OPTIMAL HPC SOLUTIONS WITH INTEL

Nikolay Mester, HPC and CSP verticals, Eastern Europe, Intel
The HPC Opportunity

MODELING & SIMULATION
- $515 average return per $1 of HPC investment\(^1\)

HPC DATA ANALYTICS
- 18% revenue CAGR; >$3 billion in 2020\(^2\)

ARTIFICIAL INTELLIGENCE
- 55% revenue CAGR; >$47 billion in 2020\(^3\)

VISUALIZATION
- 30% revenue CAGR; >$1.6 billion in 2020\(^4\)

1. Source: Source: IDC HPC and ROI Study Update, September 2015

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Other names and brands may be claimed as the property of others. All products, dates, and figures are preliminary and are subject to change without notice. Copyright © 2013, Intel Corporation.
A Holistic Architectural Approach

System

Innovative Technologies
- Compute
- Memory
- Fabric
- Storage
- System Software

Tighter Integration
- Cores
- Memory
- FPGA
- Graphics
- I/O

Performance vs. Time

Application

Modernized Code
- ISV
- Community
- Proprietary

Proprietary
Key Elements of Intel® SSF

INTEL® SCALABLE SYSTEM FRAMEWORK

MARKET LEADING¹
HIGHLY PARALLEL
COST ADVANTAGE
INTEL SUPPORTED
FLEXIBILITY & STABILITY
EXTREME SCALABILITY

* Other names and brands may be claimed as the property of others. ¹Source: Intel estimates.
Code Modernization for Higher Performance

Modernization (i.e. parallelization and vectorization) of your code is the solution

Lot of performance is being left on the table

VP = Vectorized & Parallelized (MT)
SP = Scalar & Parallelized (MT)
VS = Vectorized & Single-Threaded (ST)
SS = Scalar & Single-Threaded (ST)

VP = Vectorized & Parallelized (MT)
SP = Scalar & Parallelized (MT)
VS = Vectorized & Single-Threaded (ST)
SS = Scalar & Single-Threaded (ST)
Tighter **System-Level Integration**

Innovative Memory-Storage Hierarchy

Today

- **Processor**
 - Compute
 - Caches

- **Memory Bus**
 - Local Memory

- **Compute Node**
 - Local Storage

- **I/O Node**
 - SSD Storage

- **Remote Storage**
 - Parallel File System (Hard Drive Storage)

Future

- **Processor**
 - Compute
 - Caches
 - On-Package High Bandwidth Memory*

- **Memory Bus**
 - Much larger memory capacities keep data in local memory

- **Compute Node**
 - Intel® DIMMs based on 3D XPoint™ Technology

- **I/O Node**
 - Intel® Optane™ Technology SSDs

- **Remote Storage**
 - Burst Buffer Node with Intel® Optane™ Technology SSDs

- **I/O Node storage moves to compute node**

- **Some remote data moves onto I/O node**

Higher Bandwidth. Lower Latency and Capacity

*Copyright © 2016 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.*
What to use for your situation?

Why Xeon Phi™?

- Improve Performance
- Improve ROI
- Unlock Potential

Which Apps?¹

- Scalable to >60 cores
- Heavily Vectorized
- Local memory BW bound

If yes...

Intel® Xeon Phi™ is optimal for applications that scale to >60 cores and are highly threaded or memory bandwidth bound

If no...

¹Performance results on Intel® Xeon Phi™ will vary depending on app characteristics. For more information, see: https://software.intel.com/sites/default/files/article/383067/is-xeon-phi-right-for-me.pdf
Intel® Xeon® Scalable Processor Enables Amazing Discoveries through HPC

- Origins of the Universe
- Weather Forecasting
- Energy Research
- Material Science
- Physics
- Personalized Healthcare
Intel® Xeon® Processor Roadmap

Intel® Xeon® Processor E7
Targeted at mission critical applications that value a scale-up system with leadership memory capacity and advanced RAS

Intel® Xeon® Processor E5
Targeted at a wide variety of applications that value a balanced system with leadership performance/watt/$

Converged Platform with Innovative Skylake-SP Microarchitecture

Brickland Platform
- E7 v3
- E7 v4

Grantley-EP Platform
- E5 v3
- E5-4600 v4 (4S)
- E5 v3
- E5-2600 v4

Purley Platform
- Skylake
- Cascade Lake
- Intel® Xeon® Platinum
- Intel® Xeon® Gold
- Intel® Xeon® Silver
- Intel® Xeon® Bronze
Intel® Xeon® Scalable Processor
Re-architected from the Ground Up

