is the address of the instruction following the last one to be executed before
dress is modified to facilitate return. entering the exception. For prefetch abort, PC is the address of the aborting instruc-

tion. For data abort, PC is the address of the instruction following the one that at-

The third cycle is required only to com- tempted the aborted data transfer. Xn is the appropriate trap address.

plete the refilling of the instruction pipe-
line.

49

M 9388347 0011041 L&l W

w VLSI TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

COPROCESSOR DATA OPERATION
A coprocessor data operation is a re-
quest from the VY86C060 for the copro-
cessor to initiate some action. The ac-
tion need not be completed for some
time, but the coprocessor must commit
to doing it before driving CPB LOW.

If the coprocessor can never do the re-
quested task, it should leave CPA and
CPB HIGH. If it can do the task, but can
not commit immediately, it should drive
CPA LOW but leave CPB HIGH until it
can commit. VY86C060 will busy-wait
until CPB goes LOW.

COPROCESSOR DATA TRANSFER
(FROM MEMORY TO
COPROCESSOR)

Here the coprocessor should commit to
the transfer only when it is ready to ac-
cept the data. When CPB goes LOW,
the VY86CO060 will produce addresses
and expect the coprocessor to take the
data at sequential cycle rates. The co-
processor is responsible for determining
the number of words to be transferred,
and indicates the last transfer cycle by
driving CPA and CPB HIGH.

The VY86C060 spends the first cycle
(and any busy-wait cycles) generating
the transfer address, and performs the
write-back of the address base during
the transfer cycles.

COPROCESSOR DATA OPERATION

Cycle |Address [NBW|NRW| Data |SEQ|NMREQ|NOPC|NCPI (CPA|CPB
ready 1 PC+8 1 0 |(PC+8)| O 0 0 0 0 0
PC+12
not ready 1 PC+8 1 0 |(PC+8)| O 1 0 0 0 1
2 [PC+8 1 0 - 0 1 1 0 0 1
. PC+8 1 0 - 0 1 1 0 0 1
n [PC+8 1 0 - 0 0 1 0 o 0
PC+12
COPROCESSOR DATA TRANSFER
Cycle | Address|NBW|NRW| Data [SEQ|NMREQ|NOPC | NCPI|CPA|CPB
1 register 1 PC+8 1 0 |[(PC+8)] O 0] 0 0 0 0
ready 2 |ALU 1 0 | (ALU) | O 0 1 1 1 1
PC+12
1 register PC+8 1 0 {(PC+8)] O 1 0 0 0 1
not ready 2 |PC+8 1 0 - 0 1 1 0 0 1
. PC+8 1 0 - 0 1 1 0 0 1
n |PC+8 1 0 - 0 0 1 0 0 0
n+1 |ALU 1 0 | (ALU) | O 0 1 1 1 1
PC+12
nregisters | 1 PC+8 1 0 [(PC+8)| O 0 0 0 0 0
(n>1) 2 |ALU 1 0 | (ALU) | 1 0 1 1 0 0
ready . |ALU+. 1 0 (ALU+)| 1 0 1 1 0 0
n |ALU+. 1 0 {(ALU+.)| 1 0 1 1 0 0
n+1 | ALU+. 1 0 |(ALU+.)| © 0 1 1 1 1
PC+12
m registers| 1 PC+8 1 0 |(PC+8)| O 1 0 0 0 1
(m>1) 2 |PC+8 1 0 - 0 1 1 0 0 1
not ready . PC+8 1 0 - 0 1 1 0 0 1
n |PC+8 1 0 - 0 o 1 0 0 0
n+1 JALU 1 0 | (ALU) | 1 0 1 1 0 0
ALU+. 1 0 |(ALU+)| 1 0] 1 1 0 0
n+m |ALU+. 1 0 |[(ALU+.)| 1 0 1 1 0 0
n+m-+1| ALU+. 1 0 |(ALU+)| © 0] 1 1 1 1
PC+12

50

B 93488347 0011042 518 WM

w VLSI TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

COPROCESSOR DATA TRANSFER
(FROM COPROCESSOR TO
MEMORY)

The VY86C060 controls this in the same
way as for Memory to Coprocessor
Transfers, with the exception that the
NRW line is inverted during the transfer
cycle.

