
Am186™CC/CH/CU Microcontrollers
User’s Manual

Order #21914B

© 1998 Advanced Micro Devices, Inc. All rights reserved.

Advanced Micro Devices, Inc. ("AMD") reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

The information in this publication is believed to be accurate at the time of publication, but AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication or the information contained herein, and reserves the right to make
changes at any time, without notice. AMD disclaims responsibility for any consequences resulting from the use of the information included in this
publication.

This publication neither states nor implies any representations or warranties of any kind, including but not limited to, any implied warranty of
merchantability or fitness for a particular purpose. AMD products are not authorized for use as critical components in life support devices or
systems without AMD’s written approval. AMD assumes no liability whatsoever for claims associated with the sale or use (including the use of
engineering samples) of AMD products, except as provided in AMD’s Terms and Conditions of Sale for such products.

Trademarks

AMD, the AMD logo, and combinations thereof, Am186, Am188, Comm86, E86, SLAC, SmartDMA, and CodeKit are trademarks of Advanced
Micro Devices, Inc.

FusionE86 is a service mark of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

IF YOU HAVE QUESTIONS, WE’RE HERE TO HELP YOU.
The AMD customer service network includes U.S. offices, international offices, and a
customer training center. Expert technical assistance is available from the AMD worldwide
staff of field application engineers and factory support staff to answer E86™ and Comm86™
family hardware and software development questions.

Frequently accessed numbers are listed below. Additional contact information is listed on
the back of this manual. AMD’s WWW site lists the latest phone numbers.

Technical Support
Answers to technical questions are available online, through e-mail, and by telephone.

Go to AMD’s home page at www.amd.com and follow the Service link for the latest AMD
technical support phone numbers, software, and Frequently Asked Questions.

For technical support questions on all E86 and Comm86 products, send e-mail to
epd.support@amd.com (in the US and Canada) or euro.tech@amd.com (in Europe and
the UK).

You can also call the AMD Corporate Applications Hotline at:

(800) 222-9323 Toll-free for U.S. and Canada

44-(0) 1276-803-299 U.K. and Europe hotline

WWW Support
For specific information on E86 and Comm86 products, access the AMD home page at
www.amd.com and follow the Embedded Processors link. These pages provide
information on upcoming product releases, overviews of existing products, information on
product support and tools, and a list of technical documentation. Support tools include
online benchmarking tools and CodeKit™ software—tested source code example
applications. Many of the technical documents are available online in PDF form.

Questions, requests, and input concerning AMD’s WWW pages can be sent via e-mail to
webmaster@amd.com.

Documentation and Literature Support
Data books, user’s manuals, data sheets, application notes, and product CDs are free with
a simple phone call. Internationally, contact your local AMD sales office for product literature.

To order literature, call:

(800) 222-9323 Toll-free for U.S. and Canada

(512) 602-5651 Direct dial worldwide

(512) 602-7639 Fax

Third-Party Support
AMD FusionE86SM partners provide an array of products designed to meet critical time-to-market
needs. Products and solutions available include emulators, hardware and software debuggers,
board-level products, and software development tools, among others. The WWW site and the
E86 Family Products Development Tools CD, order# 21058, describe these solutions. In
addition, mature development tools and applications for the x86 platform are widely
available in the general marketplace.
Am186™CC/CH/CU Microcontrollers User’s Manual iii

iv Am186™CC/CH/CU Microcontrollers User’s Manual

TABLE OF CONTENTS
PREFACE INTRODUCTION XIX
Comm86 Family . xix
Purpose of this Manual . xix

Intended Audience. xix
Overview of this Manual . xix

Related Documents . xxi
AMD Documentation . xxi
Additional Information . xxii

Documentation Conventions . xxii
Microcontroller-Specific Information. xxiii

CHAPTER 1 ARCHITECTURAL OVERVIEW 1-1
1.1 Features. 1-1
1.2 Am186CC Communications Controller . 1-1

1.2.1 Am186CH HDLC Microcontroller . 1-2
1.2.2 Am186CU USB Microcontroller . 1-3
1.2.3 Feature Comparison . 1-4

1.3 Block Diagrams . 1-4
1.4 Architectural Overview. 1-6

1.4.1 Am186 Embedded CPU . 1-6
1.4.2 Serial Communications Support . 1-6

1.4.2.1 Universal Serial Bus. 1-6
1.4.2.2 HDLC Channels and TSAs . 1-7
1.4.2.3 General Circuit Interface . 1-8
1.4.2.4 SmartDMA Channels . 1-8
1.4.2.5 Asynchronous Serial Ports. 1-9
1.4.2.6 Synchronous Serial Port . 1-9

1.4.3 System Peripherals . 1-9
1.4.3.1 Interrupt Controller . 1-9
1.4.3.2 General-Purpose DMA Channels 1-10
1.4.3.3 Programmable I/O Signals . 1-10
1.4.3.4 Programmable Timers . 1-10
1.4.3.5 Hardware Watchdog Timer 1-11

1.4.4 Memory and Peripheral Interface . 1-11
1.4.4.1 System Interfaces and Clock Control. 1-11
1.4.4.2 Dynamic Random Access Memory Support 1-11
1.4.4.3 Chip Selects . 1-12

1.4.5 In-Circuit Emulator Support. 1-12
1.5 Applications . 1-13

CHAPTER 2 CONFIGURATION BASICS 2-1
2.1 Overview . 2-1
2.2 Register Set . 2-1

2.2.1 Processor Registers . 2-1
2.2.2 Processor Status Flags Register . 2-2
2.2.3 Peripheral Registers . 2-4

2.3 Memory Organization and Address Generation. 2-5
2.4 I/O Space. 2-6
2.5 Instruction Set . 2-7
2.6 Segments. 2-7
Am186™CC/CH/CU Microcontrollers User’s Manual v

Table of Contents
2.7 Data Types. 2-8
2.8 Addressing Modes . 2-9

2.8.1 Register and Immediate Operands . 2-9
2.8.2 Memory Operands . 2-9

CHAPTER 3 SYSTEM OVERVIEW 3-1
3.1 Overview . 3-1
3.2 System Design. 3-1
3.3 System Configuration . 3-4
3.4 Initialization and Reset. 3-5
3.5 Signal Descriptions . 3-8
3.6 Bus Interface . 3-28

3.6.1 Overview . 3-28
3.6.2 Block Diagrams. 3-29
3.6.3 Operation . 3-30

3.6.3.1 Address and Data Buses . 3-30
3.6.3.2 Programmable Bus Sizing . 3-30
3.6.3.3 Byte Write Enables. 3-31
3.6.3.4 Output Enable . 3-31
3.6.3.5 Bus Mastering . 3-31
3.6.3.6 DRAM Controller . 3-32

3.7 Clock Control . 3-32
3.7.1 Clock Features . 3-32
3.7.2 PLL Bypass Mode. 3-34

3.8 Hardware-Related Considerations. 3-34
3.9 Comparison To Other Devices. 3-34
3.10 Initialization . 3-34

CHAPTER 4 EMULATOR SUPPORT 4-1
4.1 Overview . 4-1
4.2 System Design. 4-1

4.2.1 Multiplexed Pins . 4-1
4.2.2 Emulator Connection . 4-1

4.3 Operation . 4-2
4.3.1 Usage . 4-2
4.3.2 Emulator-Related Signals . 4-2

4.3.2.1 A19–A0 . 4-2
4.3.2.2 AD15–AD0 . 4-2
4.3.2.3 {ADEN} / BHE . 4-2
4.3.2.4 ALE . 4-3
4.3.2.5 ARDY and SRDY . 4-3
4.3.2.6 BHE . 4-3
4.3.2.7 BSIZE8. 4-3
4.3.2.8 [CAS1–CAS0] and [RAS1–RAS0] 4-3
4.3.2.9 CLKOUT . 4-3
4.3.2.10 LCS . 4-3
4.3.2.11 MCS3–MCS0 . 4-4
4.3.2.12 {ONCE} . 4-4
4.3.2.13 QS1–QS0. 4-4
4.3.2.14 [RAS1–RAS0] . 4-4
4.3.2.15 RD . 4-4
4.3.2.16 RES . 4-4
4.3.2.17 RESOUT . 4-4
4.3.2.18 S2–S0 . 4-5
4.3.2.19 S6. 4-5
4.3.2.20 SRDY . 4-5
4.3.2.21 UCS . 4-5
4.3.2.22 {UCSX8} and WLB. 4-5
vi Am186™CC/CH/CU Microcontrollers User’s Manual

Table of Contents
4.3.2.23 WHB and WR. 4-5
4.3.2.24 WLB . 4-5
4.3.2.25 WR . 4-5

4.3.3 Hardware-Related Considerations . 4-5
4.3.4 Comparison to Other Devices . 4-5

4.4 Initialization . 4-5

CHAPTER 5 CHIP SELECTS 5-1
5.1 Overview . 5-1
5.2 Block Diagram . 5-2
5.3 System Design. 5-2
5.4 Registers . 5-3
5.5 Operation . 5-4

5.5.1 Usage . 5-4
5.5.2 Selecting Memory and I/O Space . 5-5

5.5.2.1 UCS . 5-5
5.5.2.2 LCS . 5-5
5.5.2.3 MCS3–MCS0 . 5-5
5.5.2.4 PCS7–PCS0 . 5-6

5.5.3 Selecting DRAM Using the Chip Selects 5-7
5.5.4 Overlapping Chip Selects . 5-8
5.5.5 Configuring Address and Data Buses . 5-9

5.5.5.1 UCS and LCS . 5-9
5.5.5.2 Non-UCS and Non-LCS. 5-9
5.5.5.3 PCS I/O Space. 5-9

5.5.6 Programming Ready Signals and Wait States 5-10
5.5.7 Chip Select Timing . 5-10
5.5.8 Hardware-Related Considerations . 5-10
5.5.9 Software-Related Considerations . 5-10
5.5.10 Comparison to Other Devices. 5-11

5.6 Initialization . 5-11

CHAPTER 6 DRAM CONTROLLER 6-1
6.1 Overview . 6-1
6.2 Block Diagram . 6-2
6.3 System Design. 6-2
6.4 Registers . 6-3
6.5 Operation . 6-3

6.5.1 Usage . 6-3
6.5.2 DRAM Supported . 6-3
6.5.3 DRAM Interface . 6-4
6.5.4 Option to Overlap DRAM with PCS . 6-5
6.5.5 DRAM Refresh . 6-5

6.5.5.1 DRAM Refresh Cycle . 6-5
6.5.5.2 DRAM Refresh Intervals . 6-6

6.5.6 Hardware-Related Considerations . 6-6
6.5.7 Software-Related Considerations . 6-6
6.5.8 Comparison to Other Devices. 6-7

6.6 Initialization . 6-7

CHAPTER 7 INTERRUPTS 7-1
7.1 Overview . 7-1
7.2 Block Diagram . 7-2
7.3 System Design. 7-3
7.4 Registers . 7-4
Am186™CC/CH/CU Microcontrollers User’s Manual vii

Table of Contents
7.5 Operation . 7-6
7.5.1 Usage . 7-6

7.5.1.1 Types of Interrupt Channels . 7-6
7.5.1.2 Using Maskable Interrupts . 7-7
7.5.1.3 Using Nonmaskable Interrupts. 7-8

7.5.2 Definitions of Interrupt Terms . 7-8
7.5.3 Interrupt Sequence . 7-9

7.5.3.1 Requesting the Interrupt . 7-9
7.5.3.2 Servicing the Interrupt . 7-10
7.5.3.3 Acknowledging the Interrupt 7-10
7.5.3.4 End-of-Interrupt (EOI) . 7-10
7.5.3.5 Returning from the Interrupt 7-10

7.5.4 Interrupt Priority . 7-11
7.5.4.1 Nonmaskable Interrupt and Software

Interrupt Priority . 7-11
7.5.4.2 Maskable Hardware Interrupt Priority. 7-11

7.5.5 Maskable Interrupts . 7-13
7.5.5.1 Maskable Interrupt Cycle . 7-13
7.5.5.2 Interrupts In Polled Mode. 7-14
7.5.5.3 Considerations for NMI, Software Interrupts,

and Traps . 7-14
7.5.5.4 Maskable Interrupt Overview 7-14
7.5.5.5 Maskable Interrupt Block Diagram. 7-15
7.5.5.6 PIOs as Interrupts . 7-18
7.5.5.7 Registers Used . 7-18

7.5.6 Nonmaskable Interrupts . 7-18
7.5.6.1 Software Interrupts. 7-19
7.5.6.2 Divide Error Exception (Interrupt Type 00h). 7-19
7.5.6.3 Trace Interrupt (Interrupt Type 01h) 7-19
7.5.6.4 Nonmaskable Interrupt (Interrupt Type 02h) 7-19
7.5.6.5 Breakpoint Interrupt (Interrupt Type 03h) 7-19
7.5.6.6 INT0 Detected Overflow Exception

(Interrupt Type 04h) . 7-19
7.5.6.7 Array Bounds Exception (Interrupt Type 05h) 7-20
7.5.6.8 Unused Opcode Exception (Interrupt Type 06h) . . . 7-20
7.5.6.9 ESC Opcode Exception (Interrupt Type 07h). 7-20

7.5.7 Software-Related Considerations . 7-20
7.5.8 Comparison to Other Devices . 7-20

7.6 Initialization . 7-20

CHAPTER 8 DMA CONTROLLER 8-1
8.1 Overview . 8-1
8.2 Block Diagram . 8-3
8.3 System Design. 8-4
8.4 Registers . 8-4
8.5 Operation . 8-7

8.5.1 When to Use DMA . 8-9
8.5.2 DMA Priority . 8-9
8.5.3 DMA Request Synchronization . 8-10
8.5.4 DMA Acknowledge . 8-10
8.5.5 DMA and Interrupts . 8-10
8.5.6 General-Purpose DMA Channels . 8-11

8.5.6.1 General-Purpose DMA Usage 8-12
8.5.6.2 General-Purpose DMA Cycle. 8-12
8.5.6.3 General-Purpose DMA Transfer Suspension. 8-13
8.5.6.4 General-Purpose DMA Source and Destination

Addresses . 8-13
viii Am186™CC/CH/CU Microcontrollers User’s Manual

Table of Contents
8.5.6.5 General-Purpose DMA Terminal Count 8-14
8.5.6.6 General-Purpose DMA Channel Operations 8-14

8.5.7 SmartDMA Channels . 8-26
8.5.7.1 SmartDMA Channels Introduction 8-26
8.5.7.2 SmartDMA Channel Request Source and

Synchronization . 8-27
8.5.7.3 SmartDMA Channel Memory Overview 8-28
8.5.7.4 SmartDMA Channel Usage 8-31
8.5.7.5 SmartDMA Channel Cycle . 8-35
8.5.7.6 SmartDMA Channel Descriptor Format 8-38
8.5.7.7 SmartDMA Channel Descriptor Polling 8-41
8.5.7.8 SmartDMA Channel Interrupts 8-42
8.5.7.9 SmartDMA Channel Use Without CPU Intervention 8-42

8.5.8 DMA and USB . 8-43
8.5.9 Software-Related Considerations . 8-43
8.5.10 Comparison to Other Devices . 8-43

8.6 Initialization . 8-44

CHAPTER 9 PROGRAMMABLE I/O SIGNALS 9-1
9.1 Overview . 9-1
9.2 Block Diagram . 9-1
9.3 System Design. 9-2
9.4 Registers . 9-5
9.5 Operation . 9-5

9.5.1 Usage . 9-5
9.5.2 Defining the PIO Signal as Input or Output 9-5
9.5.3 Driving Data on the PIO . 9-6
9.5.4 Using PIOs as Open-Drain Outputs . 9-6
9.5.5 Setting and Clearing Data . 9-6
9.5.6 Hardware-Related Considerations . 9-7
9.5.7 Software-Related Considerations . 9-7
9.5.8 Comparison to Other Devices . 9-7

9.6 Initialization . 9-7

CHAPTER 10 PROGRAMMABLE TIMERS 10-1
10.1 Overview . 10-1
10.2 Block Diagram . 10-1
10.3 System Design. 10-2
10.4 Registers . 10-2
10.5 Operation . 10-3

10.5.1 Usage . 10-3
10.5.2 Timer 2 . 10-3
10.5.3 Timer 0 and Timer 1 . 10-3
10.5.4 Requesting Interrupts . 10-5
10.5.5 Software Polling . 10-6
10.5.6 Generating Waveforms . 10-6
10.5.7 Pulse Width Demodulation . 10-6

10.5.7.1 Handling Short Signal Durations 10-7
10.5.7.2 Handling Long Signal Durations 10-7

10.5.8 Software-Related Considerations . 10-8
10.5.9 Comparison to Other Devices . 10-8

10.6 Initialization . 10-8

CHAPTER 11 WATCHDOG TIMER 11-1
11.1 Overview . 11-1
11.2 Block Diagram . 11-1
11.3 System Design. 11-2
11.4 Registers . 11-3
Am186™CC/CH/CU Microcontrollers User’s Manual ix