- Skylake core microarchitecture, with data center specific enhancements
- Intel® AVX-512 with 32 DP flops per core
- Data center optimized cache hierarchy – 1MB L2 per core, non-inclusive L3
- New mesh interconnect architecture
- Enhanced memory subsystem
- Modular IO with integrated devices
- New Intel® Ultra Path Interconnect (Intel® UPI)
- Intel® Speed Shift Technology
- Security & Virtualization enhancements (MBE, PPK, MPX)
- Optional Integrated Intel® Omni-Path Fabric (Intel® OPA)

Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Intel® Xeon® Processor E5-2600 v4</th>
<th>Intel® Xeon® Scalable Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores Per Socket</td>
<td>Up to 22</td>
<td>Up to 28</td>
</tr>
<tr>
<td>Threads Per Socket</td>
<td>Up to 44 threads</td>
<td>Up to 56 threads</td>
</tr>
<tr>
<td>Last-level Cache (LLC)</td>
<td>Up to 55 MB</td>
<td>Up to 38.5 MB (non-inclusive)</td>
</tr>
<tr>
<td>QPI/UPI Speed (GT/s)</td>
<td>2x QPI channels @ 9.6 GT/s</td>
<td>Up to 3x UPI @ 10.4 GT/s</td>
</tr>
<tr>
<td>PCIe* Lanes/Controllers/Speed(GT/s)</td>
<td>40 / 10 / PCIe* 3.0 (2.5, 5, 8 GT/s)</td>
<td>48 / 12 / PCIe* 3.0 (2.5, 5, 8 GT/s)</td>
</tr>
<tr>
<td>Memory Population</td>
<td>4 channels of up to 3 RDIMMs, LRDIMMs, or 3DS LRDIMMs</td>
<td>6 channels of up to 2 RDIMMs, LRDIMMs, or 3DS LRDIMMs</td>
</tr>
<tr>
<td>Max Memory Speed</td>
<td>Up to 2400</td>
<td>Up to 2666</td>
</tr>
<tr>
<td>TDP (W)</td>
<td>55W-145W</td>
<td>70W-205W</td>
</tr>
</tbody>
</table>
New Mesh Interconnect Architecture

Broadwell EX 24-core die

Skylake-SP 28-core die

Mesh Improves Scalability with Higher Bandwidth and Reduced Latencies

Intel Press Workshops – June 2017

Content Under Embargo Until 1:00 PM PST June 15, 2017
Intel® Ultra Path Interconnect (Intel® UPI)

- Intel® Ultra Path Interconnect (Intel® UPI), replacing Intel® QPI
- Faster link with improved bandwidth for a balanced system design
 - Improved messaging efficiency per packet
- 3 UPI option for 2 socket – additional inter-socket bandwidth for non-NUMA optimized use-cases

Data Rate

- Intel® QPI: 9.6 GT/s
- Intel® UPI: 10.4 GT/s

Data Efficiency

- 4% to 21% (per wire)

Idle Power

- Intel® QPI: 75%
- Intel® UPI: 50%

Intel® UPI enables system scalability with higher inter-socket bandwidth

Source as of June 2017: Intel internal measurements on platform with Xeon Platinum 8180, Turbo enabled, UPI=10.4, 6x32GB DDR4-2666, 1 DPC, and platform with E5-2699 v4, Turbo enabled, 4x32GB DDR4-2400, RHEL 7.0. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/performance.
Platform Topologies

2S Configurations

- SKL
- SKL

(2S-2UPI & 2S-3UPI shown)

4S Configurations

- SKL
- SKL

(4S-2UPI & 4S-3UPI shown)

8S Configuration

- SKL
- SKL

INTEL® XEON® SCALABLE PROCESSOR SUPPORTS CONFIGURATIONS RANGING FROM 2S-2UPI TO 8S
Intel® Advanced Vector Extensions 512 (Intel® AVX-512)

- 512-bit wide vectors
- 32 operand registers
- 8 64b mask registers
- Embedded broadcast
- Embedded rounding