COPROCESSOR REGISTER
TRANSFER (LOAD FROM
COPROCESSOR)

Here the busy-wait cycles are the same
as described above, but the transfer is
limited to one data word, and the
VY86C060 puts the word into the desti-
nation register in the third cycle. The
third cycle may be merged with the
following prefetch cycle into one non-
sequential memory cycle as with all
VY86C060 register load instructions.

\

COPROCESSOR DATA TRANSFER

Cycle| Address|NBW/NRW | Data [SEQ|NMREQ|NOPC NCPI |CPA(CPB
1 register 1 PC+8 1 0 |(PC+8)| 0 0] 0 0 0] o0
ready 2 |ALU 1 1 |CPdata| O 0 1 1 1 1
PC+12
1 register 1 PC+8 1 0 |(PC+8)| O 1 0 0 0 1
not ready 2 PC+8 1 0 - 0 1 1 0 0 1
PC+8 1 0 - 0 1 1 0 0|1
n |PC+8 1 0 - 0 0 1 0 0] 0
n+1 | ALU 1 1 |CPdata| 0 0 1 1 1 1
PC+12
n registers 1 PC+8 1 0O [((PC+8)| O 0 0 0 0|0
(n>1) 2 |ALU 1 1 |CPdata| 1 0 1 1 0|0
ready ALU+. 1 1 CPdata| 1 0 1 1 0|0
n | ALU+. 1 1 |CPdata; 1 0 1 1 0o
n+1 ALU+. 1 1 |CPdata| 0 0 1 1 1 1
PC+12
m registers| 1 PC+8 1 0 |(PC+8)| O 1 0 0 0 1
(m>1) 2 |PC+8 1 0 - 0 1 1 0 0|1
not ready PC+8 1 0 - 0 1 1 0 0|1
n |PC+8 1 0 - 0 0 1 0 0] o0
n+1 | ALU 1 1 |CPdata| 1 0 1 1 0| O
ALU+. 1 1 |CPdata| 1 0 1 1 00
n+m | ALU+. 1 1 |CPdata| 1 0 1 1 010
n+m+1| ALU+. 1 1 |CPdata| O 0 1 1 1 1
PC+12
COPROCESSOR REGISTER TRANSFER
Cycle| Address |NBW [NRW| Data [SEQ|NMREQ|NOPC |NCPI [CPA CPB
ready 1 PC+8 1 0 |(PC+8)| 1 1 0 0 0 0
2 | PC+12 1 0 |CPdata) O 1 1 1 1 1
3 | PC+12 1 0 - 1 0 1 1 - -
PC+12
not ready 1 PC+8 1 0 |(PC+8)| O 1 0 0 0 1
2 | PC+8 1 0 - 0 1 1 0 0 1
PC+8 1 0 - 0 1 1 0 0 1
n | PC+8 1 0 - 1 1 1 0 0 0
n+1 | PC+12 1 0 |CPdata| 0 1 1 1 1 1
n+2 | PC+12 1 0 - 1 0 1 1 - -
PC+12

MR 9333347 0011043 454 NN

51

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

COPROCESSOR REGISTER
TRANSFER (STORE TO
COPROCESSOR)

The Store to Coprocessor is similar to
the Load from Coprocessor except that
the last cycle is omitted.

UNDEFINED INSTRUCTIONS AND
COPROCESSOR ABSENT

When a coprocessor detects a copro-
cessor instruction that it cannot perform
{this includes all undefined instructions),
it must not drive CPA or CPB LOW. If
these remain HIGH, the undefined in-
struction trap will be taken.

UNEXECUTED INSTRUCTIONS

Any instruction whose condition code is
not met will fail to execute. 1t will add
one cycle to the execution time of the
code segment in which it is embedded.

INSTRUCTION SPEEDS

Due to the pipelined architecture of the
CPU, instructions overlap considerably.
In a typical cycle, one instruction may
be using the data path while the next is
being decoded, and the one after that is
being fetched. For this reason, the adja-
cent table presents the incremental
number of cycles required by an instruc-
tion (rather than the total number of
cycles for which the instruction uses
part of the processor). Elapsed time (in
cycles) for a routine may be calculated
from these cycle counts.