Table of Contents
11.5 Operation . 11-3
11.5.1 Usage . 11-3
11.5.2 Overview . 11-4
11.5.3 Hardware-Related Considerations . 11-4
11.5.4 Software-Related Considerations . 11-5
11.5.5 Comparison to Other Devices . 11-5

11.6 Initialization . 11-5

CHAPTER 12 SERIAL COMMUNICATIONS OVERVIEW 12-1
12.1 Overview . 12-1
12.2 System Design. 12-2

12.2.1 Multiplexed Signals . 12-2
12.2.2 Sample Applications for the Am186CC Communications

Controller . 12-3
12.3 Serial Communications Introduction . 12-6

12.3.1 Asynchronous and Synchronous Communications 12-6
12.3.2 Hardware Flow Control . 12-6
12.3.3 FIFOs . 12-7
12.3.4 Polled, Interrupt, and DMA Modes . 12-7
12.3.5 Simplex, Half-Duplex, and Full-Duplex Systems 12-8

CHAPTER 13 ASYNCHRONOUS SERIAL PORTS (UARTS) 13-1
13.1 Overview . 13-1
13.2 Block Diagram . 13-2
13.3 System Design. 13-3
13.4 Registers . 13-3
13.5 Operation . 13-4

13.5.1 Usage . 13-4
13.5.1.1 Transmit . 13-5
13.5.1.2 Receive . 13-6
13.5.1.3 Autobaud Mode (High-Speed UART Only) 13-7

13.5.2 Data . 13-8
13.5.2.1 Data Overflow . 13-8
13.5.2.2 Address Bits. 13-9
13.5.2.3 Receive Status and Data . 13-10
13.5.2.4 Extended Reads and Writes 13-10

13.5.3 FIFOs (High-Speed UART Only) . 13-11
13.5.3.1 Transmit FIFO . 13-11
13.5.3.2 Receive FIFO. 13-12
13.5.3.3 Using the FIFOs in Polled, Interrupt, or

DMA Mode . 13-12
13.5.4 CTS/RTR Hardware Flow Control . 13-13
13.5.5 Clock Sources and Baud Rate . 13-14

13.5.5.1 Programming the Baud Rate 13-15
13.5.5.2 Receiver Bit Sampling . 13-16
13.5.5.3 Detecting the Baud Rate Automatically

(High-Speed UART Only). 13-16
13.5.6 Interrupt Sources . 13-19
13.5.7 Break Detection and Generation. 13-20
13.5.8 Receive Special-Character Matching

(High-Speed UART Only) . 13-21
13.5.9 Interface to General-Purpose DMA Channels 13-21
13.5.10 Hardware-Related Considerations . 13-22
13.5.11 Software-Related Considerations . 13-22
13.5.12 Comparison to Other Devices. 13-23

13.6 Initialization . 13-23
x Am186™CC/CH/CU Microcontrollers User’s Manual

Table of Contents
CHAPTER 14 SYNCHRONOUS SERIAL PORT (SSI) 14-1
14.1 Overview . 14-1
14.2 Block Diagram . 14-1
14.3 System Design. 14-2
14.4 Registers . 14-3
14.5 Operation . 14-4

14.5.1 Usage . 14-4
14.5.2 Master/Slave Configuration . 14-4
14.5.3 Signal Interface . 14-4

14.5.3.1 SCLK . 14-4
14.5.3.2 SDATA . 14-5
14.5.3.3 SDEN . 14-5
14.5.3.4 SSI Transactions . 14-6

14.5.4 Software-Related Considerations . 14-8
14.5.5 Comparison to Other Devices . 14-8

14.6 Initialization . 14-9

CHAPTER 15 HIGH-LEVEL DATA LINK CONTROL (HDLC) 15-1
15.1 Overview . 15-1
15.2 Block Diagram . 15-2
15.3 System Design. 15-4
15.4 Registers . 15-5
15.5 Operation . 15-7

15.5.1 Usage . 15-7
15.5.2 Interface . 15-8

15.5.2.1 SmartDMA Interface . 15-8
15.5.2.2 Programmed I/O Interface . 15-8

15.5.3 General HDLC Options . 15-9
15.5.4 HDLC Transmitter . 15-10
15.5.5 HDLC Receiver . 15-14
15.5.6 HDLC and SmartDMA . 15-18

15.5.6.1 HDLC Transmitter . 15-18
15.5.6.2 HDLC Receiver . 15-19

15.5.7 Interrupts. 15-20
15.5.7.1 Transmit Interrupts . 15-20
15.5.7.2 Receive Interrupts . 15-20

15.5.8 Hardware-Related Considerations . 15-20
15.5.9 Software-Related Considerations . 15-21
15.5.10 Comparison to Other Devices . 15-21

15.6 Initialization . 15-21

CHAPTER 16 HDLC EXTERNAL SERIAL INTERFACE CONFIGURATION (TSAS) 16-1
16.1 Overview . 16-1
16.2 Block Diagrams . 16-3
16.3 System Design. 16-5
16.4 Registers . 16-7
16.5 Operation . 16-7

16.5.1 Usage . 16-7
16.5.2 Programmable Time Slots . 16-8
16.5.3 Muxing Logic . 16-8
16.5.4 External Interfaces . 16-11

16.5.4.1 Raw DCE . 16-11
16.5.4.2 PCM Highway . 16-11
16.5.4.3 GCI. 16-14

16.5.5 Software-Related Considerations . 16-14
16.5.6 Comparison to Other Devices . 16-14

16.6 Initialization . 16-14
Am186™CC/CH/CU Microcontrollers User’s Manual xi

Table of Contents
CHAPTER 17 GENERAL CIRCUIT INTERFACE (GCI) 17-1
17.1 Overview . 17-1
17.2 Block Diagram . 17-1
17.3 System Design. 17-3
17.4 Registers . 17-5
17.5 Operation . 17-5

17.5.1 Usage . 17-5
17.5.1.1 Transmitting Data. 17-6
17.5.1.2 Receiving Data. 17-7

17.5.2 GCI Structure: Channels and Frames 17-8
17.5.3 GCI Applications . 17-8
17.5.4 GCI Bus . 17-9

17.5.4.1 GCI Bus Deactivation/Activation 17-9
17.5.4.2 GCI Bus Reversal . 17-11

17.5.5 GCI Interface Signals . 17-13
17.5.5.1 Four-Pin Interface . 17-13
17.5.5.2 GCI-to-PCM Converted Pin Interface 17-14

17.5.6 Operating Frequencies . 17-14
17.5.7 GCI Channels . 17-14

17.5.7.1 GCI HDLC Channel Steering 17-14
17.5.7.2 Monitor Channel Operation 17-14
17.5.7.3 Monitor Channel Collision Detection 17-14
17.5.7.4 C/I Channel Operation . 17-15
17.5.7.5 TIC Bus Support . 17-16
17.5.7.6 IC Channel Operation . 17-19

17.5.8 Interrupts . 17-19
17.5.9 Software-Related Considerations . 17-20
17.5.10 Comparison to Other Devices . 17-20

17.6 Initialization . 17-20

CHAPTER 18 UNIVERSAL SERIAL BUS (USB) 18-1
18.1 Overview . 18-1
18.2 Block Diagram . 18-2
18.3 System Design. 18-2

18.3.1 Signal Trade-Offs . 18-2
18.3.1.1 USB Transceiver Interface . 18-3
18.3.1.2 Programmable Connect and Disconnect 18-3
18.3.1.3 USB Clock Source . 18-5
18.3.1.4 Isochronous Synchronization Signals 18-6

18.3.2 DMA Trade-Offs . 18-6
18.4 Registers . 18-7
18.5 Operation . 18-10

18.5.1 Usage . 18-10
18.5.1.1 General USB Peripheral Controller

Programming Issues . 18-10
18.5.1.2 Programming the Control Endpoint 18-11
18.5.1.3 Programming the Interrupt Endpoint 18-11
18.5.1.4 Programming Data Endpoints 18-12

18.5.2 Data Transmission and Data Types . 18-16
18.5.2.1 USB Suspend, Resume, and Remote Wakeup . . . 18-16
18.5.2.2 USB Reset . 18-17
18.5.2.3 USB Protocol Handling, IN Direction 18-17
18.5.2.4 USB Protocol Handling, OUT Direction 18-17

18.5.3 Handling USB Data . 18-18
18.5.4 Polled I/O . 18-18
18.5.5 Interrupt-Driven I/O . 18-19
xii Am186™CC/CH/CU Microcontrollers User’s Manual

Table of Contents
18.5.6 Using USB with DMA . 18-19
18.5.6.1 DMA Availability . 18-19
18.5.6.2 DMA/FIFO Interaction . 18-20
18.5.6.3 Setting Up DMA for USB . 18-21
18.5.6.4 Short Packets. 18-21
18.5.6.5 Error Recovery on Bulk and Interrupt Endpoints . . 18-22
18.5.6.6 Error Recovery on Isochronous Endpoints 18-23

18.5.7 Isochronous Transfer Synchronization 18-23
18.5.8 Isochronous Transfer Features . 18-24
18.5.9 Command Handling . 18-26

18.5.9.1 Commands Handled by Device Software 18-26
18.5.9.2 Commands Handled by the USB Peripheral

Controller Hardware. 18-27
18.5.10 Command Protocol . 18-28

18.5.10.1 Data Transfer Using the Control Endpoint 18-29
18.5.10.2 Control Endpoint Interrupts 18-29

18.5.11 Interrupt Endpoint Programming . 18-29
18.5.11.1 USB Command Processing and the

Interrupt Endpoint . 18-30
18.5.11.2 Data Transfer with the Interrupt Endpoint 18-30
18.5.11.3 Interrupt Endpoint Interrupts 18-30

18.5.12 Endpoint Definitions . 18-30
18.5.12.1 Control Endpoint Definition 18-30
18.5.12.2 Interrupt Endpoint Definition 18-31
18.5.12.3 Data Endpoint Definition . 18-32

18.5.13 Software-Related Considerations . 18-33
18.6 Initialization . 18-33

APPENDIX A REGISTER SUMMARY A-1

GLOSSARY GLOSSARY-1

INDEX INDEX-1
Am186™CC/CH/CU Microcontrollers User’s Manual xiii

Table of Contents
LIST OF FIGURES

Figure 1-1 Am186CC Communications Controller Block Diagram . 1-5
Figure 1-2 Am186CH HDLC Microcontroller Block Diagram . 1-5
Figure 1-3 Am186CU USB Microcontroller Block Diagram . 1-5
Figure 1-4 ISDN Terminal Adapter . 1-14
Figure 1-5 ISDN-to-Ethernet Low-End Router . 1-14
Figure 1-6 32-Channel Linecard . 1-15
Figure 2-1 Register Set . 2-2
Figure 2-2 Processor Status Flags Register . 2-3
Figure 2-3 Physical Address Generation . 2-6
Figure 2-4 Memory and I/O Space. 2-7
Figure 2-5 Supported Data Types . 2-9
Figure 3-1 Typical Microcontroller Memory System With DRAM . 3-29
Figure 3-2 Typical Microcontroller Memory System With SRAM . 3-29
Figure 3-3 Am186CC/CH/CU Microcontroller Clocks . 3-33
Figure 5-1 Chip Selects and DRAM Block Diagram. 5-2
Figure 5-2 Chip Selectable Memory Space . 5-6
Figure 5-3 Chip Selectable I/O Space . 5-7
Figure 6-1 Chip Selects and DRAM Block Diagram (Same as Figure 5-1) 6-2
Figure 7-1 Interrupts Block Diagram . 7-3
Figure 7-2 Interrupt Vector Translation . 7-9
Figure 7-3 Partial Block Diagram of Interrupt Controller Scheme . 7-15
Figure 8-1 DMA Block Diagram . 8-3
Figure 8-2 Source Versus Destination Synchronization. 8-10
Figure 8-3 DMA Request Sources . 8-16
Figure 8-4 Source-Synchronized General-Purpose DMA Transfers . 8-18
Figure 8-5 Destination-Synchronized General-Purpose DMA Transfers 8-19
Figure 8-6 SmartDMA Channel Descriptor Ring Example . 8-29
Figure 8-7 SmartDMA Channel Memory Management . 8-30
Figure 8-8 SmartDMA Transmit Channel Flow Diagram . 8-37
Figure 8-9 SmartDMA Receive Channel Flow Diagram. 8-38
Figure 9-1 PIO Operation Block Diagram . 9-2
Figure 10-1 Programmable Timers Block Diagram . 10-1
Figure 10-2 Pulse Width Demodulation Example . 10-6
Figure 11-1 Watchdog Timer Block Diagram . 11-1
Figure 11-2 Access to the WDTCON Register. 11-3
Figure 12-1 HDLC Control Application. 12-4
Figure 12-2 POTS Linecard . 12-4
Figure 12-3 ISDN Application. 12-5
Figure 12-4 ISDN Application with GCI-to-PCM Highway Conversion 12-5
Figure 12-5 CTS/RTR Protocol . 12-7
Figure 13-1 UARTs Block Diagram . 13-2
Figure 13-2 UARTs Frame . 13-8
Figure 13-3 UARTs Timing . 13-8
Figure 13-4 RTR_U Signal Behavior . 13-14
Figure 13-5 RTR_HU Signal Behavior with Receive FIFOs. 13-14
Figure 13-6 UARTs Clock. 13-15
Figure 13-7 Worst Case % Error Per Bit vs. Baud Divisor Without Autobaud Enhancement . 13-17
Figure 13-8 Detectable Baud Ranges for Various Frequencies. 13-17
Figure 13-9 Autobaud Enhancement . 13-18
Figure 13-10 Break Character Example. 13-20
Figure 14-1 SSI Block Diagram . 14-2
Figure 14-2 Synchronous Serial Interface System Application Example 14-3
Figure 14-3 SSI Multiple Transmit with SDEN as External Device Enable 14-7
Figure 14-4 SSI Multiple Transmit with PIO as External Device Enable 14-7
Figure 14-5 SSI Single-Transmit, Multiple-Receive with SDEN as External Device Enable . . . 14-8
Figure 15-1 HDLC Frame. 15-1
xiv Am186™CC/CH/CU Microcontrollers User’s Manual

Table of Contents
Figure 15-2 HDLC, TSA, and GCI Block Diagram . 15-3
Figure 15-3 HDLC Transmitter Block Diagram . 15-10
Figure 15-4 CTS Controlled Start of Transmit . 15-14
Figure 15-5 CTS Controlled End of Transmit. 15-14
Figure 15-6 CTS Inactive at End of Frame . 15-14
Figure 15-7 HDLC Receiver Block Diagram . 15-15
Figure 15-8 RTR Timing. 15-18
Figure 16-1 Block Diagram For TSA Multiplexing (Am186CC Communications Controller) . . . 16-3
Figure 16-2 Block Diagram For TSA Multiplexing (Am186CH HDLC Microcontroller). 16-3
Figure 16-3 HDLC, TSA, and GCI Block Diagram (Same as Figure 15-2) 16-4
Figure 16-4 ISDN PCM System Application Example . 16-5
Figure 16-5 ISDN Basic-Rate GCI Application (Am186CC Communications Controller) 16-10
Figure 16-6 Programmable Frame Sync . 16-13
Figure 16-7 Converted GCI Clock and Frame Sync . 16-13
Figure 17-1 HDLC, TSA, and GCI Block Diagram (Same as Figure 15-2) 17-2
Figure 17-2 ISDN TA GCI-to-PCM Conversion System Application Example 17-3
Figure 17-3 GCI Terminal Mode Frame Structure . 17-8
Figure 17-4 Bus Activation/Deactivation . 17-10
Figure 17-5 Downstream Versus Upstream. 17-12
Figure 17-6 GCI With Bus Reversal Enabled. 17-12
Figure 17-7 GCI With Bus Reversal Disabled . 17-13
Figure 17-8 TIC Bus Downstream Format . 17-16
Figure 17-9 TIC Bus Upstream Format . 17-16
Figure 18-1 USB Interface Block Diagram . 18-2
Figure 18-2 USB With Internal Transceiver . 18-4
Figure 18-3 USB With External Transceiver . 18-5
Am186™CC/CH/CU Microcontrollers User’s Manual xv