<table>
<thead>
<tr>
<th>Microarchitecture</th>
<th>Instruction Set</th>
<th>SP FLOPs / cycle</th>
<th>DP FLOPs / cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skylake</td>
<td>Intel® AVX-512 & FMA</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>Haswell / Broadwell</td>
<td>Intel AVX2 & FMA</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>Sandybridge</td>
<td>Intel AVX (256b)</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Nehalem</td>
<td>SSE (128b)</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Intel AVX-512 Instruction Types

- AVX-512-F: AVX-512 Foundation Instructions
- AVX-512-VL: Vector Length Orthogonality: ability to operate on sub-512 vector sizes
- AVX-512-BW: 512-bit Byte/Word support
- AVX-512-DQ: Additional D/Q/SP/DP instructions (converts, transcendental support, etc.)
- AVX-512-CD: Conflict Detect: used in vectorizing loops with potential address conflicts

POWERFUL INSTRUCTION SET FOR DATA-PARALLEL COMPUTATION
Optimized Turbo Profiles

Prior generation data center CPUs typically decreased turbo by 1 bin for each additional active core.

Skylake-SP provides higher intermediate turbo points by stepping down in a more optimal manner:

- Higher performance dynamically with C-states
- BIOS/OS core disable can be used to mimic higher frequency SKUs (with some tradeoffs)

Note: there is no guarantee that these frequencies can be achieved for a given workload on all units.

*Picture is an illustration only. Not intended to represent any specific SKU or imply any frequency commitments.
Skylake-SP with Integrated Fabric

Single on-package Omni-Path Host Fabric Interface (HFI)

Fabric component interfaces to CPU using x16 PCIe* lanes

Fabric PCIe lanes are additional to the 48 PCIe lanes on the socket

Single cable from SKL-F package connector to QSFP module

Same socket for Skylake-SP and Skylake-F processors

• Purley platform can be designed to support both processors

• Platform design requires an expanded keep-out zone and additional board components to accommodate both processors
Intel® Xeon Phi™ Processor – TCO Solution for HPC & AI
A Key Element of HPC, AI, and Mixed Workload Clusters

- Total Cost of Ownership
 - Price Performance
 - Power Efficiency
 - Performance

- Optimized for HPC & AI
 - Highly-Parallel
 - No PCIe Bottlenecks
 - Scalability

- Complements Intel® Xeon®
 - Common Programming
 - Mixed Clusters
 - Runs x86 code

Reduces total cost of ownership, designed for HPC & AI, protects investment
Intel® Xeon Phi™ Processor Architecture

Self-Boot Processor
Binary-compatibility with Xeon, 3+ TFLOPS¹ (DP)

On-package memory
16GB, up to 490 GB/s STREAM TRIAD

Platform Memory
Up to 384GB (6ch DDR4-2400 MHz)

Other Key Features
- 2D Mesh Architecture
- Out-of-Order Cores
- 3X Single-Thread vs. KNC
- Intel® AVX-512 Instructions
- Scatter/Gather Engine
- Integrated Fabric - OPA

¹Theoretical peak performance
Bringing Memory Back Into Balance

up to 16 GB of High Bandwidth on-package memory in Knights Landing

3 Modes of Operation:
- Flat Mode: Acts as Memory
- Cache Mode: Acts as Cache
- Hybrid Mode: Mix of Cache and Flat

1 Projected result based on internal Intel analysis of STREAM benchmark using a Knights Landing processor with 16GB of ultra high-bandwidth versus DDR4 memory with all channels populated.
2 Projected result based on internal Intel analysis comparison of 16GB of ultra high-bandwidth memory to 16GB of GDDR5 memory used in the Intel® Xeon Phi™ coprocessor 7120P.

Copyright © 2016 Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.
Intel® Xeon Phi™ Product Family x200

Host Processor in Groveport Platform

Self-boot Intel® Xeon Phi™ processor

with integrated Intel® Omni-Path Fabric
Intel® Xeon Phi™ Target Segments & Applications

Material Science: VASP*, NWChem*, GTC-P*
QCD: QPHIX*, MILC*, CHROMA*, CCS QCD*
CFD/Mfg: OPENFOAM*, CLOVERLEAF*, LSTC LSDYNA*, CONVERGENT SCIENCE CONVERGE CFD*
Weather/Climate/Cosmology: WRF*, NEMO*, WALLS*
Energy: ISO3DFD*
FSI: STAC A2*, MONTE CARLO*, BLACK SCHOLES*, BINOMIAL OPTIONS*
MD: LAMMPS*, NAMD*, GROMACS*, AMBER*