If the condition is met, the instructions
are calculated using:

n as the number of words transferred.

m as the number of cycles required by
the multiply algorithm, which is deter-
mined by the contents of Rs. Multiplica-
tion by any number between 2/(2m-3)
and 2A(2m-1)-1 inclusive takes 1S+ml
cycles for 1<m<16. Multiplication by 0 or
1 takes 1S+11 cycles. Multiplication by
any number greater than or equal to
2/(29) takes 1S+16I cycles-this is the
maximum number of cycles that any
multiply can take.

COPROCESSOR REGISTER TRANSFER

Cycle |Address |NBW| NRW| Data |SEQ|NMREQ NOPC | NCPI| CPA|CPB
1 register 1 PC+8 1 0 |(PC+8)} 1 1 V] 0 0 0
2 |PC+12 1 1 Rd | O 0 1 1 1 1
PC+12
not ready 1 PC+8 1 0 |(PC+8)| O 1 0 0 0 1
2 |[PC+8 1 0 - 0 1 1 0 0 1
PC+8 1 0 - 0 1 1 0 0 1
n |PC+8 1 0 - 1 1 1 0 0 0
n+1 |PC+12 1 1 Rd | O 0 1 1 1 1
PC+12
UNDEFINED INSTRUCTIONS
Cycle | Address| NBW |NRW | Data |SEQ | NMREQ NOPC | NCPI|CPA | CPB
1 PC+8 1 0 |(PC+8)| O 1 0 0 1 1
2 PC+8 1 0 - 0 0 0] 1 1 1
3 Xn 1 0 (Xn) 1 0 0 1 1 1
4 Xn+4 1 0 | Xn+d) | 1 0 0 1 1 1
Xn+8
UNEXECUTED INSTRUCTIONS
Cycle | Address| NBW |NRW | Data |SEQ | NMREQ| NOPC
1 PC+8 1 0 |[(PC+8)| 1 0 0
PC+12
INSTRUCTION SPEEDS
Data Processing 18 +18 for SHIFT(Rs)
+ 1S +1Nif R15 written
MSR/MRS 18
LDR 1S+1N+11 +18+1Nif R15 loaded
STR 2N
LDM nS+1N+1l +18 +1Nif R15 loaded
ST™ (n-1)S+2N
SWP 1S+2N+11
B,BL 28+1N
SWil trap 28+1N
MUL,MLA 1S+ml
CDP 1S+Dbl
LDC,STC (n-1)S+2N+Dbl
MRC 1S+bi+1C
MCR 1S+(b+))I+1C

b as the number of cycles spent in the
coprocessor busy-wait loop.

If the condition is not met, all instruc-
tions take one S cycle.

The cycle types (N, S, and C) are
defined in the Memory Interface

Se

ction.

B 9388347 001104y 390 mm

52

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

BOUNDARY SCAN

The Boundary Scan Interface conforms
to the IEEE Std. 1149.1 - 1990, Stan-
dard Test Access Port and Boundary
Scan Architecture (please refer to this
document for an explanation of the
terms used in this section and for a de-
scription of the TAP controller states). It
supports the following public instruc-
tions:

BYPASS

SAMPLE/PRELOAD

EXTEST

INTEST

IDCODE

Hi-Z

CLAMP

CLAMPZ

The Boundary Scan Interface consists
of five pins on‘the chip. There are four
inputs (NTRST, TMS, TDI and TCK)

and one output (TDO). in all the descrip-

tions that follow, TDI and TMS are
sampled on the rising edge of TCK and
all output transitions on TDO occur fol-
lowing the falling edge of TCK. The dia-
gram below shows the state transitions
that occur in the TAP controller.

INSTRUCTION REGISTER
The instruction register is four bits in
length.

The fixed value loaded into the instruc-
tion register during the CAPTURE-IR
controller state is 0001.

PUBLIC INSTRUCTIONS
The following public instructions are
supported:

Instruction Binary Code
BYPASS 1111
SAMPLE/PRELOAD 0011
EXTEST 0000
INTEST 1100
IDCODE 1110
HI-Z 0111
CLAMP 6101
CLAMPZ 1001

When loading a new instruction, the
binary code should be shifted into TDI in
order of least-significant bit to most-
significant bit.