Table of Contents
LIST OF TABLES

Table 0-1 Documentation Conventions. xxii
Table 1-1 Feature Comparison. 1-4
Table 2-1 Internal Processor Registers . 2-1
Table 2-2 Configuration Register Summary . 2-4
Table 2-3 Peripheral Register Summary. 2-5
Table 2-4 Segment Register Selection Rules. 2-8
Table 2-5 Memory Addressing Mode Examples . 2-10
Table 3-1 Multiplexed Signal Trade-Offs. 3-1
Table 3-2 Multiplexed Signal Trade-Offs Ordered by PIO . 3-3
Table 3-3 System Configuration Register Summary. 3-4
Table 3-4 CPU and Internal Peripheral States Immediately Following Power-On Reset 3-6
Table 3-5 Reset Configuration Pins (Pinstraps) . 3-7
Table 3-6 Signal Descriptions Table Definitions . 3-9
Table 3-7 Signal Descriptions. 3-10
Table 3-8 Programming Am186CC/CH/CU Microcontrollers Bus Width 3-31
Table 5-1 Chip Selects Multiplexed Signals . 5-3
Table 5-2 Chip Select Register Summary. 5-3
Table 5-3 Signal Function When UCS or LCS is Configured for DRAM. 5-7
Table 6-1 DRAM Multiplexed Signals . 6-2
Table 6-2 DRAM Controller Register Summary . 6-3
Table 6-3 DRAM Supported by the Am186CC/CH/CU Microcontrollers 6-4
Table 6-4 Address Multiplexing Reference . 6-4
Table 6-5 Refresh Interval Times . 6-6
Table 7-1 Interrupt Multiplexed Signals . 7-4
Table 7-2 Interrupt Controller Register Summary . 7-5
Table 7-3 Interrupt Types . 7-12
Table 7-4 Interrupt Channel Map . 7-16
Table 7-5 Interrupt Channel Sources . 7-17
Table 8-1 DMA Multiplexed Signals . 8-4
Table 8-2 DMA Controller Register Summary . 8-4
Table 8-3 Am186CC Communications Controller DMA Channel Use 8-8
Table 8-4 Am186CH HDLC Microcontroller DMA Channel Use . 8-8
Table 8-5 Am186CU USB Microcontroller DMA Channel Use . 8-9
Table 8-6 General-Purpose DMA Data Transfers. 8-11
Table 8-7 General-Purpose DMA Request Source and Synchronization 8-17
Table 8-8 Maximum DMA Transfer Rates . 8-19
Table 8-9 Example Register Settings for UARTs and Circular Buffers 8-22
Table 8-10 Am186CC SmartDMA Channel Request Source and Synchronization 8-27
Table 8-11 Am186CH SmartDMA Channel Request Source and Synchronization 8-28
Table 8-12 Am186CU SmartDMA Channel Request Source and Synchronization 8-28
Table 8-13 SmartDMA Transmit Channel Descriptor Format . 8-39
Table 8-14 SmartDMA Receive Channel Descriptor Format . 8-40
Table 9-1 PIO Multiplexed Signals . 9-3
Table 9-2 PIO Register Summary. 9-5
Table 9-3 PIO Mode and PIO Direction Register Bit Settings. 9-6
Table 9-4 PIO Set and PIO Clear Registers’ Effect on PIO Data Register 9-6
Table 10-1 Programmable Timer Multiplexed Signals . 10-2
Table 10-2 Programmable Timers Register Summary . 10-2
Table 10-3 Timer 0 and Timer 1 Behavior . 10-4
Table 11-1 Watchdog Timer Multiplexed Signals . 11-2
Table 11-2 Watchdog Timer Register Summary. 11-3
Table 12-1 Multiplexed Signal Trade-Offs for Serial Interfaces . 12-2
Table 13-1 UARTs Multiplexed Signals. 13-3
Table 13-2 UARTs Register Summary . 13-4
Table 13-3 Baud Rate Table for UARTs . 13-15
Table 13-4 Examples of Autobaud Enhancement . 13-18
xvi Am186™CC/CH/CU Microcontrollers User’s Manual

Table of Contents
Table 13-5 UARTs Interrupt Sources . 13-19
Table 14-1 SSI Multiplexed Signals . 14-2
Table 14-2 SSI Register Summary . 14-3
Table 15-1 HDLC/TSA/GCI Multiplexed Signals. 15-4
Table 15-2 HDLC Register Summary . 15-6
Table 16-1 HDLC/TSA/GCI Multiplexed Signals (Same as Table 15-1) 16-5
Table 16-2 TSA Register Summary . 16-7
Table 16-3 Timing Parameters Per Device (Supported PCM Codecs in GCI Mode) 16-14
Table 17-1 HDLC/TSA/GCI Multiplexed Signals (Same as Table 15-1) 17-3
Table 17-2 GCI Register Summary. 17-5
Table 17-3 GCI Signals. 17-13
Table 17-4 Converted GCI Signals . 17-14
Table 17-5 TIC Bus Bits . 17-16
Table 18-1 USB Multiplexed Signals . 18-3
Table 18-2 USB PLL Mode Pinstraps. 18-6
Table 18-3 USB Register Summary . 18-7
Table 18-4 USB Endpoints Used with DMA . 18-20
Table 18-5 USB Commands Handled by Device Software. 18-27
Table 18-6 USB Commands Handled by USB Peripheral Controller Hardware. 18-28
Table 18-7 Control Endpoint Definition . 18-31
Table 18-8 Interrupt Endpoint Definition . 18-31
Table 18-9 Data Endpoints A–D Definition . 18-32
Table A-1 Am186CC/CH/CU Microcontrollers Register Summary .A-2
Am186™CC/CH/CU Microcontrollers User’s Manual xvii

Table of Contents
xviii Am186™CC/CH/CU Microcontrollers User’s Manual

PREFACE
INTRODUCTION
COMM86 FAMILY
The Am186™CC communications controller, Am186CH HDLC microcontroller, and
Am186CU USB microcontroller, the first members of the AMD Comm86™ family, are cost-
effective, high-performance embedded microcontroller solutions for communications
applications. These highly integrated microcontrollers enable customers to save system
costs and increase performance over 8-bit microcontrollers and other 16-bit
microcontrollers.

All of these microcontrollers offer the advantages of the x86 development environment’s
widely available native development tools, applications, and system software. Additionally,
the microcontrollers use the industry-standard 186 instruction set that is part of the AMD
E86™ family, which continually offers instruction-set-compatible upgrades. Built into each
of the microcontrollers is a wide range of communications features required in many
communications applications.

PURPOSE OF THIS MANUAL
This manual describes the technical features and programming interface of the Am186CC,
Am186CH, and Am186CU microcontrollers.

Intended Audience
The Am186CC/CH/CU Microcontrollers User’s Manual, order #21914, is intended for
computer software and hardware engineers and system architects who are designing or
are considering designing systems based on one of these controllers.

Overview of this Manual
This manual is organized into the following chapters:

■ Chapter 1, “Architectural Overview,” provides an overview of the features of the
microcontrollers, including a block diagram and sample application diagrams.

■ Chapter 2, “Configuration Basics,” provides basic information about configuring the
microcontrollers, including discussions of the registers, memory organization, address
generation, I/O space, peripheral control block, instruction set, segments, data types,
and addressing modes.

■ Chapter 3, “System Overview,” contains descriptions of the microcontrollers’ system
configuration registers, initialization and processor reset, signals, bus interface, and
clock control.

■ Chapter 4, “Emulator Support,” describes the various features available in the
microcontrollers to facilitate the design and operation of In-Circuit Emulators, and
discusses common concerns shared among emulator developers.

■ Chapter 5, “Chip Selects,” describes the six chip selects provided for use with memory
devices and the eight provided for use with peripherals in either memory or I/O space.

■ Chapter 6, “DRAM Controller,” discusses the fully integrated DRAM controller that
provides a glueless interface to 40-, 50-, 60-, and 70-ns Extended Data Out (EDO)
DRAM.
Am186™CC/CH/CU Microcontrollers User’s Manual xix

Introduction
■ Chapter 7, “Interrupts,” describes the microcontrollers’ support for interrupts, both
maskable and nonmaskable. It discusses interrupt sequence and priority as well as how
to configure the maskable interrupt sources through the interrupt channels. It also
describes the nonmaskable interrupts.

■ Chapter 8, “DMA Controller,” describes how to use the DMA channels (general-purpose
and SmartDMA channels) to transfer data between memory and internal and external
peripherals.

■ Chapter 9, “Programmable I/O Signals,” discusses the user programmable input/output
signals (PIOs).

■ Chapter 10, “Programmable Timers,” tells how to use the programmable timers for the
following tasks: counting or timing external events, generating nonrepetitive or variable-
duty-cycle waveforms, generating interrupts, supporting real-time coding and time-delay
applications through polling, prescaling the other timer, requesting DMA, or measuring
pulse widths (as a PWD).

■ Chapter 11, “Watchdog Timer,” describes how to use the watchdog timer to generate
nonmaskable interrupts (NMIs), microcontroller resets, and system resets when the
programmable time-out value is reached.

■ Chapter 12, “Serial Communications Overview,” discusses the serial communications
features of the microcontrollers and their trade-offs, and provides a brief overview of
serial communications.

■ Chapter 13, “Asynchronous Serial Ports (UARTs),” describes how to use the UART and
High-Speed UART for asynchronous serial data transfer.

■ Chapter 14, “Synchronous Serial Port (SSI),” discusses how to use the SSI synchronous
serial port to provide half-duplex, bidirectional communications between the
microcontrollers and other system components

■ Chapter 15, “High-Level Data Link Control (HDLC),” provides a brief overview of HDLC
and describes how to configure the HDLC channels to support data movement in a
variety of applications.

■ Chapter 16, “HDLC External Serial Interface Configuration (TSAs),” describes how to
use the time-division multiplex features to configure the HDLC external serial interfaces.
Each Time-Slot Assigner (TSA) can be programmed to select between raw DCE and
dedicated PCM Highway external interfaces, as well as to multiplex GCI/PCM Highway
data.

■ Chapter 17, “General Circuit Interface (GCI),” discusses how to configure the GCI
controller for a GCI interface on HDLC Channel A, or multiplexed GCI/PCM Highway
interfaces to the other channels

■ Chapter 18, “Universal Serial Bus (USB),” covers the highly flexible integrated USB
peripheral controller and how to implement a variety of microcontroller-based USB
peripheral devices for telephony, audio, or other high-end applications.

■ Appendix A, “Register Summary,” provides a summary of all the microcontroller
peripheral control block (PCB) registers, listed in offset order.

■ The Glossary provides definitions of significant terms used in this manual.

■ The Index contains extensive references to make it easier to find specific information.

CHCC

CHCC

CC

CUCC
xx Am186™CC/CH/CU Microcontrollers User’s Manual

Introduction
RELATED DOCUMENTS
The following documents contain additional information that will be useful in designing an
embedded application based on the Am186CC/CH/CU microcontrollers.

AMD Documentation
In addition to this manual, the documentation set for the Am186CC/CH/CU microcontrollers
includes the following documents:

■ The Am186™CC Communications Controller Data Sheet, order #21915, the
Am186™CH HDLC Microcontroller Data Sheet, order #22024, and the Am186™CU
USB Microcontroller Data Sheet, order #22025, include complete pin lists, pin state
tables, timing and thermal characteristics, and package dimensions for their particular
microcontroller.

■ The Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916, fully
describes all the registers required to program the microcontrollers.

■ The Am186 and Am188 Family Instruction Set Manual, order #21267, provides a detailed
description and examples for each instruction included in the Am186 and Am188 family
instruction set.

■ Interfacing an Am186™CC Communications Controller to an AMD SLAC™ Device
Using the Enhanced SSI, order #21921, application note describes how to connect these
two devices. The same techniques can be used to connect the Am186CC microcontroller
to any SLAC device.

■ Am186™CC/CH/CU Communications Controller Customer Development Platform
Board Manual, order #22002, which describes a platform for silicon evaluation and
software development, as well as a router/ISDN terminal adapter module.

Other information of interest includes:

■ E86™ Family Products and Development Tools CD, order #21058, provides a single-
source multimedia tool for customer evaluation of AMD products, as well as
FusionE86SM partner tools and technologies that support the E86 and Comm86 families.
Technical documentation is included on the CD in PDF format.

■ IOM-2 Interface Reference Guide, order #12576, describes the terminal version of the
IOM-2/GCI interface.

To order literature, contact the nearest AMD sales office or call the literature center at one
of the numbers on the back cover of this manual. In addition, many documents are available
in PDF form on the AMD web site. To access the AMD home page, go to www.amd.com.
Then follow the Embedded Processors link for information about E86 and Comm86
products.
Am186™CC/CH/CU Microcontrollers User’s Manual xxi

Introduction
Additional Information
The following non-AMD documents and sources provide additional information that may
be of interest to Am186CC and Am186CU microcontroller users:

■ Universal Serial Bus Specification, Revision 1.0, available from the USB web site at
http://www.usb.org.

■ Universal Serial Bus System Architecture, by Don Anderson, Mindshare, Inc., Addison
Wesley Developers Press, 1997.

DOCUMENTATION CONVENTIONS
Table 0-1 lists the documentation conventions used throughout this manual.

.

Table 0-1 Documentation Conventions

Notation Meaning

General

bit A single bit in a register

bit field Two or more consecutive and related bits

set the EN bit Write a 1 to the EN bit

clear the EN bit Write a 0 to the EN bit

external reset A reset caused by asserting the RES input signal

internal reset A reset initiated by the watchdog timer (see Chapter 11, “Watchdog Timer”)

system reset Assertion of the RESOUT signal to reset external peripherals. An external
reset always causes a system reset; an internal reset can optionally cause a system
reset.

offset 000h A register offset, relative to the base of the current PCB space defined in
the Relocation (RELOC) register

Pin Naming

{ } Pin function during hardware reset (pinstrap)

[] Alternative pin function

pin Refers to the physical wire.

signal Refers to the electrical signal that flows across a pin.

SIGNAL
A line over a signal name indicates that the signal is active Low; a signal name
without a line is active High.

MCS3–MCS0 All four signals (or registers, or fields)

MCSx Any of the four signals (or registers, or fields)

Numbers

b Binary number

d Decimal number
Decimal is the default radix

h Hexadecimal number

x in a number Any of several values is legal; for example, 0x01b can be either 0001b or
0101b

[X–Y] The bit field that consists of bits X through Y

CUCC
xxii Am186™CC/CH/CU Microcontrollers User’s Manual

Introduction
MICROCONTROLLER-SPECIFIC INFORMATION
This manual provides information that applies to all three of the Am186CC/CH/CU
microcontrollers as well as information that is specific to each controller. To help identify
controller-specific information, this manual uses icons in the margin and within tables and
figures. Table 0-1 illustrates these icons.

Some chapters apply only to one or two of the controllers. These chapters have a note at
the beginning of the chapter with the relevant icons next to the note.

One or more icons immediately following a heading indicates that the information under
that heading (up to the next heading) applies only to the indicated controllers.

Icons that appear other than at the beginning of the chapter or immediately following a
heading apply to the specific paragraph, list, figure, portion of figure, table, or table cell
indicated by the icon. If a paragraph, list, figure, or table does not have any accompanying
icons, the information applies to all of the microcontrollers covered by the chapter.

Microcontroller-Specific Information Icons

Information specific to the Am186CC Communications Controller

Information specific to the Am186CH HDLC Microcontroller

Information specific to the Am186CU USB Microcontroller

Table 0-1 Documentation Conventions (Continued)

Notation Meaning

CC

CH

CU
Am186™CC/CH/CU Microcontrollers User’s Manual xxiii

Introduction
xxiv Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
1 A
RCHITECTURAL OVERVIEW
1.1 FEATURES
The Am186CC, Am186CH, and Am186CU microcontrollers, the first members of the AMD
Comm86™ family, are cost-effective, high-performance microcontroller solutions for
communications applications. These highly integrated microcontrollers enable customers
to save system costs and increase performance over 8-bit microcontrollers and other 16-bit
microcontrollers.

These microcontrollers offer the advantages of the x86 development environment’s widely
available native development tools, applications, and system software. Additionally, these
microcontrollers use the industry-standard 186 instruction set that is part of the AMD E86
family, which continually offers instruction-set-compatible upgrades. Use of this instruction
set ensures both backward and upward software compatibility.

AMD offers complete solutions with these microcontrollers. A customer development
platform board for silicon evaluation and software development is available. Reference
designs under development include a low-end router with Integrated Services Digital
Network (ISDN), Ethernet, USB, and Plain Old Telephone Service (POTS), as well as an
ISDN terminal adapter featuring USB. AMD and its FusionE86SM Partners offer boards,
schematics, drivers, protocol stacks, and routing software for these reference designs to
enable fast time to market.

