System Considerations for Dual AMD Athlon™ MP Processors in Tower and 1U Form Factors
Outline

• Introduction
• AMD Athlon™ MP processor power roadmap
• Thermal test methodology
• Tower chassis form factor
 – Chassis vendors and models
 – Power supplies
 – Heat sinks
 – Thermal test results
• 1U drawer form factor
 – Recommended 1U drawer floor plan
 – Heat sinks
 – Thermal test results
• Summary
Introduction

- **AMD-760TMMP chipset**
- Support for two AMD AthlonTM MP processors
- Support for 200 MHz and 266 MHz front-side bus
- Support for up to 3 GB PC2100 registered DDR RAM
- Extended ATX Form Factor
- AGP Pro slot, five 64-Bit PCI slots, VGA slot
- One serial port, one parallel port, two USB (four through optional cable), PS2 keyboard and mouse connections
- Up to four Enhanced IDE devices
- Dual 3COM LAN controllers
- Integrated ATI Rage XL graphics accelerator
AMD Athlon™ Processor Power Roadmap

Max Thermal Power (W)

AMD Athlon processor

AMD Athlon MP processor

Frequency (MHz)
Thermal Requirements

• Processor die temperature should not exceed the maximum temperature specification (90°C or 95°C).

• 35°C external ambient

• Maximum thermal power at specification

• Northbridge, power FETs, and other components in system should not exceed their temperature specifications.
Overview

• Single processor
 – Software—Maxtherm Option F run under DOS
 – Use single-processor thermal test Excel spreadsheet for analysis

• Dual processor
 – Software—BurnK6
 • Run two instances under Windows® OS
 • Run two instances for Linux OS (under two logins)
 – Available at http://users.ev1.net/~redelm/
 – Use dual-processor thermal test Excel spreadsheet for analysis

• Power dissipation: calibrate one or two processors
 – As function of software, voltage, and temperature
 – Run one test with one set of processors
 – Analyze data versus power specification

• Thermocouple locations of interest
Test Methodology

• Measurements taken at room temperature
 – Temperature-controlled fans in power supply are run with voltage at 35°C setting.

• Software used to power processor
 – Single processor tests use Maxtherm Option
 – Dual processor tests utilize either BurnK6 freeware or other software

• Thermocouples placed at following locations:
 – Back of ceramic of PGA package for each processor
 – Heat sink base for each processor
 – Ambient for each processor
 – FET case for each processor
 – Under motherboard at Northbridge
 – Power supply exhaust
 – System fan exhaust (if applicable)
 – External ambient

• Vcc core feedback monitored for each processor
Test Methodology (...cont.)

• Power supply fan voltage is monitored or set at voltage at which it would run at maximum external ambient temperature.

• Determination of processor power consumption
 – Processor placed in modified motherboard used for measuring power
 – Current readout measured with Vcc feedback voltage set to match voltage measured during thermal test
 – Maxtherm Option F and BurnK6 or other software run for test
 – Power measured at close to same temperature of test
 – Power used in spreadsheet = Vcc Voltage x Current (as measured through CoreFB– and CoreFB+ pins (AG11 and AG13) on the processors)
Indirect Temperature Measurement Method

- Simple, repeatable method
- Attach thermocouple to back of ceramic substrate of processor
- Centered on die area
- Use provided correlation for determining die temperature
Correlation for Indirect Die Temperature Method for Products without Diodes

- Correlation relates die temperature to backside ceramic temperature
- Referenced to local CPU ambient
- Measurements performed on a thermal test vehicle
- Power varied to create correlation
- Validated against multiple, more involved methods of making temperature measurement

Typical residual: ± 2°C for centered clip

\[
(T_{C3} - T_{ambient}) = 1.209x - 1.3778
\]

\[R^2 = 0.9998\]
CPU Ambient Thermocouple

- Thermocouple should be centered above the fan hub
- One inch above the center of the fan hub
- Tape it to stiff wire that can be formed to place it in this location
Evaluation Temperature Sensor Kits