TAP CONTROLLER STATE TRANSITIONS

TEST-LOGIC
RESET

TMS=1

RUN-TESTADLE

TMS=0

TMS=1 TMS=1
SELECT-DR-SCAN
tMS=0
TMS=1 TMS=1
CAPTURE-DR

TMS=0

0
e

SELECT-IR-SCAN

TMS=1

TMS=0

CAPTURE-IR

TMS=0

TMS=0

TMS=0

TMS=1 TMS=1
TMS=1 TMS=1
- EXIT1-DR 1 EXIT1-IR
TMS=0 TMS=0
< PAUSE-DR PAUSE-IR
TMS=0 TMS=0
TMS=1 TMS=1
TMS=0 TMS=0
EXIT2-DR EXIT2-IR
TMS=1 TMS=1
UPDATE-DR ><— < UPDATE-IR ><——
TMS=t TMS=0 TMS=1 TMS=0
53

M 93488347 0011045 22?7 MW

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

(1) BYPASS (1111)
The BYPASS instruction connects a 1-
bit shift register (the BYPASS register)
between TDI and TDO.

When the BYPASS instruction is loaded
into the instruction register, all the
boundary scan cells are placed in their
normal (system) mode of operation.
This instruction has no effect on the
system pins.

in the CAPTURE-DR state, a logic ‘0’ is
captured by the bypass register. In the
SHIFT-DR state, test data is shifted into
the bypass register via TDI and out via
TDO after a delay of one TCK cycle.
Note that the first bit shifted out will be a
zero. The bypass register is not affected
in the UPDATE-DR state.

(2) SAMPLE/PRELOAD (0011)

The Boundary Scan (BS) register is
placed in test mode by the SAMPLE/
PRELOAD instruction.

The SAMPLE/PRELOAD instruction
connects the BS register between TDI
and TDO.

When the instruction register is loaded
with the SAMPLE/PRELOAD instruc-
tion, all the boundary scan cells are
placed in their normal system mode of
operation.

In the CAPTURE-DR state, a snapshot
of the signals at the boundary scan cells
is taken on the rising edge of TCK. Nor-
mal system operation is unaffected.

In the SHIFT-DR state, the sampled test
data is shifted out of the BS register via
the TDO pin, while new data is shifted in
via the TDI pin to preload the BS regis-
ter parallel input latch.

in the UPDATE-DR state, the preloaded
data is transferred into the BS register
parallel output latch. Note that this data
is not applied to the system logic or sys-
tem pins while the SAMPLE/PRELOAD
instruction is active. This instruction
should be used to preload the boundary
scan register with known data prior to
selecting the INTEST, EXTEST,
CLAMP, or CLAMPZ instructions; ap-
propriate guard values to be used for
each boundary scan cell are docu-
mented in the section entitied Boundary
Scan (BS) Register.

(3) EXTEST (0000)
The BS register is placed in test mode
by the EXTEST instruction.

The EXTEST instruction connects the
BS register between TDI and TDO.

When the instruction register is loaded
with the EXTEST instruction, all the
boundary scan cells are placed in their
test mode of operation.

In the CAPTURE-DR state, inputs from
the system pins and outputs from the
boundary scan output cells to the sys-
tem pins are captured by the boundary
scan cells.

In the SHIFT-DR state, the previously
captured test data is shifted out of the
BS register via the TDO pin, while new
test data is shifted in via the TDI pin to

BOUNDARY SCAN BLOCK DIAGRAM

BSINENCELL

BSINCELL

BSOUTNENCELL

BSINCELL
IO CELL
BSOUTCELL

BSOUTCELL

DEVICE ID
REGISTER

N\

BYPASS
REGISTER

N

INSTRUCTION
DECODER

>

INSTRUCTION
REGISTER

TDL

{}

TAP
CONTROLLER

TCK

NTDOEN

NTRST

iy
i
i

MR 9388347 001104k lb3 mA

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

the BS register parallel input latch. In
the UPDATE-DR state, the new test
data is transferred into the BS register
parallel output latch. Note that this data
is applied immediately to the system
logic and system pins.

To ensure that the core logic receives a
known, stable set of inputs during
EXTEST, a set of guarding values must
be shifted into some of the boundary
scan cells; this guarding pattern is
specified in the section entitled Bound-
ary Scan (BS) Register. To ensure that
the guarding pattern is in place from the
start of the EXTEST operation, it should
be shifted into the BS register using the
SAMPLE/PRELOAD instruction prior to
selecting EXTEST.

(4) INTEST (1100)
The BS register is placed in test mode
by the INTEST instruction.