1.2 Am186CC COMMUNICATIONS CONTROLLER
Built into the Am186CC microcontroller is a wide range of communications features required
in many communications applications, including High-level Data Link Control (HDLC) and
the Universal Serial Bus (USB). It includes the following distinctive characteristics:

■ Serial communications peripherals

– Four High-level Data Link Control (HDLC) channels

– USB peripheral controller

– Eight SmartDMA™ channels to support HDLC and USB

– Four independent Time Slot Assigners (TSAs)

– Physical interface for HDLC channels can be raw DCE, PCM Highway, or GCI (IOM-2)

– High-speed UART with autobaud

– UART

– Synchronous serial interface (SSI)

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 1-1

Architectural Overview
■ System peripherals

– Interrupt controller (36 maskable interrupts)

– Four general-purpose DMA channels

– 48 programmable I/O signals

– Three programmable 16-bit timers

– Hardware watchdog timer

■ Memory and Peripheral Interface

– Integrated DRAM controller

– Glueless interface to RAM/ROM/Flash memory (40-ns Flash memory required for
zero-wait-state operation at 50 MHz)

– Fourteen chip selects (6 memory, 8 peripheral)

– External bus mastering support

– Multiplexed and nonmultiplexed address/data bus

– Programmable bus sizing

– 8-bit boot option

1.2.1 Am186CH HDLC Microcontroller
The Am186CH HDLC microcontroller is a cost-reduced derivative of the Am186CC
microcontroller that is targeted towards cost-sensitive applications such as linecards and
digital phones. The Am186CH HDLC microcontroller is pin-compatible with the Am186CC
microcontroller and offers many of the same features, yet the Am186CH HDLC
microcontroller provides a cost-effective solution for communications devices that require
fewer HDLC channels and do not need GCI or USB. It includes the following distinctive
characteristics:

■ Serial communications peripherals

– Two High-level Data Link Control (HDLC) channels

– Four SmartDMA channels to support HDLC

– Two independent Time Slot Assigners (TSAs)

– Physical interface for HDLC channels can be raw DCE or PCM Highway

– High-speed UART with autobaud

– UART

– Synchronous serial interface (SSI)

■ System peripherals

– Interrupt controller (31 maskable interrupts)

– Four general-purpose DMA channels

– 48 programmable I/O signals

– Three programmable 16-bit timers

– Hardware watchdog timer

CH
1-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Architectural Overview
■ Memory and Peripheral Interface

– Integrated DRAM controller

– Glueless interface to RAM/ROM/Flash memory (40-ns Flash memory required for
zero-wait-state operation at 50 MHz)

– Fourteen chip selects (6 memory, 8 peripheral)

– External bus mastering support

– Multiplexed and nonmultiplexed address/data bus

– Programmable bus sizing

– 8-bit boot option

1.2.2 Am186CU USB Microcontroller
The Am186CU USB microcontroller is a cost-reduced derivative of the Am186CC
microcontroller that is targeted towards cost-sensitive applications such as USB peripherals
and digital-subscriber- line (DSL) modems. The Am186CU USB microcontroller is pin-
compatible with the Am186CC microcontroller and offers many of the same features, yet
the Am186CU USB microcontroller provides a cost-effective solution for USB devices that
do not need GCI or HDLC. It includes the following distinctive characteristics:

■ Serial communications peripherals

– USB peripheral controller

– Four SmartDMA channels to support USB

– High-speed UART with autobaud

– UART

– Synchronous serial interface (SSI)

■ System peripherals

– Interrupt controller (30 maskable interrupts)

– Four general-purpose DMA channels

– 48 programmable I/O signals

– Three programmable 16-bit timers

– Hardware watchdog timer

■ Memory and Peripheral Interface

– Integrated DRAM controller

– Glueless interface to RAM/ROM/Flash memory (40-ns Flash memory required for
zero-wait-state operation at 50 MHz)

– Fourteen chip selects (6 memory, 8 peripheral)

– External bus mastering support

– Multiplexed and nonmultiplexed address/data bus

– Programmable bus sizing

– 8-bit boot option

CU
Am186™CC/CH/CU Microcontrollers User’s Manual 1-3

Architectural Overview
1.2.3 Feature Comparison
Table 1-1 summarizes and compares the features of each of the microcontrollers.

1.3 BLOCK DIAGRAMS
Figure 1-1, Figure 1-2, and Figure 1-3 show the block diagrams for the Am186CC/CH/CU
microcontrollers, respectively.

Table 1-1 Feature Comparison

Feature

HDLC Channels 4 2 –

Time Slot Assigners (TSAs) 4 2 –

Raw DCE Interface ✔ ✔ –

PCM Highway Interface ✔ ✔ –

GCI (IOM-2) Interface ✔ – –

USB Peripheral Controller ✔ – ✔

SmartDMA Channels 8 (4 pair) 4 (2 pair) 4 (2 pair)

General-Purpose DMA Channels 4 4 4

High-Speed UART ✔ ✔ ✔

UART ✔ ✔ ✔

Synchronous Serial Interface (SSI) ✔ ✔ ✔

Internal Maskable Interrupts 19 14 13

External Maskable Interrupts 17 17 17

Programmable I/O Signals (PIOs) 48 48 48

16-Bit Timers 3 3 3

Hardware Watchdog Timer ✔ ✔ ✔

Integrated DRAM Controller ✔ ✔ ✔

Glueless Interface to RAM/ROM/Flash
Memory

✔ ✔ ✔

Memory Chip Selects 6 6 6

Peripheral Chip Selects 8 8 8

External Bus Mastering Support ✔ ✔ ✔

Multiplexed and Nonmultiplexed
Address/Data Bus

✔ ✔ ✔

Programmable Bus Sizing ✔ ✔ ✔

8-Bit Boot Option ✔ ✔ ✔

CC CH CU
1-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Architectural Overview
Figure 1-1 Am186CC Communications Controller Block Diagram

Figure 1-2 Am186CH HDLC Microcontroller Block Diagram

Figure 1-3 Am186CU USB Microcontroller Block Diagram

Smart
DMA (8)

General-
Purpose
DMA (4)

Physical
Interface

Raw DCE

PCM

Serial Communications Peripherals

TSA

TSA

TSA

TSA

Muxing

Glueless
Interface

to RAM/ROM

DRAM
Controller

Am186
CPU

Chip
Selects (48)

Watchdog
Timer

Interrupt
Controller UART

High-Speed
UART with
Autobaud

USB
Synchronous

HDLC

HDLC

HDLC

HDLC

(14)

Highway

GCI (IOM-2)

(17 Ext.
Sources)

PIOs
Serial

Interface (SSI)

Timers
(3)

System PeripheralsMemory Peripherals

CC

Smart
DMA (4)

General-
Purpose
DMA (4)

Physical
Interface

Raw DCE

PCM

Serial Communications Peripherals

TSA

TSA

Glueless
Interface

to RAM/ROM

DRAM
Controller

Am186
CPU

Chip
Selects (48)

Watchdog
Timer

Interrupt
Controller UART

High-Speed
UART with
Autobaud

Synchronous

HDLC

HDLC

(14)

Highway

(17 Ext.
Sources)

PIOs
Serial

Interface (SSI)

Timers
(3)

System PeripheralsMemory Peripherals

Muxing

CH

Smart
DMA (4)

General-
Purpose
DMA (4)

Serial Communications Peripherals

Glueless
Interface

to RAM/ROM

DRAM
Controller

Am186
CPU

Chip
Selects (48)

Watchdog
Timer

Interrupt
Controller UART

High-Speed
UART with
Autobaud

USB
Synchronous

(14) (17 Ext.
Sources)

PIOs
Serial

Interface (SSI)

Timers
(3)

System PeripheralsMemory Peripherals

CU
Am186™CC/CH/CU Microcontrollers User’s Manual 1-5

Architectural Overview
1.4 ARCHITECTURAL OVERVIEW
The architectural goal of the Am186CC/CH/CU microcontrollers is to provide
comprehensive communications features on a processor running the widely-known x86
instruction set. These microcontrollers combine communications peripherals with the
Am186 embedded CPU, resulting in highly integrated microcontrollers that provide system-
cost and performance advantages for a wide range of communications applications.

The following sections provide an overview of the features of the microcontrollers. The
chapter number in parenthesis indicates where that feature is discussed in detail.

1.4.1 Am186 Embedded CPU (Chapter 2)
All members of the Am186 family, including the Am186CC/CH/CU microcontrollers, are
compatible with the original industry-standard 186 parts, and build on the same core set
of internal processor registers, instructions, and addressing modes. This chapter also
describes the memory organization, address generation, I/O space, peripheral control
block, segments, and data types.

1.4.2 Serial Communications Support (Chapter 12)
The Am186CC microcontroller supports eight serial interfaces: a USB peripheral controller,
four HDLC channels, two UARTs, and an SSI. In addition, it supports the use of GCI and
SmartDMA with the serial interfaces.

The Am186CH HDLC microcontroller supports five serial interfaces: two HDLC channels,
two UARTs, and an SSI. In addition, it supports the use of SmartDMA with the serial
interfaces.

The Am186CU USB microcontroller supports four serial interfaces: a USB peripheral
controller, two UARTs, and an SSI. In addition, it supports the use of SmartDMA with the
serial interfaces.

For an overview of the serial communications features, see Chapter 12, “Serial
Communications Overview.”

1.4.2.1 Universal Serial Bus (Chapter 18)

The Am186CC and Am186CU microcontrollers each include a highly flexible integrated
USB peripheral controller that lets designers implement a variety of microcontroller-based
USB peripheral devices for telephony, audio, and other high-end applications. This
integrated USB peripheral controller can provide a significant system-cost reduction
compared to platforms that require a separate USB peripheral controller.

The Am186CC and Am186CU microcontrollers act as USB peripheral devices. The USB
is a half-duplex, master/slave, polled bus. In other words, the microcontroller speaks on the
USB only in response to a request from the USB host, usually a personal computer. There
can be only one speaker on the USB at a time.

The USB controller does not support USB host or hub functions. However, the Am186CC
and Am186CU microcontrollers can be used to implement USB peripheral functions in a
device that also contains separate USB hub circuitry.

Use these microcontrollers in self-powered USB peripherals that use the full-speed
signalling rate of 12 Mbit/s; they do not support the USB low-speed rate of 1.5 Mbit/s. Each
microcontroller includes an integrated USB transceiver to minimize system device count
and cost, but an external transceiver can be used instead, if necessary.

CC

CH

CU

CUCC
1-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Architectural Overview
In addition, the USB peripheral controller supports the following:

■ An unlimited number of device descriptors.

■ A total of six endpoints: one control endpoint; one interrupt endpoint; and four data
endpoints that can be configured as control, interrupt, bulk, or isochronous. The interrupt,
bulk, and isochronous endpoints can be configured for the IN or OUT direction.

■ Two of the data endpoints have 16-byte FIFOs and two have 64-byte FIFOs.

■ Fully integrated differential driver, which directly supports the USB interface.

■ Specialized hardware, which supports adaptive isochronous data streams and
automatically synchronizes with HDLC data streams.

■ General-purpose DMA and SmartDMA channels.

1.4.2.2 HDLC Channels (Chapter 15) and TSAs (Chapter 16)

The Am186CC microcontroller provides four HDLC channels and the Am186CH HDLC
microcontroller provides two HDLC channels. These channels support the HDLC, SDLC,
LAP-B, LAP-D, PPP, and V.120 protocols. The HDLC channels can also be used in
transparent mode to support V.110. Each HDLC channel can connect to an external serial
interface directly (non-multiplexed mode), or can pass through a TSA (multiplexed mode).
The flexible interface multiplexing arrangement allows each HDLC channel to have its own
external interface, to share a common PCM highway or other time division multiplexed
(TDM) bus with the other channels, or to work in some combination.

The Am186CC microcontroller supports raw DCE, PCM highway, and GCI interfaces.

The Am186CH HDLC microcontroller supports raw DCE and PCM highway interfaces.

Each HDLC channel’s independent TSA allows it to extract a subset of data from a TDM
bus. It can isolate the entire frame or as little as one bit per frame. The channel’s 12-bit
counter defines the start/stop bit times as the number of bits after frame synchronization.
The time slot can be an arbitrary number of bits up to 4096 bits. Start bit and stop bit times
identify the isolated portion of the TDM frame. Support of less than eight bits per time slot,
or bit slotting, allows isolation of from one to eight bits in a single time slot, providing a
convenient way to work with D-channel data. Each TDM bus can have up to 512 8-bit time
slots. Support of these features allows interoperation with PCM highway, E1, IOM-2, T1,
and other TDM buses.

To make the Am186CC and Am186CH microcontrollers attractive devices for use where
general HDLC capability is required, the HDLC channels support the following features:

■ Clear-to-Send (CTS) and Ready-to-Receive (RTR) hardware handshaking and auto-
enable operation

■ Collision detection for multidrop applications

■ Transparency mode

■ Address comparison on receive

■ Flag or mark idle operation

■ Two dedicated buffer descriptor ring SmartDMA channels per HDLC channel

■ Transmit and receive FIFOs

■ Full-duplex data transfer

CHCC

CC

CH
Am186™CC/CH/CU Microcontrollers User’s Manual 1-7

Architectural Overview
Each TSA channel can support a burst data rate to or from the HDLC of up to 10 Mbit/s in
both raw DCE and PCM highway modes.

In addition to raw DCE and PCM highway, the Am186CC microcontroller can share its GCI
interface with up to two other channels. In GCI mode, the Am186CC microcontroller’s TSA
channels can support a burst data rate to or from the HDLC of up to 768 Kbit/s.

Total system data throughput is highly dependent on the amount of per-packet and per-
byte CPU processing, the rate at which packets are being sent, and other CPU activity.

When combined with the TSAs, the HDLC channels are suitable for use in a wide variety
of applications such as ISDN basic rate interface (BRI) and primary rate interface (PRI) B
and D channels, PCM highway, X.25, Frame Relay, and other proprietary Wide Area
Network (WAN) connections.

1.4.2.3 General Circuit Interface (Chapter 17)

The GCI is an interface specification developed jointly by Alcatel, Italtel, GPT, and Siemens.
This specification defines an industry-standard serial bus for interconnecting
telecommunications integrated circuits. The standard covers linecard, NT1, and terminal
architectures for ISDN applications. The Am186CC microcontroller supports the terminal
version of GCI.

The GCI interface provides a glueless connection between the Am186CC microcontroller
and GCI/IOM-2 based ISDN transceiver devices, such as the AMD Am79C30 or Am79C32.
The GCI interface provides a 4-pin connection to the transceiver device. The Am186CC
microcontroller also allows conversion of the GCI clock and GCI frame sync into a format
usable by PCM codecs, allowing the use of PCM codecs directly with GCI/IOM-2
transceivers. Additional GCI features include slave mode with pin reversal, Terminal
Interchip Communication (TIC) bus support for D channel arbitration and collision detection,
and support for one Monitor and two Command/Indicate channels.

1.4.2.4 SmartDMA Channels (Chapter 8)

Each of the Am186CC/CH/CU microcontrollers contain both SmartDMA channels and
general-purpose DMA channels (see “General-Purpose DMA Channels (Chapter 8)” on
page 1-10). The SmartDMA channels provide a faster method for moving data between
peripherals and memory with lower CPU utilization. SmartDMA transmits and receives data
across multiple memory buffers and a sophisticated buffer-chaining mechanism. These
channels work in pairs: transmitter and receiver. The transmit channels can transfer data
only from memory to a peripheral; the receive channels can transfer data only from a
peripheral to memory.

The Am186CC microcontroller provides a total of 12 DMA channels: eight SmartDMA
channels and four general-purpose DMA channels. Four of the SmartDMA channels (two
pairs) are dedicated for use with two of the on-board HDLC channels. The remaining four
SmartDMA channels (two pairs) can support either the third or fourth HDLC channel or
Universal Serial Bus (USB) endpoints A, B, C, or D.

The Am186CH HDLC microcontroller provides a total of eight DMA channels: four
SmartDMA channels to support the two HDLC channels and four general-purpose DMA
channels.

The Am186CU USB microcontroller provides a total of eight DMA channels: four SmartDMA
channels to support USB endpoints A–D and four general-purpose DMA channels.

CHCC

CC

CC

CC

CH

CU
1-8 Am186™CC/CH/CU Microcontrollers User’s Manual

Architectural Overview
1.4.2.5 Asynchronous Serial Ports (Chapter 13)

The Am186CC/CH/CU microcontrollers each have two asynchronous serial ports that
provide full-duplex, bidirectional data transfer with speeds up to 460 Kbaud. One port is a
high-speed UART with transmit and receive FIFOs, special character matching, and
automatic baud rate detection, suitable for implementation of a Hayes-compatible modem
interface to a host PC. There is also a lower speed UART, which typically is used for a low
baud rate system configuration port or debug port. Each of these UARTs can derive its
baud rate from the CPU clock or from a separate baud rate generator clock input. Both
UARTs support 7-, 8-, or 9-bit data transfers; address bit generation and detection in 7- or
8-bit frames; one or two stop bits; even, odd, or no parity; break generation and detection;
hardware flow control; and DMA to and from the serial ports using the general-purpose
DMA channels (see “General-Purpose DMA Channels (Chapter 8)” on page 1-10).

1.4.2.6 Synchronous Serial Port (Chapter 14)

The Am186CC/CH/CU microcontrollers each include one SSI port, which provides a half-
duplex, bidirectional communications interface between the microcontroller and other
system components. Typical applications use this interface to monitor the status of other
system devices and to configure these devices under software control. In a communications
application, these devices could be system components such as audio coder-decoders
(codecs), line interface units, and transceivers. The SSI supports data transfer speeds of
up to 25 Mbit/s with a 50-MHz CPU clock.

The SSI port operates as an interface master with the other attached devices acting as
slave devices. Using this protocol, the microcontroller sends a command byte to the
attached device, and then follows that byte with either a read or write of a byte of data.

The SSI port consists of three I/O pins: an enable (SDEN), a clock (SCLK), and a
bidirectional data pin (SDATA). SDEN can be used directly as an enable for a single attached
device. When more than one device requires control through the SSI, use PIOs to provide
enable pins for those devices.