• Maxim 1617A Evaluation Kit

• Analog 1021A Evaluation Kit
Connect to the On-Die Temperature Diode

- Attach temperature sense wires to the evaluation kit
 - S7 wire connects to the positive terminal (DXP1 or D+)
 - U7 wire connects to the negative terminal (DXN1 or D–)

Remove this remote diode
Positive terminal
Negative terminal
Connect to Vcc Core Feedback Pins

- Connect 30-gage wire to Vcc core feedback positive and negative pins AG11 and AG13 (see processor pinout on next page)
- Allows monitoring of exact voltage across processor
Processor System Data Analysis

- Room temperature data extrapolated to 35°C
- Die temperature calculated using following correlation for ceramic packages:
 \[-(T_{\text{die}} - T_{\text{amb}}) = 1.209 \times (T_{\text{ceramic}} - T_{\text{amb}}) - 1.3778\]
- θ_{js} and θ_{sa} calculated
- Maximum Allowable Power (MAP) at 35°C calculated:
 \[-\text{MAP} = (90 \degree \text{C or } 95\degree \text{C} - T_{\text{amb}})/ \theta_{\text{ja}}\]
- Projected die temperature calculated:
 \[-T_{\text{die}} = \text{Power(from MTP table)} \times \theta_{\text{ja}} + T_{\text{amb}}\]
Data Analysis

• MAP compared to Max Thermal Power (MTP)

• Example:
 – MAP = 54W
 – From table, maximum frequency support = 1000MHz

• Max thermal power
 – represents +3sigma power dissipation of product
 – at a given frequency and nominal voltage

MTP Table:

<table>
<thead>
<tr>
<th>D/C power</th>
<th>Max Thermal power</th>
</tr>
</thead>
<tbody>
<tr>
<td>650</td>
<td>36.1</td>
</tr>
<tr>
<td>700</td>
<td>38.3</td>
</tr>
<tr>
<td>750</td>
<td>40.5</td>
</tr>
<tr>
<td>800</td>
<td>42.6</td>
</tr>
<tr>
<td>850</td>
<td>44.8</td>
</tr>
<tr>
<td>900</td>
<td>49.1</td>
</tr>
<tr>
<td>950</td>
<td>51.4</td>
</tr>
<tr>
<td>1000</td>
<td>51.0</td>
</tr>
<tr>
<td>1100</td>
<td>55.3</td>
</tr>
<tr>
<td>1200</td>
<td>59.6</td>
</tr>
<tr>
<td>1300</td>
<td>63.9</td>
</tr>
<tr>
<td>1400</td>
<td>68.2</td>
</tr>
</tbody>
</table>

AMD Athlon™ Processor 1.75 V SpecFP*

54 W max thermal power surpasses 1.0 GHz, but is not enough for 1.1 GHz.
Tower Form Factor Guidelines
Thermal Design for Dual AMD Athlon™ MP Systems in Tower Form Factor

• Layout motherboard using keepout region definition for single processor systems
• Use a single qualified heat sink for each processor
• Use system fans to reduce temperature rise from external to the chassis to the processor locations
• Manage acoustics of system through fan speed control
• Chassis are standard product offerings from various chassis vendors
Chassis

• ChenMing 601AE-F-D *
• Palo Alto 810*
• Chenbro 2012 / 2025*
• Evercase EC S5000
• Inwin QS5000

*Will present test results
Heat Sinks for Dual Processor Implementations in Tower Form Factor

• Use standard single processor desktop heat sinks.

• Heat sink frequency rating is based on the following criteria:
 – Maximum external system ambient = 35°C
 – External-to-internal temperature rise ≤ 14°C
 – Power dissipation is at the maximum specification.
 – Die temperature ≤ maximum specification

• External-to-internal temperature rise must meet the above criteria.