The INTEST instruction connects the
BS register between TDI and TDO.

When the instruction register is loaded
with the INTEST instruction, all the
boundary scan cells are placed in their
test mode of operation.

In the CAPTURE-DR state, the inverse
of the data supplied to the core logic
from input boundary scan cells is cap-
tured, while the true value of the data
that is output from the core logic to out-
put boundary scan cells is captured.

In the SHIFT-DR state, the previously
captured test data is shifted out of the
BS register via the TDO pin, while new
test data i1s shifted in via the TDI pin to
the BS register parallef input latch.

In the UPDATE-DR state, the new test
data is transferred into the BS register
parallel output latch. Note that this data
is applied immediately to the system
logic and system pins. The first INTEST
vector should be clocked into the
boundary scan register, using the
SAMPLE/ PRELOAD instruction, prior to
selecting INTEST to ensure that known
data is applied to the system logic.

To ensure that the output pads are
placed in a known, stable state during
INTEST, a set of guarding values must
be shifted into some of the boundary
scan cells. This guarding pattern is speci-
fied in the section entitled Boundary Scan
(BS) Register. To ensure that the guard-
ing pattern is in place from the start of the
INTEST operation, it should be shifted
into the BS register using the SAMPLE/
PRELOAD instruction prior to selecting
INTEST.

Single-step operation is possible using
the INTEST instruction.

(5) IDCODE (1110)

The IDCODE instruction connects the
device identification register (or ID regis-
ter) between TDI and TDO. The ID regis-
ter is a 32-bit register that allows the
manufacturer, part number and version of
a component to be determined through
the TAP.

When the instruction register is loaded
with the IDCODE instruction, all the
boundary scan cells are placed in their
normal (system) mode of operation.

In the CAPTURE-DR state, the device
identification code is captured by the ID
register.

In the SHIFT-DR state, the previously
captured device identification code is
shifted out of the ID register via the TDO
pin, while data is shifted in via the TDI pin
into the 1D register.

In the UPDATE-DR state, the ID register
is unaffected.

(6) HI-Z (0111)

The HI-Z instruction connects a 1-bit shift
register (the BYPASS register) between
TDI and TDO.

When the HI-Z instruction is loaded into
the instruction register, all outputs are
placed in an inactive drive state.

In the CAPTURE-DR state, a logic ‘0’ 1s
captured by the bypass register.

In the SHIFT-DR state, test data is
shifted into the bypass register via TDI
and out via TDO after a delay of one TCK
cycle. Note that the first bit shifted out will
be a zero. The bypass register is not af-
fected in the UPDATE-DR state.

(7) CLAMP (0101)

The CLAMP instruction connects a 1-bit
shift register (the BYPASS register) be-
tween TDI and TDO.

When the CLAMP instruction is loaded
into the instruction register, the state of
all output signals is defined by the values
previously loaded into the Boundary
Scan Register. A guarding pattern
(specified in the section entitled Bound-
ary Scan (BS) Register) should be pre-
loaded into the Boundary Scan register
using the SAMPLE/PRELOAD instruction
prior to selecting the CLAMP instruction.

In the CAPTURE-DR state, a logic ‘O’ is
captured by the bypass register.

In the SHIFT-DR state, test data is
shifted into the bypass register via TDI
and out via TDO after a delay of one
TCK cycle. Note that the first bit shifted
out will be a zero.

The bypass register is not affected in the
UPDATE-DR state.

(8) CLAMPZ (1001)

The CLAMPZ instruction connects a 1-
bit shift register (the Bypass Register)
between TDI and TDO.

When the CLAMPZ instruction is loaded
into the instruction register, all outputs
are placed in an inactive drive state, but
the data supplied to the disabled output
drivers is defined by the values previ-
ously loaded into the BS register. The
purpose of this instruction is to ensure
{during production testing), that each
output driver can be disabled when its
data input is either a ‘0’ or a ‘1'. A guard-
ing pattern (specified in the section en-
titled Boundary Scan Register) should be
preloaded into the boundary scan regis-
ter using the SAMPLE/PRELQAD in-
struction prior to selecting the CLAMPZ
instruction.

In the CAPTURE-DR state, a logic ‘0’ 1s
captured by the Bypass register.