The SSI port is, in general, software compatible with the Am186EM SSI port. Some
additional features have been added to the Am186CC/CH/CU microcontrollers’ SSI
implementation. In addition, the microcontroller can select the polarity of the SCLK and
SDEN pins, as well as the shift order of bits on the SDATA pin (least-significant-bit first
versus most-significant-bit first). The SSI port also offers a programmable clock divisor
(dividing the clock from 2 to 256 in power of 2 increments), a bidirectional transmit/receive
shift register, and direct connection to AMD Subscriber Line Audio-processing Circuit
(SLAC™) devices.

1.4.3 System Peripherals
The Am186CC/CH/CU microcontrollers provide several additional system peripherals to
simplify incorporation of the microcontroller into an embedded application.

1.4.3.1 Interrupt Controller (Chapter 7)

The Am186CC/CH/CU microcontrollers each feature an interrupt controller, which arranges
up to 36 maskable interrupt requests by priority and presents them one at a time to the CPU.

The interrupt controller supports the maskable interrupt sources through the use of 15
channels. To make this possible, most interrupt channels support multiple interrupt sources.
These channels are programmable to support the external interrupt pins or various
peripheral devices that can be configured to generate interrupts. The maskable interrupt
sources include 17 external sources plus a number of internal sources.

The Am186CC microcontroller has 19 internal maskable interrupt sources.CC
Am186™CC/CH/CU Microcontrollers User’s Manual 1-9

Architectural Overview
The Am186CH HDLC microcontroller has 14 internal maskable interrupt sources.

The Am186CU USB microcontroller has 13 internal maskable interrupt sources.

In addition to interrupts managed by the interrupt controller, each microcontroller supports
eight nonmaskable interrupts—an external or internal nonmaskable interrupt (NMI), a trace
interrupt, and software interrupts and exceptions.

1.4.3.2 General-Purpose DMA Channels (Chapter 8)

Four of the DMA channels in each of the Am186CC/CH/CU microcontrollers are general
purpose. The general-purpose DMA channels support data transfer between memory and
I/O spaces (i.e., memory-to-I/O or I/O-to-memory) or within the same space (i.e., memory-
to-memory or I/O-to-I/O). In addition, the microcontrollers support data transfer between
peripherals and memory or I/O. Internal peripherals that support general-purpose DMA are
Timer 2, which can provide a periodic internal DMA request, and the two asynchronous
serial ports (UART and High-Speed UART).

External peripherals support DMA transfers through the external DMA request pins (DRQ1–
DRQ0). Each general-purpose channel accepts a DMA request from one of three sources:
the DMA request signals (DRQ1–DRQ0), Timer 2, or the UARTs. (Note that Timer 2 acts
only as a DMA request source; no data is transferred to or from Timer 2.) In addition to the
general-purpose channels, the microcontrollers provide SmartDMA channels (see
“SmartDMA Channels (Chapter 8)” on page 1-8).

The USB peripheral controller in the Am186CC and Am186CU microcontrollers can also
request a general-purpose DMA transfer.

1.4.3.3 Programmable I/O Signals (Chapter 9)

Each of the Am186CC/CH/CU microcontrollers provides 48 user-programmable input/
output signals (PIOs). In the Am186CC microcontroller, each of these signals shares a pin
with at least one alternate function. In the Am186CH and Am186CU microcontrollers, most
but not all of the PIOs share a pin with alternate functions. If an application does not need
the alternate function, the associated PIO can be used by programming the PIO registers.

If a pin is enabled to function as a PIO signal, the alternate function is disabled and does
not affect the pin. A PIO signal can operate as an input or output, with or without internal
pullup or pulldown resistors (whether the resistors are pullup or pulldown depends on the
pin configuration and is not user-configurable), or as an open-drain output. In addition to
the three PIOs multiplexed with interrupt signals, eight other PIOs can be configured as
external interrupt sources. For more information about PIOs as interrupt sources, see
Chapter 7, “Interrupts.”

1.4.3.4 Programmable Timers (Chapter 10)

Each of the Am186CC/CH/CU microcontrollers has three 16-bit programmable timers.
Timers 0 and 1 are highly versatile and are each connected to two external pins (each one
has an input and an output). These two timers can count or time external events that drive
the timer input pins. Timers 0 and 1 can also generate nonrepetitive or variable-duty-cycle
waveforms on the timer output pins.

Timer 2 is not connected to any external pins. Software can use it to generate interrupts,
or poll it for real-time coding and time-delay applications. Software can also use Timer 2
as a prescaler to Timer 0 and Timer 1, or as a DMA request source (see Chapter 8, “DMA
Controller”).

The source clock for Timer 2 is one-fourth of the CPU clock frequency. Timers 0 and 1 can
use every fourth cycle of the CPU clock as a source, or they can be driven from the timer

CH

CU

CC CU
1-10 Am186™CC/CH/CU Microcontrollers User’s Manual

Architectural Overview
input pins. When driven from a timer input pin, the timer is counting the “event” of an input
transition.

The microcontroller also provides a pulse width demodulation (PWD) option so that a
toggling input signal’s Low state and High state durations can be measured.

1.4.3.5 Hardware Watchdog Timer (Chapter 11)

Each of the Am186CC/CH/CU microcontrollers provides a full-featured watchdog timer,
which includes the ability to generate NMIs, reset the microcontroller (except for pinstraps),
and reset the system (assert RESOUT) when the time-out value is reached. The time-out
value is programmable and ranges from 210 to 226 processor clocks.

The watchdog timer is used to regain control when a system has failed due to a software
error or the failure of an external device to respond in the expected way. Software errors
can sometimes be resolved by recapturing control of the execution sequence through a
watchdog-timer-generated NMI. When an external device fails to respond, or responds
incorrectly, it may be necessary to reset the microcontroller or the entire system, including
external devices. The watchdog timer provides the flexibility to support both NMI and reset
generation.

1.4.4 Memory and Peripheral Interface
Each of the Am186CC/CH/CU microcontrollers includes the following memory and
peripheral interfaces.

1.4.4.1 System Interfaces and Clock Control (Chapter 3)

The microcontroller includes a bus interface to control all accesses to the peripheral control
block (PCB), memory-mapped and I/O-mapped external peripherals, and memory devices.
The bus interface accesses the internal peripherals through the PCB. The bus interface
features programmable bus sizing, separate byte/write enables, and the option to boot from
an 8-bit or 16-bit device.

The industry-standard 80C186 and 80C188 microcontrollers use a multiplexed address
and data (AD) bus. The address is present on the AD bus only during the t1 clock phase.
The microcontrollers also provide the multiplexed AD bus and in addition, provide a
nonmultiplexed address (A) bus. The A bus provides an address to the system for the
complete bus cycle (t1–t4).

The microcontroller operates with a VCC of 3.3 ± 0.3 V. All the digital signals are capable
of 5-V-tolerant I/O operation.

The processor supports clock rates from 25 MHz to 50 MHz. Commercial and industrial
temperature ratings are available. The CPU can run in 1x, 2x, or 4x mode.

The Am186CC and Am186CU microcontrollers provide separate crystal oscillator inputs
for the USB peripheral controller and the CPU. Flexibility is provided to run the entire device
from a 12- or 24-MHz crystal when the USB is in use. The CPU can run in 1x, 2x, or 4x
mode; the USB can run in 2x or 4x mode.

1.4.4.2 Dynamic Random Access Memory Support (Chapter 6)

To support DRAM, the microcontroller has a fully integrated DRAM controller that provides
a glueless interface to 25-ns to 70-ns Extended Data Out (EDO) DRAM (EDO DRAM is
sometimes called Hyper-Page Mode DRAM). The microcontroller can access up to two
banks of 4-Mbit (256 Kbit x 16 bit) DRAM. The microcontroller does not support Page Mode
DRAM, Fast Page Mode DRAM, Asymmetrical DRAM, or 8-bit wide DRAM. The
microcontroller provides zero-wait state operation at up to 50 MHz with 40-ns DRAM. This

CC CU
Am186™CC/CH/CU Microcontrollers User’s Manual 1-11

Architectural Overview
capability allows designs requiring larger amounts of memory to save system cost over
SRAM designs by taking advantage of low DRAM costs.

The DRAM interface uses various chip select pins to implement the RAS/CAS interface
required by DRAMs. The microcontroller’s DRAM controller drives the RAS/CAS interface
appropriately during both normal memory accesses and refresh. The microcontroller
generates all required signals and does not require external logic.

The DRAM multiplexed address pins connect to the microcontroller’s odd address pins,
starting with A1 on the microcontroller connecting to MA0 on the DRAM. The correct row
and column address are generated on these odd address pins during a DRAM access.

The RAS pins are multiplexed with LCS or MCS3, allowing a DRAM bank to be present in
either high or low memory space. MCS2 and MCS1 function as the lower and upper CAS
pins, respectively, and define which byte of data in a 16-bit DRAM is being accessed.

The microcontroller supports the most common DRAM refresh option, CAS-Before-RAS.
All refresh cycles contain three wait states to support the DRAMs at various frequencies.
The DRAM controller never performs a burst access. All accesses are single accesses to
DRAM. If the PCS chip selects are decoded to be in the DRAM address range, PCS
accesses take precedence over the DRAM.

1.4.4.3 Chip Selects (Chapter 5)

The microcontroller provides six chip select outputs for use with memory devices and eight
more chip selects for use with peripherals in either memory or I/O space. The six memory
chip selects can address three memory ranges. Each peripheral chip select addresses a
256-byte block offset from a programmable base address.

The microcontroller can be programmed to sense a ready signal for each of the peripheral
or memory chip select lines. A bit in each chip select control register determines whether
the external ready signal is required or ignored.

In addition, the chip selects can control the number of wait states inserted in the bus cycle.
Although most memory and peripheral devices can be accessed with three or less wait
states, some slower devices cannot. This feature allows devices to use wait states to slow
down the bus.

The chip select lines are active for all memory and I/O cycles in their programmed areas,
whether the cycles are generated by the CPU or by the integrated DMA unit.

General enhancements over the original 80C186 include bus mastering (three-state)
support for all chip selects, and activation only when the associated register is written (not
when it is read).

1.4.5 In-Circuit Emulator Support (Chapter 4)
Because pins are an expensive resource, many play a dual role, and the programmer selects
PIO operation or an alternate function. However, a pin configured to be a PIO may also be
required for emulation support. Therefore, it is important that before a design is committed
to hardware, a user contact potential emulator suppliers for a list of emulator pin
requirements.

The Am186CC/CH/CU microcontrollers are designed to minimize conflicts. In most cases,
pin conflict is avoided. For example, if the ALE signal is required for multiplex bus support,
then it would not be programmed as PIO33. If the multiplexed AD bus is not used for address
determination, then ALE can be programmed as a PIO pin.
1-12 Am186™CC/CH/CU Microcontrollers User’s Manual

Architectural Overview
1.5 APPLICATIONS
The Am186CC/CH/CU microcontrollers, with their integrated communications features,
provide highly integrated, cost-effective solutions for a wide range of telecommunications
and networking applications.

■ ISDN Modems and Terminal Adapters: Next-generation ISDN equipment requires
USB (or High-speed UART capability), in addition to three channels of HDLC.

■ Low-End Routers: ISDN to Ethernet-based personal routers, often used for
connections in Small Office/Home Office (SOHO) environments, require three channels
of HDLC, as well as the high performance of a 16-bit controller.

■ Linecard Applications: Typically, linecards used in Central Offices (COs), PABX
equipment, and other telephony applications require one or two channels of HDLC.
Linecard manufacturers are moving to more lines per card for analog POTS as a means
of cost reduction. This, and digital linecards for support of ISDN, often requires higher
performance than existing 8-bit devices can offer. The Am186CC and Am186CH
microcontrollers are ideal solutions for these applications because they integrate much
of the necessary glue logic while providing higher performance.

■ xDSL Applications: Today’s xDSL applications, such as high-speed ADSL modems,
require data handling of 2 Mbit/s or greater and can take advantage of the USB interface
for easy connectivity to the PC.

■ Digital Corded Phones: Typical digital telephone applications use up to three channels
of HDLC and may use USB for merged PC telephony applications.

■ Industrial Control: Embedded x86 processors have long been used in the industrial
control market. These applications often require a robust, high-performance processor
solution with the capability to easily communicate with other parts of a system. The
Am186CC and Am186CH microcontrollers provide numerous interfaces to achieve this
communication, including the SSI interface, high-speed UART, and the HDLC channels,
which also can be used to create a multidrop backplane.

■ USB Peripheral Devices: These devices will become more common as the PC market
embraces the USB protocol specified by the Microsoft™ Windows 98 operating system.
In addition to implementing communications device class systems such as an ISDN
terminal adapter, the USB peripheral controller makes the Am186CC and Am186CU
USB microcontrollers suitable for certain PC desktop applications such as a USB camera
interface, ink-jet printers, and scanners.

■ General Communications Applications: The Am186CC/CH/CU microcontrollers will
also find a home in general embedded applications, because many devices will
incorporate communications capability in the future. These microcontrollers are
especially attractive for 186 designs adding HDLC, USB, or both.

The block diagrams beginning on page 1-5 show some typical designs. Figure 1-4 shows
an ISDN terminal adapter. Figure 1-5 shows a low-end router. Figure 1-6 shows a 32-
channel linecard.

The ISDN terminal adapter features an S/T or U interface and either a high-speed UART
or USB connection for attaching the modem to the PC.

The ISDN-to-Ethernet low-end router features an S/T or U interface, two POTS lines, and
a 10-Mbit/s connection to the PC.

The 32-channel linecard design demonstrates a linecard application where 32 lines
terminate on the linecard.

CC

CC

CC CH

CC CU

CC

CC CH

CC CU
Am186™CC/CH/CU Microcontrollers User’s Manual 1-13

Architectural Overview
Figure 1-4 ISDN Terminal Adapter

Figure 1-5 ISDN-to-Ethernet Low-End Router

CC

CC
1-14 Am186™CC/CH/CU Microcontrollers User’s Manual

Architectural Overview
Figure 1-6 32-Channel Linecard
CHCC
Am186™CC/CH/CU Microcontrollers User’s Manual 1-15

Architectural Overview
1-16 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
2 C
ONFIGURATION BASICS
2.1 OVERVIEW
All members of the Am186 family, including the Am186CC/CH/CU microcontrollers, build
on the same core set of internal processor registers, instructions, and addressing modes.
All members are compatible with the original industry-standard 186 parts.

This chapter provides basic information about configuring the microcontrollers, including
discussions of the registers, memory organization, address generation, I/O space,
peripheral control block, instruction set, segments, data types, and addressing modes.

2.2 REGISTER SET
The microcontroller contains hundreds of configuration and control registers, both internal
and external to the processor. The instruction set contains instructions to access the internal
processor registers directly. Peripheral registers are external to the processor. However,
because the processor treats these peripheral registers either like memory or like I/O,
instructions with memory or I/O operands can access peripheral registers. This section
briefly describes these processor and peripheral registers. For detailed information on the
microcontroller peripheral registers, see the Am186™CC/CH/CU Microcontrollers Register
Set Manual, order #21916.

2.2.1 Processor Registers
The base architecture of the Am186CC/CH/CU microcontrollers has 14 registers, like all
members of the Am186 family. Table 2-1 lists these registers.

Table 2-1 Internal Processor Registers

Register Name
Register

Mnemonic
Function

General-Purpose
Arithmetic and Logical
Operand

AX Accumulator

BX Base

CX Count

DX Data

Base Pointer BP Stack segment, points to bottom of the stack frame

Source Index SI
Data movement and string instructions

Destination Index DI

Stack Pointer SP Stack segment, points to top of stack

Code Segment CS
Points to the current code segment, which contains
instructions to be fetched

Data Segment DS Selects memory segment addressable for data

Stack Segment SS Selects memory segment addressable for the stack

Extra Segment ES Selects memory segment addressable for data

Processor Status Flags FLAGS Contains status and control flag bits

Instruction Pointer IP
Contains offset address of next instruction to be
executed
Am186™CC/CH/CU Microcontrollers User’s Manual 2-1

Configuration Basics
These registers are grouped into the following categories:

■ General-Purpose registers: Eight 16-bit general-purpose registers support arithmetic
and logical operands. Four of these (AX, BX, CX, and DX) also operate as pairs of
separate 8-bit registers (AH, AL, BH, BL, CH, CL, DH, and DL). The Destination Index
(DI) and Source Index (SI) general-purpose registers support data movement and string
instructions. The Base Pointer (BP) and Stack Pointer (SP) general-purpose registers
point to the bottom and to the top of the stack frame (in the stack segment), respectively.

– Base and Index registers: Four of the general-purpose registers (BP, BX, DI, and
SI) also support the determination offset addresses of operands in memory. These
registers can contain base addresses or indexes to particular locations within a
segment. The addressing mode selects the specific registers for operand and address
calculations.

– Stack Pointer register: All stack operations (POP, POPA, POPF, PUSH, PUSHA,
PUSHF) utilize the stack pointer. The Stack Pointer (SP) register is always offset from
the Stack Segment (SS) register, and no segment override is allowed.