• IMPORTANT: System integrator must confirm that processor temperature specification is met.
Heat Sink Incorporating Copper

- **Foxconn PK0453AEDAU52**
 - 63 x 70 x 60 mm
 - Basic aluminum extrusion
 - 50 x 50 x 3mm Ni-plated Cu slug
 - Attached with four screws
 - Shinetsu G751 grease
Dual AMD Athlon™ Processor Tower System Integration Example
Tower Chassis—2P System Configuration

- **System configuration**
 - Processors: 1400 Mhz AMD Athlon™ MP processors
 - Motherboard: Tyan Thunder
 - Power supply: Delta 460W
 - SCSI drives: Quantum Atlas 9GB
 - Video card: Elsa Gloria II
 - Memory: 1024MB Samsung PC2100
 - DVD drive: Toshiba SD-M1402
 - Floppy disk drive: TEAC FD-235HF
 - Sound card: Sound Blaster Live
 - Tower chassis: ChenMing, Chenbro or Palo Alto
System Configuration Tested—ChenMing
Measurements from ChenMing Test

![Temperature over time graph]

- **Die 0**
- **Heatsink Base 0**
- **CPU Amb. 0**
- **FET 0**
- **Die 1**
- **Heatsink Base 1**
- **CPU Ambient 1**
- **FET 1**
- **SCSI Drive**
- **DIMM**
- **NB**
- **External Ambient**
Thermal Characterization Results

• Test Conditions
 - Dual processor mode running two instances of “BurnK6”—1400 MHz AMD Athlon™ MP processors
 - Foxconn PK0453AEDAUFB aluminum/copper heatsinks utilized
 - Optimal performance obtained with one 80-mm system fan located in front of chassis

• ChenMing Results
 - Supports dual AMD Athlon™ MP processor-based 1200-MHz system with above configuration
 - Rear processor --> processor 1 is always highest temperature

• Further optimization required to support beyond 1200 MHz
IR Image of Motherboard in Chenbro Chassis
Chenbro Thermal Characterization

- Test conditions
 - Dual processor mode running two instances of “BurnK6”—1400-MHz AMD Athlon™ MP processors
 - Foxconn PK0453AEDAUFB aluminum/copper heatsinks utilized
 - Optimal performance obtained with one 80-mm front system fan and one 80-mm rear system fan

- Chenbro Results
 - Supports dual AMD Athlon™ MP processor 1000-MHz system with above configuration
 - Rear processor --> processor 1 is always highest temperature

- Further optimization required to support beyond 1000 MHz
Palo Alto Thermal Characterization

• Test conditions
 – Dual processor mode running two instances of “BurnK6”—1400-MHz AMD Athlon™ MP processors
 – Foxconn PK0453AEDAUFB aluminum/copper heatsinks utilized
 – Optimal performance obtained with one 90-mm system fan in front and one 120-mm fan in rear of chassis

• Palo Alto Results
 – Support a dual 1200-MHz system
 – Rear processor --> processor 1 is always highest temperature

• Further optimization required to support beyond 1200 MHz
Future Development Focus

- Efforts to improve frequency support:
 - Ducting
 - Heatsinks with different fin orientation

- Efforts to improve heatsink testing:
 - Speed controlled fans to reduce noise at room temperature
 - Ducting to eliminate need for system fans
Recommendations for Dual AMD Athlon™ MP Processor-Based Systems in 1U Rack Mounted Form Factor
Thermal Design Approach for Dual AMD Athlon™ MP Processor-Based Systems in 1U Form Factor

• Layout motherboard utilizing keepout region definition for single processor systems

• Drawer floorplan is custom for the motherboard. Recommended floorplan is described using Tyan Thunder motherboard

• Utilize a single heat sink per processor
 – Heat sink is coupled to blower placed in close proximity to the board
 – Utilizes low profile extrusions used for desktop without dedicated fan on heat sinks

• Power supplies specification in review with development partners
Reference Design 1U Power Supply Requirements

Output	Tolerance	Max Current, Amps
3.3 VDC | +/- 5% | 8 A |
5 VDC | +/- 5% | 15 A |
12 VCPU | +/- 5% | 16 A |
12 VIO | +/- 5% | 5A (7A Peak) |
-12 VDC | +/-10% | 0.8 A |
5 VR | +/- 5% | 2.0 A |

> 8 cfm at low speed
> 10 cfm at high speed
Heat Sinks for Dual Processor Implementations in 1U Form Factor