In the SHIFT-DR state, test data is
shifted into the Bypass register via TDI
and out via TDO after a delay of one
TCK cycle. Note that the first bit shifted
out will be a zero. The bypass register is
not affected in the UPDATE-DR state.

B 93585347 0011047

OTT M.

55

® VLSI TECHNOLOGY, INC.

VY86C060

ARCHITECTURAL OVERVIEW

TEST DATA REGISTERS

Bypass Register

This is a single-bit register which can be
selected as the path between TDI and
TDO to allow the device to be bypassed
during boundary scan testing.

When the Bypass instruction is the cur-
rent instruction in the instruction regis-
ter, serial data is transferred from TDI to
TDO in the SHIFT-DR state with a delay
of one TCK cycle.

There is no paraliel output from the by-
pass register.

A logic ‘0’ is loaded from the parallel
input of the bypass register in the CAP-
TURE-DR state.

Device Identification (ID) Code
Register

This register is used to read the 32-bit
device identification code.

When the IDCODE instruction is cur-
rent, the ID register is selected as the
serial path between TDI and TDQO.

There is no parallel output from the
ID register.

The following is the format of the 32-bit
device identification code that is loaded
into the 1D register during the CAP-
TURE-DR state:

Bits[31:28] : Version code
Bits[27:12] : Part number code
Bits[11:1] : Manufacturer’s code
Bit[0] : Start bit = 1

Boundary Scan (BS) Register

The BS register consists of a serially
connected set of cells around the pe-
riphery of the device, at the interface
between the system (or core) logic and
the system input/output pads. This reg-
ister can be used to isolate the core
logic from the pins and then apply tests
to the core logic, or conversely to isolate
the pins from the core logic and then
drive or monitor the system pins.

The BS register is selected as the regis-
ter to be connected between TDI and
TDO only during the SAMPLE/
PRELOAD, EXTEST and INTEST in-
structions. Values in the BS register are
used, but are not changed, during the
CLAMP and CLAMPZ instructions.

In the normal (system) mode of opera-
tion, straight-through connections be-
tween the core logic and pins are main-
tained and normal system operation is
unaffected.

During EXTEST or INTEST instructions
(i.e., test mode), values can be applied
to the core logic or output pins indepen-
dently of the actual values on the input
pins and core logic outputs respectively.
Additional boundary scan cells are inter-
posed in the scan chain in order to con-
trol the enabling of three-state outputs.

The correspondence between boundary
scan cells and system pins, system di-
rection controls and system output en-
ables is shown below. The cells are
listed in the order in which they are con-
nected in the boundary scan register,
starting with the cell closest to tdi. All
outputs are three-state outputs. All
boundary scan register cells at input
pins can apply tests to the on-chip sys-
tem logic.

EXTEST/CLAMP guard values specified
in the table below should be clocked
into the BS register (using the SAMPLE/
PRELQAD instruction) before the
EXTEST, CLAMP or CLAMPZ instruc-
tions are selected to ensure that known
data is applied to the system logic dur-
ing the test. The INTEST guard values
shown in the table below should be
clocked into the boundary scan register
(using the SAMPLE/PRELOAD instruc-
tion) before the INTEST instruction is
selected to ensure that all outputs are
disabled. An asterisk in the guard value
columns indicates that any value can be
substituted (as the test requires), but
ones and zeros should always be
placed as shown.

B 9388347 0011048 T3L WA

56

® VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

BOUNDARY SCAN REGISTER

Output Enable INTEST EXTEST/CLAMP

No. Cell Name Pin Type BS Cell Guard Value Guard Value
(FROM TDI)