■ Segment registers: Four 16-bit special-purpose registers (CS, DS, ES, and SS) select,
at any given time, the segments of memory that are immediately addressable for code
(CS), data (DS and ES), and stack (SS) memory.

■ Status and Control registers: Two 16-bit special-purpose registers record or alter
certain aspects of the processor state—the Instruction Pointer (IP) register contains the
offset address of the next sequential instruction to be executed, and the Processor Status
Flags (FLAGS) register contains status and control flag bits (see Figure 2-1 and Figure
2-2).

Figure 2-1 Register Set

2.2.2 Processor Status Flags Register
The 16-bit Processor Status Flags register, illustrated in Figure 2-2, records specific
characteristics of the result of logical and arithmetic instructions (bits 0, 2, 4, 6, 7, and 11)
and controls the operation of the microcontroller within a given operating mode (bits 8, 9,
and 10).

AHByte
Addressable

(8-Bit
Register
Names
Shown)

Loop/Shift/Repeat/Count

Base Registers

Code Segment

Data Segment

Stack Segment

Extra Segment

Processor Status Flags

 Instruction Pointer

General
Registers

Status and Control
Registers

Segment Registers

15 0

15 0

7 0 7 0

15 0

CS

FLAGS
IP

16-Bit
Register Name

Special Register
Functions

DS

SS

ES

AX

DX

CX

BX

BP

SI

DI

SP

DH

CH

BH

AL

DL

CL

BL

Index Registers

Stack Pointer

Multiply/Divide
I/O Instructions

Base Pointer

Source Index

Destination Index

16-Bit
Register Name
2-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Configuration Basics
After the processor executes an instruction, the value of the flags can be set to 1, cleared
or reset to 0, unchanged, or undefined. The term undefined means that the flag value prior
to the execution of the instruction is not preserved, and that after the instruction is executed,
the value of the flag cannot be predicted.

Figure 2-2 Processor Status Flags Register

Bits 15–12, Reserved

Bit 11, Overflow Flag (OF): Set if the signed result cannot be expressed within the number
of bits in the destination operand; otherwise cleared.

Bit 10, Direction Flag (DF): When set, causes string instructions to auto-decrement the
appropriate index registers. When cleared, causes auto-increment.

Bit 9, Interrupt-Enable Flag (IF): When set, enables maskable interrupts to cause the
CPU to transfer control to a location specified by an interrupt vector. This flag is cleared
when the processor takes a hardware interrupt, or a trace interrupt, by using the CLI
instruction. For more information about hardware and software interrupts, see Chapter 7,
“Interrupts.”

Bit 8, Trace Flag (TF): When set, a trace interrupt occurs after instructions execute. TF is
cleared by the trace interrupt after the processor status flags are pushed onto the stack.
The trace service routine can continue tracing by popping the flags back with an interrupt
return (IRET) instruction.

Bit 7, Sign Flag (SF): Set equal to high-order bit of result (0 if 0 or positive, 1 if negative).

Bit 6, Zero Flag (ZF): Set if result is 0; otherwise cleared.

Bit 5, Reserved

Bit 4, Auxiliary Carry (AF): Set on carry from or borrow to the low-order four bits of the
AL general-purpose register; otherwise cleared.

Bit 3, Reserved

Bit 2, Parity Flag (PF): Set if low-order eight bits of result contain an even number of bits
set to 1; otherwise cleared.

Bit 1, Reserved

Bit 0, Carry Flag (CF): Set on high-order bit carry or borrow; otherwise cleared.

15 7 0

IF
TF
SF

ZF

Res

CFPF

Reserved

Res

AF

Res

OF

DF
Am186™CC/CH/CU Microcontrollers User’s Manual 2-3

Configuration Basics
2.2.3 Peripheral Registers
While the 186-legacy registers can be accessed directly through the 186 instructions, the
peripheral registers must be accessed by using instruction operands that access memory
or I/O space.

The address of each 16-bit read/write peripheral register is in the internal 1-Kbyte peripheral
control block (PCB). Registers physically reside in the peripheral devices they control, but
they are addressed through the PCB. This block resides either in memory or I/O space, at
the location pointed to by the Peripheral Control Block Relocation (RELOC) register (see
Table 2-2). Because the base address of the block can change, the address of each register
is specified as an offset from the location pointed to by the RELOC register, rather than as
an absolute address. To determine the absolute address of the register in memory or I/O
space, add the offset to the base address. For a discussion of memory versus I/O space,
see “Memory Organization and Address Generation” on page 2-5.

Note: Accesses to the PCB should be performed by direct processor actions. The use of
DMA to write or read from the PCB results in unpredictable behavior, except where explicit
exception is made to support a peripheral function, such as the High-Speed UART transmit
and receive data registers.

The PCB base address can be set to any even 1-Kbyte boundary in memory or I/O space
(i.e., the lower 10 bits of the base address must be 0). RELOC resides in the last register
address of the PCB, at offset 03FEh. On an external or watchdog timer reset, the RELOC
register value is set to 20FCh, which maps the PCB to start at FC00h in I/O space. This
places the RELOC register at FFFEh. Appendix A, “Register Summary,” provides a
summary of PCB registers in offset order, including default address locations. For a
complete description of the RELOC register, see the Am186™CC/CH/CU Microcontrollers
Register Set Manual, order #21916.

A legacy feature on the Am186CC/CH/CU microcontrollers allows logical word writes to
the PCB registers to be performed as byte writes on the external bus. These writes transfer
16 bits of data to the PCB register even if an 8-bit register is named in the instruction. For
example, “out dx, al” writes the value of AX to the port address in DX. Reads to the PCB
registers should always be done as word reads. This feature eliminates the need for an
additional bus cycle when the same code is executed on an 8-bit Am188 device or when
the PCB overlaps an 8-bit address space. Unaligned reads and writes to the PCB result in
unpredictable behavior on the Am186CC/CH/CU microcontrollers.

Internal logic recognizes control block addresses and responds to bus cycles. During bus
cycles to internal registers, the bus controller signals the operation externally (i.e., the RD,
WR, status, address, and data lines are driven as in a normal bus cycle), but the data bus,
SRDY, and ARDY are ignored.

Table 2-3 lists the peripheral registers by functional groupings, along with the address offset
where the group begins. For detailed information about the peripheral registers, refer to the
Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916.

Table 2-2 Configuration Register Summary

Offset
Register
Mnemonic

Register Name Description

3FEh RELOC Peripheral Control Block Relocation
Allows software to relocate the peripheral
control block to start at any even 1024-byte
location in either memory or I/O space.
2-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Configuration Basics
2.3 MEMORY ORGANIZATION AND ADDRESS GENERATION
Memory is organized in sets of segments. Each segment is a linear contiguous sequence
of 64K (216) 8-bit bytes and must begin on a 16-byte boundary. Memory is addressed using
a two-component address that consists of a 16-bit segment value and a 16-bit offset. The
offset is the number of bytes from the beginning of the segment (the segment address) to
the data or instruction that is being accessed. This segment value and offset form the logical
address, which is used by code.

The processor forms the physical address of the target location by taking the segment
address, shifting it to the left 4 bits (multiplying by 16), and adding the result to the 16-bit
offset. The resulting sum is the 20-bit address of the target data or instruction. This technique
allows for a 1-Mbyte physical address size.

Table 2-3 Peripheral Register Summary

Offset Range Functional Block User’s Manual Chapter 1

Notes:
1. For a list of registers with their bit field names and offset addresses, see Appendix A, “Register
Summary.” The Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916, de-
scribes these registers in detail. That manual presents the registers in order of offset, from lowest
to highest.

000h–0F0h2

2. Reserved in the Am186CU USB microcontroller.

High-level Data Link Control (HDLC) Chapter 15

100h–13Ch General-Purpose DMA
Chapter 8

140h–198h SmartDMA

1E0h–25Eh3

3. Reserved in the Am186CH HDLC microcontroller.

Universal Serial Bus (USB) Chapter 18

260h–27Ch
High-Speed Asynchronous Serial Port
(High-Speed UART) Chapter 13

280h–28Eh Asynchronous Serial Port (UART)

2A0h–2BEh4

4. Reserved in the Am186CH and Am186CU microcontrollers.

General Circuit Interface (GCI) Chapter 17

2C0h–2DCh2 Time Slot Assigner (TSA) Chapter 16

2F0h–2F8h Synchronous Serial Interface (SSI) Chapter 14

300h–338h Interrupt Controller Chapter 7

340h–354h Programmable Timers Chapter 10

3A0h–3A8h Chip Selects Chapter 5

3AAh–3ACh DRAM Chapter 6

3C0h–3DCh Programmable I/O (PIO) Chapter 9

3DEh Reset Configuration Chapter 3

3E0h Watchdog Timer Chapter 11

3F0h System Configuration
Chapter 3

3F4h Processor Release Level

3FEh Relocation Chapter 2

CC CH

CC CU

CC

CC CH
Am186™CC/CH/CU Microcontrollers User’s Manual 2-5

Configuration Basics
For example, if the segment register is loaded with 12A4h and the offset is 0022h, the
resultant address is 12A62h, as illustrated in Figure 2-3. To find the result:

1. The segment register contains 12A4h.

2. Shift the segment register left 4 places to produce 12A40h.

3. The offset is 0022h.

4. Add the shifted segment address (12A40h) to the offset (00022h). The result is 12A62h.

5. This address is placed on the pins of the microcontroller.

All instructions that address operands in memory must specify (implicitly or explicitly) a
16-bit segment value and a 16-bit offset value. The 16-bit segment values are contained in
one of the four internal segment registers (CS, DS, ES, and SS). For more information about
calculating the offset value, see “Addressing Modes” on page 2-9. For more information
about CS, DS, ES, and SS, see “Segments” on page 2-7.

In addition to 1 Mbyte of memory space, the Am186CC microcontroller provides 64K of I/O
space (see Figure 2-4). Note that the processor reserves 00000h to 003FFh in memory for
the interrupt vector table.

Figure 2-3 Physical Address Generation

2.4 I/O SPACE
The I/O space consists of 64K 8-bit or 32K 16-bit ports. The IN, INS, OUT, and OUTS
instructions address the I/O space with either an 8-bit port address specified in the
instruction, or a 16-bit port address in the DX register. Eight-bit port addresses are zero-
extended so that A15–A8 are Low. Note the processor reserves I/O port addresses 00F8h
through 00FFh. The microcontroller provides specific instructions for addressing I/O space.

1 2 A 4 0

0 0 0 2 2

1 2 A 6 2

1 2 A 4

0 0 2 2

Segment Base

Logical
Address

Shift
Left

4 Bits

Physical Address

To Memory

Offset

015

15

15

19

19

0

0

0

0

2-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Configuration Basics
Figure 2-4 Memory and I/O Space

2.5 INSTRUCTION SET
The instruction set for the Am186CC/CH/CU microcontrollers is identical to the 80C186/188
instruction set. An instruction can reference from zero to several operands. An operand can
reside in a register, in the instruction itself, or in memory. Specific operand addressing
modes are discussed on page 2-9. For instruction set details, see the Am186 and Am188
Family Instruction Set Manual, order #21267.

2.6 SEGMENTS
The microcontroller uses four segment registers:

1. Data Segment (DS): The processor assumes that all accesses to the program’s
variables are from the 64K space pointed to by the DS register. The data segment holds
data, operands, and so on.

2. Code Segment (CS): This 64K space is the default location for all instructions. All code
must be executed from the code segment.

3. Stack Segment (SS): The processor uses the SS register to perform operations that
involve the stack, such as pushes and pops. The stack segment provides temporary
storage space.

4. Extra Segment (ES): Typically, this segment supports large string operations and large
data structures. Certain string instructions assume the extra segment as the segment
portion of the address. By using a segment override, the extra segment can also support
a spare data segment.

When a data movement instruction does not define a segment, the processor assumes a
data segment. An instruction prefix can override the segment register. For speed and
compact instruction encoding, the addressing mode implies the segment register used for
physical address generation (see Table 2-4).

Memory
Space1

I/O
Space2

1 Mbyte

64 Kbyte

FFFFh

0000h

FFFFFh

00000h

Notes:
1. 00000h–003FFh are reserved for the interrupt vector table.

2. 00F8h–00FFh are reserved.
Am186™CC/CH/CU Microcontrollers User’s Manual 2-7

Configuration Basics
2.7 DATA TYPES
The Am186CC/CH/CU microcontrollers directly support the following data types:

■ Integer: A signed binary numeric value contained in an 8-bit byte or a 16-bit word. All
operations assume a two’s complement representation.

■ Ordinal: An unsigned binary numeric value contained in an 8-bit byte or a 16-bit word.

■ Double Word: A signed binary numeric value contained in two sequential 16-bit
addresses, or in a DX::AX register pair.

■ Quad Word: A signed binary numeric value contained in four sequential 16-bit
addresses.

■ BCD: An unpacked byte representation of the decimal digits 0–9.

■ ASCII: A byte representation of alphanumeric and control characters using the ASCII
standard of character representation.

■ Packed BCD: A packed byte representation of two decimal digits (0–9). Each nibble
(four bits) of the byte contains one digit.

■ Pointer: A 16-bit or 32-bit quantity, composed of a 16-bit offset component or a 16-bit
segment base component in addition to a 16-bit offset component.

■ String: A contiguous sequence of bytes or words. A string can contain from 1 byte up
to 64 Kbytes.

In general, individual data elements must fit within defined segment limits. Figure 2-5
graphically represents the data types supported by the Am186CC/CH/CU microcontrollers.

Table 2-4 Segment Register Selection Rules

Memory Reference
Needed

Segment Register
Used Implicit Segment Selection Rule

Local Data Data (DS) All data references

Instructions Code (CS) Instructions (including immediate data)

Stack Stack (SS) All stack pushes and pops
Any memory references that use the BP register

External Data (Global) Extra (ES) All string instruction references that use the DI
register as an index
2-8 Am186™CC/CH/CU Microcontrollers User’s Manual

Configuration Basics
Figure 2-5 Supported Data Types

2.8 ADDRESSING MODES
The Am186CC/CH/CU microcontrollers use eight categories of addressing modes to
specify operands: two addressing modes for instructions that operate on register or
immediate operands, and six modes that specify the location of an operand in a memory
segment.

2.8.1 Register and Immediate Operands
■ Register Operand Mode: The operand is in one of the 8-bit or 16-bit registers.

■ Immediate Operand Mode: The operand is constant data included in the instruction.

2.8.2 Memory Operands
A memory-operand address consists of two 16-bit components: a segment value and an
offset. The segment value is supplied by a 16-bit segment register either implicitly chosen
by the addressing mode or explicitly chosen by a segment override prefix. The offset, also
called the effective address, is calculated by summing any combination of the following
three address elements:

■ Displacement: An 8-bit or 16-bit immediate value contained in the instruction.

■ Base: The contents of either the BX or BP base register.

■ Index: The contents of either the SI or DI index register.

Any carry from the 16-bit addition is ignored. Eight-bit displacements are sign-extended to
16-bit values.

7 0Signed
Byte

Magnitude

Magnitude

7 0

MSB

Unsigned
Byte

Signed
Word

Magnitude
MSB

+1 0

Magnitude

MSB

+3 +2 +1 0

Signed
Quad
Word

Magnitude

MSB

63 48 47 32 31 16 15 0

Unsigned
Word

Magnitude
MSB

+1 0

7 0 7 0 7 0

+N +1 0

. . .

7 0 7 0 7 0
+N +1 0

. . .

7 0 7 0 7 0
+N +1 0

. . .

Binary
Coded

Decimal
(BCD)

BCD
Digit N

BCD
Digit 1

BCD
Digit 0

ASCII
CharacterN

ASCII
Character1

ASCII
Character0

ASCII

Most Significant
Digit

Least
Significant Digit

Packed
BCD

7 0 7 0
+N +1 0

. . .

Byte/WordN Byte/Word1 Byte/Word0
String

+3 +2 +1 0

Segment Base Offset

Pointer

31 1615 0

015

+3 +2 +1+6 +5 +4 +0+7

15 14 8 7 0

7 0

Signed
Double

Word

Sign Bit

Sign Bit

Sign Bit

Sign Bit
Am186™CC/CH/CU Microcontrollers User’s Manual 2-9

Configuration Basics
Combinations of the above three address elements define the following six memory
addressing modes (see Table 2-5 for examples).

■ Direct Mode: The instruction contains the operand offset as an 8-bit or 16-bit
displacement element.

■ Register Indirect Mode: The operand offset is in one of the following registers: SI, DI,
BX, or BP.

■ Based Mode: The operand offset is the sum of an 8-bit or 16-bit displacement and the
contents of a base register (BX or BP).

■ Indexed Mode: The operand offset is the sum of an 8-bit or 16-bit displacement and
the contents of an index register (SI or DI).

■ Based Indexed Mode: The operand offset is the sum of the contents of a base register
and an index register.