Features Driving Perf & Perf/$/W

<table>
<thead>
<tr>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>16GB MCDRAM</td>
</tr>
<tr>
<td>High memory (MCDRAM) BW (≤ 490 GB/s)</td>
</tr>
<tr>
<td>Intel® AVX-512 ER</td>
</tr>
<tr>
<td>High system memory (≤ 400 GB)</td>
</tr>
<tr>
<td>High number of physical cores (≤ 72)</td>
</tr>
<tr>
<td>High number of threads (≤ 288)</td>
</tr>
<tr>
<td>Lower system price (~$4700)¹</td>
</tr>
<tr>
<td>Lower system price (~$4700)¹</td>
</tr>
</tbody>
</table>

*Other names and brands may be claimed as the property of others.

¹Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to www.intel.com/benchmarks. Configurations: See Slides 40-52.
Intel® Xeon Phi™ Utilization Value

Homogenous “Large” Core

Homogenous “Small” Core

General Purpose

Workload Optimized

Example Supercomputer Cluster Top 25 Applications

Intel® Xeon Phi™ Utilization Benefits

- Runs optimized applications best
- Runs all x86 applications
- Doesn’t reduce resources for some applications

GPU Utilization Limitations

- Requires coding to run application, requires optimization to run best
- Doesn’t run x86 applications
- Dedicated resource reduces cluster performance for some applications
Bridging the Memory-Storage Gap

Intel® Optane™ Technology Based on 3D XPoint™

3D XPoint™ Technology: An Innovative, High-Density Design

Cross Point Structure
- Non-volatile 3D XPoint Technology is non-volatile—writes, reads and erases data, and supports a very high number of write cycles, enabling it for use in storage.
- Stackable—erged cells can be stacked to further boost density.
- High Endurance—3D XPoint Technology is non-volatile, enabling it to be written to or read without requiring a refresh.

SSD
- 10x More Dense than Conventional Memory
- Intel® Optane™ SSDs 5-7x Current Flagship NAND-Based SSDs (IOPS)

DRAM-like performance
- Intel® DIMMs Based on 3D-XPoint™
- 1,000x Faster than NAND
- 1,000x the Endurance of NAND

Copyright © 2016 Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.
World’s Most Responsive Data Center SSD¹

Delivering an **industry leading combination of low latency, high endurance, QoS and high throughput**, the Intel® Optane™ SSD is the first solution to **combine the attributes of memory and storage**. This innovative solution is optimized to **break through storage bottlenecks** by providing a new data tier. It accelerates applications for **fast caching and storage**, increasing **scale per server** and reducing transaction cost. Data centers based on the latest Intel® Xeon® processors can now also **deploy bigger and more affordable datasets** to gain new insights from larger memory pools.

¹ Responsiveness defined as average read latency measured at Queue Depth 1 during 4k random write workload. Measured using FIO 2.15. Common configuration - Intel 2U Server System, OS CentOS 7.2, kernel 3.10.0-327.el7.x86_64, CPU 2 x Intel® Xeon® E5-2699 v4 @ 2.20GHz (22 cores), RAM 396GB DDR @ 2133MHz. Intel drives evaluated - Intel® Optane™ SSD DC P4800X 375GB and Intel® SSD DC P3700 1600GB. Samsung* drives evaluated – Samsung SSD PM1725a, Samsung SSD PM1725, Samsung PM963, Samsung PM953. Micron* drive evaluated – Micron 9100 PCIe* NVMe* SSD. Toshiba* drives evaluated – Toshiba ZD6300. Test – QD1 Random Read 4K latency, QD1 Random RW 4K 70% Read latency, QD1 Random Write 4K latency using FIO 2.15.