1 DATA[O] dio] IN - . 0
2 DOUTIO0] d[o] ouT NENOUT=0 0 .
3 DATA[1] dit] IN - - 0
4 DOUTH] di1 ouT NENOUT=0 0 *
5 DATA[] di2] IN - » 0
6 DOUT[2] di2] ouT NENOUT=0 0 *
7 DATA[3] d[3] IN - - 0
8 DOUT[3) a3l ouT NENOUT=0 0 *
9 DATA[4] di4] IN - . 0
10 DOUT[4] df4] ouT NENOUT=0 0 8
11 DATA[5] dis] IN - . 0
12 DOUTI5] dis] ouT NENOUT=0 0 "
13 DATA[6] die] IN - . 0
14 DOUTI6] d[é] ouT NENOUT=0 0 -
15 DATA[7] d[7] IN _ . 0
16 DOUT[7] d[7] ouT NENOUT=0 0 :
17 DATA[8] di] IN - - 0
18 DOUT8] dig] ouT NENOUT=0 0 .
19 DATA[9] d[9] IN - . 0
20 DOUTI9)] d(9] ouT NENOUT=0 0 -
21 DATA[10] d[10] IN _ - 0
22 DOUT[10] dr1o] ouT NENOUT=0 0 :
23 DATA[11] 1] IN - - 0
24 DOUT11] drii] ouT NENOUT=0 0 "
25 DATA[12] dr12] IN _ " 0
26 DOUT[12] d[12] ouT NENOUT=0 0 :
27 DATA[13] i3] IN - - 0
28 DOUT[13] di13] ouT NENOUT=0 0)
29 DATA[14] d14] IN - . 0
30 DOUT[14] d14] ouT NENOUT=0 0 .
31 DATA[15] d15] IN - . 0
32 DOUT[15] d[15) ouT NENOUT=0 0 :
33 DATA[16] d[16] IN - . 0
34 DOUTI[16] d[16] ouT NENOUT=0 0 :
35 DATA[17] d[17] IN _ : 0
36 DOUT(17] | d[17] ouT NENOUT=0 0 .
37 DATA[18] d18] IN - - 0
38 DOUT[18] d[18] ouT NENOUT=0 0 !
39 DATA[19] d[19] IN - . 0

57

B 9388347 0011049 972 M

® VLSI TECHNOLOGY, INC.

VY86C060
ARCHITECTURAL OVERVIEW

BOUNDARY SCAN REGISTER (Cont.)

Output Enable INTEST EXTEST/CLAMP
No. Cell Name Pin Type BS Cell Guard Value Guard Value
40 DOUT[19}] d[19] ouT NENOUT=0 0 *
41 DATA[20] d[20] IN - * 0
42 DOUT[20] d[20} ouT NENOUT=0 0 *
43 DATA[21] di21} IN - * 0
44 DOUT[21] di21] ouT NENQOUT=0 0 *
45 DATA[22] d22] IN - * 0
46 DOUT(22] d[22] ouT NENOUT=0 0 *
47 DATA[23] d[23] IN - * 0
48 DOUT[23] d[23] ouT NENOUT=0 0 *
49 DATA[24] d[24] IN - * 0
50 DOUT[24] d[24] ouT NENOUT=0 0 *
51 DATA[25] d[25] IN - * 0
52 DOUT[25] d[25] ouT NENOUT=0 0 *
53 DATA[26] d[26] IN - * 0
54 DOUT[26] d[26] ouT NENOUT=0 0 *
55 DATA[27] d[27] IN - * 0
56 DOUT[27] di27] ouT NENOUT=0 0 *
57 DATA[28] d[28] IN - * 0
58 DOUT[28] d[28] ouT NENOUT=0 0 *
59 DATA[29] d[29] IN - * 0
60 DOUTI[29] di29j ouT NENOUT=0 0 *
61 DATA[30] d[30] IN - * 0
62 DOUT[30] d[30] ouT NENOQUT=0 0 *
63 DATA[31] d[31] IN - * 0
64 DOUTI[31] d[31] ouT NENOUT=0 0 *
65 CPA cpa IN — * 1
66 NENOUT - OUTENO - 1 *
67 NCE - OUTENO - 1 *
68 LOCK lock ouT NCE=0 0 *
69 BIGEND bigend IN - * 0
70 NCPI Ncpi ouT NCE=0 0 *
71 DBE dbe IN — * 0
72 NBW Nbw ouT NCE=0 0 *
73 MCLK mclk IN - * 0
74 NWAIT Nwait IN - * 0
75 LATEABT LATEABT IN - * 1
76 PROG32 prog32 IN - * 1
77 DATA32 data32 IN — * 1
78 NRW Nrw ouT NCE=0 0 *
79 NOPC Nopc ouT NCE=0 0 *
80 NMREQ Nmreq ouT NCE=0 0 *
81 SEQ seq ouT NCE=0 0 *
82 ABORT abort IN — * 0
83 NIRQ Nirg IN - * 1
84 NFIQ Nfig IN - * 1

B 93334347 0011050 L94Y WA

58

w VLSI TECHNOLOGY, INC. VY86C060
ARCHITECTURAL OVERVIEW

BOUNDARY SCAN REGISTER (Cont.)