■ Based Indexed Mode with Displacement: The operand offset is the sum of a base
register’s contents, an index register’s contents, and an 8-bit or 16-bit displacement.

Table 2-5 Memory Addressing Mode Examples

Addressing Mode Example

Direct mov ax, ds:4

Register Indirect mov ax, [si]

Based mov ax, [bx]4

Indexed mov ax, [si]4

Based Indexed mov ax, [si][bx]

Based Indexed with Displacement mov ax, [si][bx]4
2-10 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
3 S
YSTEM OVERVIEW
3.1 OVERVIEW
This chapter contains descriptions of the Am186CC/CH/CU microcontrollers’ system
configuration registers, initialization and processor reset, signals, bus interface, and clock
control.

3.2 SYSTEM DESIGN
Table 3-1 shows the multiplexed signals and the trade-offs when selecting various functions.
Table 3-2 on page 3-3 shows the multiplexed signal information ordered by PIO signal.

Table 3-1 Multiplexed Signal Trade-Offs

Desired Function Unavailable Functions
Inter-
face

Signal Pin
Inter-
face

Signal
Inter-
face

Signal
Inter-
face

Signal
Inter-
face

Signal

Memory

SRAM

LCS 131

DRAM

RAS0 — — — —

PIO

—

MCS1 127 CAS1 — — — — —

MCS2 128 CAS0 — — — — —

MCS3 129 RAS1 — — — — PIO5

DRAM

CAS0 128

SRAM

MCS2 — — — —

PIO

—

CAS1 127 MCS1 — — — — —

RAS0 131 LCS — — — — —

RAS1 129 MCS3 — — — — PIO5

Synchronous Communications Interfaces

DCE
Channel
A

DCE_RXD_A 118

PCM
Channel
A

PCM_RXD_A — —

GCI
Channel
A

GCI_DD_A

PIO

—

DCE_TXD_A 119 PCM_TXD_A — — GCI_DU_A —

DCE_RCLK_A 117 PCM_CLK_A — — GCI_DCL_A —

DCE_TCLK_A 116 PCM_FSC_A — — GCI_FSC_A —

DCE_CTS_A 123 PCM_TSC_A — — — PIO17

DCE_RTR_A 122 — — — — PIO18

DCE
Channel
B

DCE_RXD_B 138

PCM
Channel
B

PCM_RXD_B — — — —

PIO

PIO36

DCE_TXD_B 139 PCM_TXD_B — — — — PIO37

DCE_RCLK_B 135 PCM_CLK_B — — — — PIO40

DCE_TCLK_B 134 PCM_FSC_B — — — — PIO41

DCE_CTS_B 137 PCM_TSC_B — — — — PIO38

DCE_RTR_B 136 — — — — — PIO39

DCE
Channel
C

DCE_RXD_C 153

PCM
Channel
C

PCM_RXD_C — —
GCI to
PCM
Con-
version

—

PIO

PIO42

DCE_TXD_C 154 PCM_TXD_C — — — PIO43

DCE_RCLK_C 150 PCM_CLK_C — — PCM_CLK_C PIO22

DCE_TCLK_C 149 PCM_FSC_C — — PCM_FSC_C PIO23

DCE_CTS_C 152 PCM_TSC_C — — — PIO44

DCE_RTR_C 151 — — — — PIO45

CC CH CC CH CC

CC CH CC CH

CC CC
CC
Am186™CC/CH/CU Microcontrollers User’s Manual 3-1

System Overview
DCE
Channel
D

DCE_RXD_D 158

PCM
Channel
D

PCM_RXD_D

Low-
Speed
UART

RXD_U

High-
Speed
UART
(Flow
Control)

PIO

PIO26

DCE_TXD_D 159 PCM_TXD_D TXD_U PIO20

DCE_RCLK_D 156 PCM_CLK_D RTR_U PIO25

DCE_TCLK_D 157 PCM_FSC_D CTS_U PIO24

DCE_CTS_D 24 PCM_TSC_D — CTS_HU PIO46

DCE_RTR_D 23 — — RTR_HU PIO47

PCM
Channel
A

PCM_RXD_A 118
DCE
Channel
A

DCE_RXD_A — —
GCI
Channel
A

GCI_DD_A

PIO

—

PCM_TXD_A 119 DCE_TXD_A — — GCI_DU_A —

PCM_CLK_A 117 DCE_RCLK_A — — GCI_DCL_A —

PCM_FSC_A 116 DCE_TCLK_A — — GCI_FSC_A —

PCM_TSC_A 123 DCE_CTS_A — — — PIO17

PCM
Channel
B

PCM_RXD_B 138
DCE
Channel
B

DCE_RXD_B — — — —

PIO

PIO36

PCM_TXD_B 139 DCE_TXD_B — — — — PIO37

PCM_CLK_B 135 DCE_RCLK_B — — — — PIO40

PCM_FSC_B 134 DCE_TCLK_B — — — — PIO41

PCM_TSC_B 137 DCE_CTS_B — — — — PIO38

PCM
Channel
C

PCM_RXD_C 153
DCE
Channel
C

DCE_RXD_C — — GCI to
PCM
Con-
version

—

PIO

PIO42

PCM_TXD_C 154 DCE_TXD_C — — — PIO43

PCM_CLK_C 150 DCE_RCLK_C — — PCM_CLK_C PIO22

PCM_FSC_C 149 DCE_TCLK_C — — PCM_FSC_C PIO23

PCM_TSC_C 152 DCE_CTS_C — — — PIO44

PCM
Channel
D

PCM_RXD_D 158
DCE
Channel
D

DCE_RXD_D

Low-
Speed
UART

RXD_U

High-
Speed
UART

—

PIO

PIO26

PCM_TXD_D 159 DCE_TXD_D TXD_U — PIO20

PCM_CLK_D 156 DCE_RCLK_D RTR_U — PIO25

PCM_FSC_D 157 DCE_TCLK_D CTS_U — PIO24

PCM_TSC_D 24 DCE_CTS_D — CTS_HU PIO46

Low-
Speed
UART

RXD_U 158 DCE
Channel
D

DCE_RXD_D PCM
Channel
D

PCM_RXD_D — —

PIO

PIO26

TXD_U 159 DCE_TXD_D PCM_TXD_D — — PIO20

RTR_U 156 DCE_RCLK_D PCM_CLK_D — — PIO25

CTS_U 157 DCE_TCLK_D PCM_FSC_D — — PIO24

High-
Speed
UART

RXD_HU 25 DCE
Channel
D

— PCM
Channel
D

— — —

PIO

PIO16

TXD_HU 26 — — — — —

RTR_HU 23 DCE_RTR_D — — — PIO47

CTS_HU 24 DCE_CTS_D PCM_TSC_D — — PIO46

GCI
Channel
A

GCI_DD_A 118 DCE
Channel
A

DCE_RXD_A PCM
Channel
A

PCM_RXD_A — —

PIO

—

GCI_DU_A 119 DCE_TXD_A PCM_TXD_A — — —

GCI_DCL_A 117 DCE_RCLK_A PCM_CLK_A — — —

GCI_FSC_A 116 DCE_TCLK_A PCM_FSC_A — — —

GCI to
PCM
Con-
version

PCM_CLK_C 150
DCE
Channel
C

DCE_RCLK_C
PCM
Channel
C

PCM_CLK_C — —

PIO

PIO22

PCM_FSC_C 149 DCE_TCLK_C PCM_FSC_C — — PIO23

Table 3-1 Multiplexed Signal Trade-Offs (Continued)

Desired Function Unavailable Functions
Inter-
face

Signal Pin
Inter-
face

Signal
Inter-
face

Signal
Inter-
face

Signal
Inter-
face

Signal

CC CC

CC CH CC CH CC

CC CH CC CH

CC CC
CC

CC CC

CC CC

CC CC

CC CC CH CC CH

CC
CC CC
3-2 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
Miscellaneous
Bus
Interfac
e

DEN 18 Bus
Interfac
e

DS — — — —
PIO

PIO30

DS 18 DEN — — — — PIO30

Clocks

UCLK 22

Clocks

USBSOF

Clocks

USBSCI
— —

PIO

PIO21

USBSOF
22 UCLK

USBSCI
— — PIO21

USBSCI
22 UCLK

USBSOF
— — PIO21

Table 3-2 Multiplexed Signal Trade-Offs Ordered by PIO

Desired Function Unavailable Functions

Signal Pin Signal Signal Signal
PIO0 144 TMRIN1 — —

PIO1 143 TMROUT1 — —

PIO2 10 PCS5 — —

PIO3 9 PCS4 — —

PIO4 126 MCS0 — —

PIO5 129 MCS3 RAS1 —

PIO6 147 INT8 PWD —

PIO7 146 INT7 — —

PIO8 14 ARDY — —

PIO9 124 DRQ0 — —

PIO10 2 SDEN — —

PIO11 3 SCLK — —

PIO12 4 SDATA — —

PIO13 5 PCS0 — —

PIO14 6 PCS1 — —

PIO15 16 WR — —

PIO16 25 RXD_HU — —

PIO17 123 DCE_CTS_A PCM_TSC_A —

PIO18 122 DCE_RTR_A — —

PIO19 145 INT6 — —

PIO20 159 TXD_U DCE_TXD_D PCM_TXD_D

PIO21 22 UCLK USBSOF USBSCI

PIO22 150 DCE_RCLK_C PCM_CLK_C —

PIO23 149 DCE_TCLK_C PCM_FSC_C —

PIO24 157 CTS_U DCE_TCLK_D PCM_FSC_D

PIO25 156 RTR_U DCE_RCLK_D PCM_CLK_D

PIO26 158 RXD_U DCE_RXD_D PCM_RXD_D

PIO27 142 TMRIN0 — —

PIO28 141 TMROUT0 — —

PIO29 17 DT/R — —

Table 3-1 Multiplexed Signal Trade-Offs (Continued)

Desired Function Unavailable Functions
Inter-
face

Signal Pin
Inter-
face

Signal
Inter-
face

Signal
Inter-
face

Signal
Inter-
face

Signal

CC CU CC CU

CC CU CC CU

CC CU CC CU

CC CH CC CH

CC CH

CC CC

CC CU CC CU

CC CC

CC CC

CC CC

CC CC

CC CC
Am186™CC/CH/CU Microcontrollers User’s Manual 3-3

System Overview
3.3 SYSTEM CONFIGURATION
Table 3-3 lists the registers used by the Am186CC/CH/CU microcontrollers for system
configuration. Appendix A summarizes the bits in all of the registers. For a complete
description of all the peripheral registers, see the Am186™CC/CH/CU Microcontrollers
Register Set Manual, order #21916.

When RES is asserted, the Reset Configuration (RESCON) register is set to the value
found on AD15–AD0. There is a one-to-one correspondence between address/data bus
signals and the RESCON register’s bits during reset (AD15 corresponds to bit 15 of the
RESCON register, and so on). When RES is deasserted, the RESCON register holds its
value. Software can read this value to determine the configuration information. For more
information, see “Initialization and Reset” on page 3-5.

PIO30 18 DEN DS —

PIO31 13 PCS7 — —

PIO32 11 PCS6 — —

PIO33 19 ALE — —

PIO34 20 BHE — —

PIO35 15 SRDY — —

PIO36 138 DCE_RXD_B PCM_RXD_B —

PIO37 139 DCE_TXD_B PCM_TXD_B —

PIO38 137 DCE_CTS_B PCM_TSC_B —

PIO39 136 DCE_RTR_B — —

PIO40 135 DCE_RCLK_B PCM_CLK_B —

PIO41 134 DCE_TCLK_B PCM_FSC_B —

PIO42 153 DCE_RXD_C PCM_RXD_C —

PIO43 154 DCE_TXD_C PCM_TXD_C —

PIO44 152 DCE_CTS_C PCM_TSC_C —

PIO45 151 DCE_RTR_C — —

PIO46 24 CTS_HU DCE_CTS_D PCM_TSC_D

PIO47 23 RTR_HU DCE_RTR_D —

Table 3-3 System Configuration Register Summary

Offset
Register
Mnemonic

Register Name Description

3DEh RESCON Reset Configuration
Provides a way to make design-specific
hardware configuration information available
to software.

3F0h SYSCON System Configuration
Contains system-wide configuration bits which
affect the operation on a global basis.

3F4h PRL Processor Revision Level
Contains the specific release level of the
processor.

Table 3-2 Multiplexed Signal Trade-Offs Ordered by PIO (Continued)

Desired Function Unavailable Functions

Signal Pin Signal Signal Signal

CC CH CC CH

CC CH CC CH

CC CH CC CH

CC CH

CC CH CC CH

CC CH CC CH

CC CC

CC CC

CC CC

CC

CC CC

CC
3-4 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
The System Configuration (SYSCON) register is typically written once to establish the
proper modes of operation based on the system in which the part is operating. This register
performs the following functions:

■ Enables the data strobe timings on the DEN pin. When the DSDEN bit (bit 13) is set
to 1, data strobe bus mode is enabled, and the DS timing for reads and writes is identical
to the normal read cycle DEN timing. When the DSDEN bit is cleared to 0, the DEN
timing for both reads and writes is normal (i.e., like the original 80C186). The DEN pin
is renamed DS in data strobe bus mode. For more information, see “Bus Interface” on
page 3-28.

■ Enables Pulse Width Demodulation (PWD) mode. For more information about PWD
mode, see Chapter 10, “Programmable Timers.”

■ Disables memory and I/O addresses on the AD15–AD0 bus. For more information, see
“Bus Interface” on page 3-28.

■ Configures HDLC Channel C and D external interfaces. For more information, see
Chapter 15, “High-Level Data Link Control (HDLC).”

■ Disables CLKOUT and forces the pin to drive a zero externally. For more information,
see “Clock Control” on page 3-32.

The Processor Revision Level (PRL) register contains the processor revision level for the
device. Use this information when requesting support.

3.4 INITIALIZATION AND RESET
This document uses the following terms throughout:

■ External or power-on reset: A reset caused by asserting RES.

■ Internal reset: A reset initiated by the watchdog timer.

■ System reset: Resets the microcontroller (the CPU plus the internal peripherals) as
well as any external peripherals connected to RESOUT. An external reset always causes
a system reset; an internal reset can optionally cause a system reset.

Processor initialization or startup is accomplished by either an external reset or by an
internal reset initiated by the watchdog timer. Resets force the microcontroller to terminate
all execution and local bus activity. No instruction or bus activity occurs as long as the
processor is in reset.

In all resets, the multiplexed pins default to the signal as shown in Table 3-7 on page 3-10
(the signal name without brackets). Pins are latched on the deassertion of RES, and
therefore are not affected by an internal watchdog-timer-generated reset. These latched
pins include the reset configuration pins (pinstraps) shown in Table 3-5 on page 3-7 and
the RESCON register inputs.

After an external or internal reset has completed and an internal processing interval elapses,
the microcontroller begins execution with the instruction at physical location FFFF0h and
the watchdog timer starts counting (reset enables the watchdog timer). RES must be
asserted for at least 1 ms during power-up to allow the internal circuits to stabilize. If the
RES signal is asserted while the watchdog timer is performing a watchdog timer reset, the
external reset takes precedence.

The Am186CC/CH/CU microcontrollers also feature a Reset Out (RESOUT) signal, which
indicates that the microcontroller is being reset (either externally or internally) and can be
used as a system reset to reset any external peripherals connected to RESOUT.
Am186™CC/CH/CU Microcontrollers User’s Manual 3-5

System Overview
During an external reset, RESOUT remains active (High) for two clocks after RES is
deasserted. The microcontroller exits reset and begins the first valid bus cycle
approximately 4.5 clocks after RES is deasserted.

With an internal reset, the watchdog timer reset duration, and therefore the duration of the
RESOUT signal, is 216 processor clocks. This duration allows sufficient time for external
devices to reach their reset state. For more information about internal resets, see
Chapter 11, “Watchdog Timer.”

Both external and internal resets set the registers to predefined values as shown in
Appendix A, “Register Summary,” with the exception of the RESCON and WDTCON
registers whose default values depend on the type of reset.

The Reset Configuration (RESCON) register latches system-configuration information that
is presented to the processor on the address/data bus (AD15–AD0) at the deassertion of
RES. The interpretation of this information is system-specific. The processor does not
impose any predetermined interpretation, but simply provides a means for communicating
this information to software. When the RES input is asserted, the contents of the AD bus
are written into the RESCON register. Note that the RESCON value is only sampled on an
external reset. The system can place configuration information on the AD bus using weak
external pullup or pulldown resistors, or using an external driver that is enabled during reset.
The processor does not drive the AD bus during reset. For example, the RESCON register
could be used to provide the software with the position of a configuration switch in the
system. By using weak external pullup and pulldown resistors on the AD bus, the system
could provide the microcontroller with a value corresponding to the position of a jumper
during reset.

For compatibility with future devices, always write reserved bits in registers with their reset
default values. The Am186™CC/CH/CU Microcontrollers Register Set Manual, order
#21916, defines the bits for all the registers.