*Other names and brands may be claimed as the property of others.
Breakthrough Performance

5-8x faster at low Queue Depths

Vast majority of applications generate low QD storage workloads

1. Common Configuration - Intel 2U PCSD Server ("Wildcat Pass"), OS CentOS 7.2, kernel 3.10.0-327.el7.x86_64, CPU 2 x Intel® Xeon® E5-2699 v4 @ 2.20GHz (22 cores), RAM 396GB DDR @ 2133MHz. Configuration – Intel® Optane™ SSD DC P4800X 375GB and Intel® SSD DC P3700 1600GB. Performance – measured under 4K 70-30 workload at QD1-16 using fio-2.15.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance.
Predictably Fast Service

Read QoS in Mixed Workload

- Intel® SSD DC P3700 Read Latency
- Intel® Optane™ SSD DC P4800X Read Latency

1. Common Configuration - Intel 2U PSCE Server ("Wildcat Pass"), OS CentOS 7.2, kernel 3.10.0-327.el7.x86_64, CPU 2 x Intel® Xeon® E5-2699 v4 @ 2.20GHz (22 cores), RAM 396GB DDR @ 2133MHz. Configuration – Intel® Optane™ SSD DC P4800X 375GB and Intel® SSD DC P3700 1600GB. QoS – measures 99% QoS under 4K 70-30 workload at QD1 using fio-2.15.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance.

✓ up to 60X better at 99% QoS

✓ Ideal for critical applications with aggressive latency requirements
Intel® Optane™ SSD DC P4800X for Storage Builders
SPDK Performance: Platform Comparison

- 10X higher throughput
- 10X lower latency
- Up to 27 cores remaining for:
 - Virtual Machines
 - Big Data/Analytics
 - Machine Learning
 - Storage services like erasure coding, de-duplication, compression, or encryption.
- Platform offers RDMA
 - Enables NVMe over Fabrics
 - No more trapped I/O capacity

See notices, configurations, disclaimers
Responsive Under Load

Responsive Under Load

Average Read Latency under Random Write Workload

1. Responsiveness defined as average read latency measured at queue depth 1 during 4k random write workload. Measured using FIO 2.15. Common Configuration - Intel 2U PCSD Server ("Wildcat Pass"), OS CentOS 7.2, kernel 3.10.0-327.el7.x86_64, CPU 2 x Intel® Xeon® E5-2699 v4 @ 2.20GHz (22 cores), RAM 396GB DDR @ 2133MHz. Configuration – Intel® Optane™ SSD DC P4800X 375GB and Intel® SSD DC P3700 1600GB. Latency – Average read latency measured at QD1 during 4K Random Write operations using fio-2.15.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance.

✓ up to 40X faster response time under workload

✓ Consistently amazing response time under load
Intel® Volume Management Device (Intel® VMD)

Intel® VMD is a CPU-integrated device to aggregate NVMe SSDs into a storage volume and enables other storage services such as RAID:

- Intel® VMD is an “integrated end point” that stops OS enumeration of devices under it.
- Intel® VMD maps entire PCIe* trees into its own address space (a domain).
- Intel® VMD driver sets up and manages the domain (enumerate, event/error handling), but out of fast IO path.

Eliminates additional components to provide a full-feature storage solution.
Intel® Volume Management Device

- Intel® VMD is a new technology to enhance solutions with PCIe* storage
- Supported for Windows, Linux, and ESXi*
- Multi-SSD vendor support
- Intel® VMD enables:
 - Isolating fault domains for device surprise hot-plug and error handling
 - Provide consistent framework for managing LEDs
 - Simplify PCIe storage software stacks

Intel® VMD enables customers to **simplify and harden** solutions using PCIe storage.
Scale up or out with more PCIe lanes, Intel® SSDs, and Intel Memory Drive Technology

Scale up memory with Intel® Optane™ SSD and Intel Memory Drive Technology

- integrates transparently into memory subsystem with no OS or app changes¹
- DRAM + Intel® Optane™ SSD + Intel® Memory Drive Technology emulate a single volatile memory pool

Scale out capacity and performance with 20% more PCIe lanes² and a broad portfolio of Intel® SSDs
Massively Scalable, Faster3 Memory Pools

- Increase memory pool up to 8x1
- Displace DRAM up to 10:1 in select workloads2
- Higher platform memory & PCIe bandwidth with Intel\textregistered Scalable Processor3
- Accelerate applications and gain new insights from larger working sets

\textbf{All DRAM} \hspace{1cm} DRAM + Intel\textregistered Optane\textregistered SSD + Intel\textregistered Memory Drive Technology

- Increase memory pool up to 8x
- Displace DRAM up to 10:1 in select workloads
- Higher platform memory & PCIe bandwidth with Intel\textregistered Scalable Processor
- Accelerate applications and gain new insights from larger working sets

See notices, configurations, disclaimers