Output Enable INTEST EXTEST/CLAMP
No. Cell Name Pin Type BS Cel} Guard Value Guard Value
85 NRESET Nreset IN - * 0
86 ALE ale IN - * 1
87 CPB cpb IN - * 1
88 NTRANS Ntrans ouT NCE=0 0 *
89 A[31] a[31] ouT ABE=1 0 *
90 A[30] af30] ouT ABE=1 0 *
91 A[29] al29] ouT ABE=1 0 *
92 A[28] a[28] ouT ABE=1 0 *
93 Al27] a[27] ouT ABE=1 0 *
94 AJ26] af2e] ouT ABE=1 0 *
95 A[25] al2s] ouT ABE=1 0 *
96 A[24] a[24] ouT ABE=1 0 *
97 A[23] a[23] ouT ABE=1 0 *
98 A[22] a[22] ouT ABE=1 0 *
99 AJ21] a[21] ouT ABE=1 0 *
100 A[20] a[20] ouT ABE=1 0 *
101 Af19] a[19] ouT ABE=1 0 *
102 A[18] af18] ouT ABE=1 0 *
103 A[17] a[17] ouT ABE=1 0 *
104 A[16] a[16] ouT ABE=1 0 *
105 A[15] a[15] ouT ABE=1 0 *
106 A[14] a[14] ouT ABE=1 0 *
107 A[13] a[13] ouT ABE=1 0 *
108 Al12] af12] ouT ABE=1 0 *
109 Al11] a[11] ouT ABE=1 0 >
110 A[10] a[10] ouT ABE=1 0 *
111 Al9] a[9] ouT ABE=1 0 *
112 A8] a[8} ouT ABE=1 0 *
113 Al7] af7] ouT ABE=1 0 *
114 Al6] a[6] ouT ABE=1 0 *
115 A[5] a[b] ouT ABE=1 0 *
116 Al4] af4] ouT ABE=1 0 *
117 A[3] a[3] ouT ABE=1 0 *
118 Al2] al2] ouT ABE=1 0 *
119 A[1] a[t] ouT ABE=1 0 *
120 A[0] aj0] ouT ABE=1 0 *
121 ABE abe ouT ABE=1 0 *
KEY
IN input pad
ouT Output pad
INEN1 Input enable active high

OUTENQ Output enable active low

59
B 9388347 0011051 520 mm

® VLSI TECHNOLOGY, INC.

Output Enable Boundary Scan Cellis

The following boundary scan cells con-

trol the output drivers of three-state out-
puts as shown:

No. | Cell Name | Pin Type Outputs Controlled

66 | NENOUT - OUTENO d[31:0]

67 NCE - OUTENO Nrw, Nbw, lock, Ntrans, Nmreq, seq, Nopc,
Ncpi

121 | ABE ABE | INENf1 a[31:0]

In the case of type OUTENO enable Single-Step Operation

cells (NENOUT & NCE), loading a ‘1’
into the cell will disabie the associated
drivers. In the case of type INEN1 en-
able cell (ABE), loading a ‘0’ into the cell
will disable the associated drivers.

When the SAMPLE/PRELOAD or
INTEST instructions are active, the
value captured in the NENOUT cell will
reflect the state of the NENOUT signal
from the core. However, the input of the
NCE cell is tied permanently to VSS, so
a logic ‘0" will always be captured by this
cell if the SAMPLE/PRELOAD or
INTEST instructions are active.

To put all VY86C060 three-state outputs
into their high-impedance state, a logic
‘9> should be clocked into the output
enabte boundary scan cells NENOUT &
NCE, and a logic ‘0’ should be clocked
into ABE. Alternatively, the HI-Z instruc-
tion can be used.

The VY86C060 is a static design and
there is no minimum clock speed. [t can
therefore be single-stepped while the
INTEST instruction is selected. This can
be achieved by serializing a parallel
stimulus and clocking the resulting serial
vectors into the boundary scan register.
When the boundary scan register is up-
dated, new test stimuli are applied to the
core logic inputs. The effect of these
stimuli can then be observed on the
core logic outputs by capturing them in
the boundary scan register.

BB 93848347 0011052 uL? M@

60

VY86C060
ARCHITECTURAL OVERVIEW