• Address thermal design at the drawer layout/floor plan level
 – Low-profile fan sinks do not have sufficient pressure/flow characteristics for this form factor.
 – Standard 1U designs that have a simple front-to-back flow distribution do not provide adequate cooling.
 – Custom floor plan utilizing higher pressure/flow blowers for cooling the processor is required to support entire roadmap

• IMPORTANT: Entire floor plan evaluated to assess performance
 – Ducting and blowers
 – Cooling provided to drives, memory, and power supply

• Temperature specification guidelines
 – Maximum external system ambient = 35°C
 – Power dissipation is at the maximum specification
 – Die temperature ≤ maximum specification
Example Heat Sink Used in Reference Design

- **Base:** 60mm width x 60mm depth x 7.5mm thickness
- **Cu slug:** 45mm width x 60mm depth x 4mm thickness
- **Fin:** 22.6mm height x 0.92mm width x 2.04mm spacing
- **Crosscuts:** 3.05mm wide
- **Thermal interface material:** Thermagon TCP 905c
Example 97-mm Blowers Used in 1U Reference Design

• Nidec Model #A34124-16
 – 0.65A @ 12V
 – 23 cfm at 0” H₂O
 – 0.95” of H₂O at 0 cfm

• Delta Model# BFB1012 H
 – 1.2A @ 12V
 – 25 cfm at 0” H₂O
 – 1.0 ” of H₂O at 0 cfm

• Both blowers have been used with comparable results.
Matching Air Movers to System Resistance

- System curve for old ducting
- Two 97-mm blowers in parallel
- Four fans in parallel in series with two fans in parallel
1U System Integration Example
1U System Configuration

- **System Configuration**
 - Processors: 1200 MHz AMD Athlon™ MP
 - Motherboard: Tyan Thunder
 - Power supply: In development
 - SCSI drives: Quantum Atlas 10KII 18.4B
 - Onboard video card: ATI Rage 128
 - Memory: 1024Mb Samsung PC2100
 - CD drive: Toshiba XM-1902B
 - Floppy disk drive: TEAC FD-235HF
 - 1U server chassis: Computer and Control Solutions
AMD Proposed Configuration

Place power supply to center of drawer to allow placement of 97-mm blowers adjacent to processors.

Utilize drawer length of 27”–28”.

Duct flow from blowers directly to processor locations.
Reference Floor Plan in Lexan Chassis

Primary Exhaust Three Blowers* Power Supply

Ducted Heat Sinks Yellow Line = Seal Against Flow

*Reduced to two blowers in the final configuration.
Temperature Measurements in 1U Floorplan

- Measured using 800-MHz AMD Athlon™ processors
- 3°C per 100MHz --> ~1000 MHz of margin to 95°C specification
Test Data for Floor Plan Proposed by Floor Plan AMD

<table>
<thead>
<tr>
<th>Configuration</th>
<th>CPU 0</th>
<th>CPU1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexan chassis, dual 800 AMD Athlon™ processors, Taisol 20 Fin 60x60 heatsinks, three NMB blowers, dual 18G SCA drives</td>
<td>External Temp.</td>
<td>(\theta_{JA}) C/W</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>0.666</td>
</tr>
<tr>
<td></td>
<td>6.5</td>
<td>0.595</td>
</tr>
</tbody>
</table>

- Floor plan covers up to 1600-MHz AMD Athlon™ MP processors
- Optimization being performed to push the performance higher
Future Development Focus

- Blower selection
- Optimization of pressure drops in ducting
- Optimizing heat sinks—Select fin density to match blower characteristics.
- Optimize the air flow path through the drawer to reduce the number of turns, expansions, and contractions.
Summary

• 2P Tower form factor
 – Three systems tested and validated
 • Chenbro—Qualified through 1000 MHz
 • ChenMing—Qualified through 1200 MHz
 • Palo Alto—Qualified through 1200 MHz
 – Further work ongoing to improve frequency coverage of above systems

• 1U form factor
 – Reference design developed
 – Working with system and chassis suppliers for enabled solutions
The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.
AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.

AMD, the AMD Arrow logo, AMD Athlon, and combinations thereof and AMD-760 are trademarks of Advanced Micro Devices, Inc. Windows is a registered trademark of Microsoft corporation. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.