Table 3-4 CPU and Internal Peripheral States Immediately Following Power-On Reset

CPU/Peripheral State

Am186 CPU Enabled, executes at address FFFF0h

Chip Selects UCS active, all other chip selects inactive

DRAM Controller Disabled

Interrupt Controller
Disabled—only nonmaskable interrupts and traps can
be taken

General-Purpose DMA and SmartDMA Channels Disabled

Programmable I/Os See Chapter 9, “Programmable I/O Signals”

Programmable Timers Disabled

Watchdog Timer Enabled with maximum time-out value (216 clocks)

UART and High-Speed UART Disabled

Synchronous Serial Interface (SSI) Disabled

High-level Data Link Control (HDLC) Channels Disabled

Time Slot Assigners (TSAs) Disabled

General Circuit Interface (GCI) Disabled

Universal Serial Bus (USB) Peripheral Controller Disabled

CC CH

CC CH

CC

CC CU
3-6 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
Table 3-5 Reset Configuration Pins (Pinstraps)1

Notes:
1. A pinstrap is used to enable or disable features based on the state of the pin during an external reset. The pinstrap must be

held in its desired state for at least 4.5 clock cycles after the deassertion of RES. The pinstraps are sampled in an external
reset only (when RES is asserted), not during an internal watchdog timer-generated reset.

Signal Name
Multiplexed
Signal(s)

Description

{ADEN}
BHE
PIO34

Address Enable: If {ADEN} is held High or left floating during power-on reset, the
address portion of the AD bus (AD15–AD0) is enabled or disabled during LCS, UCS,
or other memory bus cycles based on how the software configures the DA bit in the
UMCS or LMCS registers. In this case, the memory address is accessed on the A19–
A0 pins. There is a weak internal pullup resistor on {ADEN} so no external pullup is
required. This mode of operation reduces power consumption.
If {ADEN} is held Low on power-on reset, the AD bus drives both addresses and data,
regardless of how software configures the DA bit in the UMCS or LMCS registers.

{CLKSEL1}
{CLKSEL2}

HLDA
[PCS4]
PIO3

CPU PLL Mode Select 1 determines the PLL mode for the CPU clock source.
CPU PLL Mode Select 2 is sampled on the rising edge of reset and determines the
PLL mode for the CPU clock source. This pin has an internal pullup resistor that is
active only during reset. There are four CPU PLL modes that are selected by the
values of {CLKSEL1} and {CLKSEL2} as shown below.

{ONCE} UCS

ONCE Mode Request asserted Low places the Am186CC/CH/CU microcontroller
into ONCE mode. Otherwise, the controller operates normally. In ONCE mode, all
pins are three-stated and remain in that state until a subsequent reset occurs. To
guarantee that the controller does not inadvertently enter ONCE mode, {ONCE} has
a weak internal pullup resistor that is active only during a reset. A reset ending ONCE
mode should be as long as a power-on reset for the PLL to stabilize.

{UCSX8}
[MCS0]
PIO4

Upper Memory Chip Select, 8-Bit Bus asserted Low configures the upper chip
select region for an 8-bit bus size. This pin has a pullup resistor that is active only
during reset, so no external pullup is required to set the bus to 16-bit mode.

{USBSEL2}

{USBSEL1}

PCS1
PIO14

PCS0
PIO13

USB Clock Mode Selects 1–2 select the USB PLL operating mode. The pins have
internal pullups that are active only during reset. The USB PLL can operate in one
of three modes. With a crystal and the internal USB oscillator or an external oscillator,
the USB PLL can output 4X or 2X the input frequency. The USB PLL can also be
disabled and the USB peripheral controller can receive its clock from the CPU PLL,
which is the default mode. The pins are encoded as shown below.

{USBXCVR}
S0

USB External Transceiver Enable asserted Low disables the internal USB trans-
ceiver and enables the pins needed to hook up an external transceiver. This pin has
a pullup resistor that is active only during reset, so no external pullup is required as
long as the user ensures that this input is not driven Low during a power-on reset.

CPU PLL Modes
{CLKSEL1} {CLKSEL2} CPU PLL Mode

1 1 2X, CPU PLL enabled (default)
1 0 4X, CPU PLL enabled
0 1 1X, CPU PLL enabled
0 0 PLL Bypass

CC CU

CC CU

USB PLL Modes
{USBSEL1} {USBSEL2} USB PLL Mode

1 1
Use CPU clock (after CPU PLL mode
select), USB PLL disabled (default)

1 0 4X, USB PLL enabled
0 1 2X, USB PLL enabled
0 0 Reserved

CC CU
Am186™CC/CH/CU Microcontrollers User’s Manual 3-7

System Overview
3.5 SIGNAL DESCRIPTIONS
Table 3-7 contains a description of the Am186CC/CH/CU microcontroller signals. Table 3-6
describes the terms used in Table 3-7. The signals are organized alphabetically within the
following functional groups:

■ Bus interface/general-purpose DMA request (page 3-10)

■ Clocks/reset/watchdog timer (page 3-14)

■ Reserved (page 3-16)

■ Power and ground (page 3-16)

■ Debug support (page 3-17)

■ Chip selects (page 3-17)

■ DRAM (page 3-19)

■ Interrupts (page 3-19)

■ Programmable I/O (PIOs) (page 3-21)

■ Programmable timers (page 3-21)

■ Asynchronous serial ports (UART and High-Speed UART) (page 3-22)

■ Synchronous serial interface (SSI) (page 3-23)

■ HDLC synchronous communications: channels A–D for Data Communications
Equipment (DCE), Pulse Code Modulation (PCM), and General Circuit Interface (GCI)
interfaces (page 3-23)

■ Universal Serial Bus (USB) (page 3-27)

For pinstraps refer to Table 3-5 on page 3-7.
3-8 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
Table 3-6 Signal Descriptions Table Definitions

Term Definition

General Terms

[]
Indicates the pin alternate function; a pin defaults to the signal named without the
brackets.

{ } Indicates the reset configuration pin (pinstrap).

pin Refers to the physical wire.

reset

An external or power-on reset is caused by asserting RES. An internal reset is initiated
by the watchdog timer. A system reset is one that resets the microcontroller (the CPU
plus the internal peripherals) as well as any external peripherals connected to RESOUT.
An external reset always causes a system reset; an internal reset can optionally cause
a system reset.

signal Refers to the electrical signal that flows across a pin.

SIGNAL
A line over a signal name indicates that the signal is active Low; a signal name without
a line is active High.

Signal Types

B Bidirectional

H High

LS Programmable to hold last state of pin

O Totem pole output

OD Open drain output

OD-O Open drain output or totem pole output

PD Internal pulldown resistor

PU Internal pullup resistor

STI Schmitt trigger input

STI-OD Schmitt trigger input or open drain output

TS Three-state output
Am186™CC/CH/CU Microcontrollers User’s Manual 3-9

System Overview
Table 3-7 Signal Descriptions

Signal Name1 Multiplexed
Signal(s)

Type Description

BUS INTERFACE/GENERAL-PURPOSE DMA REQUEST

A19–A0 — O

Address Bus supplies nonmultiplexed memory or I/O
addresses to the system one half of a CLKOUT period earlier
than the multiplexed address and data bus (AD15–AD0). During
bus-hold or reset conditions, the address bus is three-stated with
pulldowns.

When the lower or upper chip-select regions are configured for
DRAM mode, the A19–A0 bus provides the row and column
addresses at the appropriate times. The upper and lower
memory chip-select ranges can be individually configured for
DRAM mode.

AD15–AD0 — B

Address and Data Bus time-multiplexed pins supply memory
or I/O addresses and data to the system. This bus can supply
an address to the system during the first period of a bus cycle
(t1). It transmits (write cycle) or receives (read cycle) data to or
from the system during the remaining periods of that cycle (t2,
t3, and t4). The address phase of these pins can be disabled—
see the {ADEN} pin description in Table 3-5 on page 3-7.

During a reset condition, the address and data bus is three-
stated with pulldowns, and during a bus hold it is three-stated.

In addition, during a reset the state of the address and data bus
pins (AD15–AD0) is latched into the Reset Configuration
(RESCON) register. This feature can be used to provide software
with information about the external system at reset time.

ALE [PIO33] O

Address Latch Enable indicates to the system that an address
appears on the address and data bus (AD15–AD0). The address
is guaranteed valid on the falling edge of ALE.

ALE is three-stated and has a pulldown resistor during bus-hold
or reset conditions.

ARDY [PIO8] STI

Asynchronous Ready is a true asynchronous ready that
indicates to the microcontroller that the addressed memory
space or I/O device will complete a data transfer. The ARDY pin
is asynchronous to CLKOUT and is active High. To guarantee
the number of wait states inserted, ARDY or SRDY must be
synchronized to CLKOUT. If the falling edge of ARDY is not
synchronized to CLKOUT as specified, an additional clock period
can be added.

To always assert the ready condition to the microcontroller, tie
ARDY and SRDY High. If the system does not use ARDY, tie the
pin Low to yield control to SRDY.
3-10 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
BHE
[PIO34]
{ADEN}

O

Bus High Enable: During a memory access, BHE and the least-
significant address bit (AD0) indicate to the system which bytes
of the data bus (upper, lower, or both) participate in a bus cycle.
The BHE and AD0 pins are encoded as follows:

BHE is asserted during t1 and remains asserted through t3 and
tW. BHE does not require latching. BHE is three-stated with a
pullup during bus-hold and reset conditions.

WLB and WHB implement the functionality of BHE and AD0 for
high and low byte write enables, and they have timing
appropriate for use with the nonmultiplexed bus interface.

BHE also signals DRAM refresh cycles when using the
multiplexed address and data (AD) bus. A refresh cycle is
indicated when both BHE and AD0 are High. During refresh
cycles, the AD bus is driven during the t1 phase and three-stated
during the t2, t3, and t4 phases. The value driven on the A bus
is undefined during a refresh cycle. For this reason, the A0 signal
cannot be used in place of the AD0 signal to determine refresh
cycles.

BSIZE8 — O
Bus Size 8 is asserted during t1–t4 to indicate an 8-bit cycle, or
is deasserted to indicate a 16-bit cycle.

DEN
[DS]
[PIO30]

O

Data Enable supplies an output enable to an external data-bus
transceiver. DEN is asserted during memory and I/O cycles.
DEN is deasserted when DT/R changes state. DEN is three-
stated with a pullup during bus-hold or reset conditions.

[DRQ0]

DRQ1

PIO9

—

STI

STI

DMA Requests 0 and 1 indicate to the microcontroller that an
external device is ready for a DMA channel to perform a transfer.
DRQ1–[DRQ0] are level-triggered and internally synchronized.
DRQ1–[DRQ0] are not latched and must remain active until
serviced.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description

Data Byte Encoding

BHE AD0 Type of Bus Cycle

0 0 Word transfer

0 1
High byte transfer (bits
15–8)

1 0
Low byte transfer (bits
7–0)

1 1 Refresh
Am186™CC/CH/CU Microcontrollers User’s Manual 3-11

System Overview
[DS]
DEN
[PIO30]

O

Data Strobe provides a signal where the write cycle timing is
identical to the read cycle timing. When used with other control
signals, [DS] provides an interface for 68K-type peripherals
without the need for additional system interface logic.

When [DS] is asserted, addresses are valid. When [DS] is
asserted on writes, data is valid. When [DS] is asserted on reads,
data can be driven on the AD bus.

Following a reset, this pin is configured as DEN. The pin is then
configured by software to operate as [DS].

DT/R [PIO29] O

Data Transmit or Receive indicates which direction data should
flow through an external data-bus transceiver. When DT/R is
asserted High, the microcontroller transmits data. When this pin
is deasserted Low, the microcontroller receives data. DT/R is
three-stated with a pullup during a bus-hold or reset condition.

HLDA {CLKSEL1} O

Bus-Hold Acknowledge is asserted to indicate to an external
bus master that the microcontroller has relinquished control of
the local bus. When an external bus master requests control of
the local bus (by asserting HOLD), the microcontroller completes
the bus cycle in progress, then relinquishes control of the bus to
the external bus master by asserting HLDA and three-stating
A19–A0, AD15–AD0, S2–S0, and S6. The following are also
three-stated and have pullups: BHE, DEN, DT/R, LCS, MCS3–
MCS0, PCS7–PCS0, RD, UCS, WHB, WLB, and WR. ALE is
three-stated and has a pulldown.

When the external bus master has finished using the local bus,
it indicates this to the microcontroller by deasserting HOLD. The
microcontroller responds by deasserting HLDA.

If the microcontroller requires access to the bus (for example,
for refresh), the microcontroller deasserts HLDA before the
external bus master deasserts HOLD. The external bus master
must be able to deassert HOLD and allow the microcontroller
access to the bus. See the timing diagrams for bus hold in the
microcontroller data sheet.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description
3-12 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
HOLD — STI

Bus-Hold Request indicates to the microcontroller that an
external bus master needs control of the local bus.

The microcontroller HOLD latency time—the time between
HOLD request and HOLD acknowledge—is a function of the
activity occurring in the processor when the HOLD request is
received. A HOLD request is second only to DRAM refresh
requests in priority of activity requests received by the processor.
This implies that if a HOLD request is received just as a DMA
transfer begins, the HOLD latency can be as great as four bus
cycles. This occurs if a DMA word transfer operation is taking
place from an odd address to an odd address. This is a total of
16 clock cycles or more if wait states are required. In addition,
if locked transfers are performed, the HOLD latency time is
increased by the length of the locked transfer. HOLD latency is
also potentially increased by DRAM refreshes.

The board designer is responsible for properly terminating the
HOLD input.

For more information, see the HLDA pin description above.

RD — O

Read Strobe indicates to the system that the microcontroller is
performing a memory or I/O read cycle. RD is guaranteed not to
be asserted before the address and data bus is three-stated
during the address-to-data transition. RD is three-stated with a
pullup during bus-hold or reset conditions.

S2

S1

S0

—

—

{USBXCVR}

O

Bus Cycle Status 2–0 indicate to the system the type of bus
cycle in progress. S2 can be used as a logical memory or I/O
indicator, and S1 can be used as a data transmit or receive
indicator. S2–S0 are three-stated during bus hold and three-
stated with a pullup during reset. The S2–S0 pins are encoded
as follows:

S6 — O

Bus Cycle Status Bit 6: This signal is asserted during t1–t4 to
indicate a DMA-initiated bus cycle or a refresh cycle. S6 is three-
stated during bus hold and three-stated with a pulldown during
reset.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description

Bus Status Pins

S2 S1 S0 Bus Cycle

0 0 0 Reserved

0 0 1 Read data from I/O

0 1 0 Write data to I/O

0 1 1 Halt

1 0 0 Instruction fetch

1 0 1 Read data from memory

1 1 0 Write data to memory

1 1 1 None (passive)
Am186™CC/CH/CU Microcontrollers User’s Manual 3-13

System Overview
SRDY [PIO35] STI

Synchronous Ready indicates to the microcontroller that the
addressed memory space or I/O device will complete a data
transfer. The SRDY pin accepts an active High input
synchronized to CLKOUT.

Using SRDY instead of ARDY allows a relaxed system timing
because of the elimination of the one-half clock period required
to internally synchronize ARDY. To always assert the ready
condition to the microcontroller, tie SRDY High. If the system
does not use SRDY, tie the pin Low to yield control to ARDY.

WHB

WLB

—

—

O

O

Write High Byte and Write Low Byte indicate to the system
which bytes of the data bus (upper, lower, or both) participate in
a write cycle. In 80C186 microcontroller designs, this information
is provided by BHE, AD0, and WR. However, by using WHB and
WLB, the standard system interface logic and external address
latch that were required are eliminated.

WHB is asserted with AD15–AD8. WHB is the logical AND of
BHE and WR. This pin is three-stated with a pullup during bus-
hold or reset conditions.

WLB is asserted with AD7–AD0. WLB is the logical AND of AD0
and WR. This pin is three-stated with a pullup during bus-hold
or reset conditions.

WR [PIO15] O
Write Strobe indicates to the system that the data on the bus is
to be written to a memory or I/O device. WR is three-stated with
a pullup during bus-hold or reset conditions.

CLOCKS/RESET/WATCHDOG TIMER

CLKOUT — O

Clock Output supplies the clock to the system. Depending on
the values of the CPU mode select pinstraps, {CLKSEL1} and
{CLKSEL2}, CLKOUT operates at either the PLL frequency or
the source input frequency during PLL Bypass mode. (See
Table 3-5 on page 3-7.) CLKOUT remains active during bus-hold
or reset conditions.

The DISCLK bit in the SYSCON register can be set to disable
the CLKOUT signal. Refer to the Am186™CC/CH/CU
Microcontrollers Register Set Manual, order #21916.

All synchronous AC timing specifications not associated with
SSI, HDLCs, UARTs, and the USB are synchronous to CLKOUT.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description
3-14 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
RES — STI

Reset requires the microcontroller to perform a reset. When RES
is asserted, the microcontroller immediately terminates its
present activity, clears its internal logic, and on the deassertion
of RES, transfers CPU control to the reset address FFFF0h.

RES must be asserted for at least 1 ms to allow the internal
circuits to stabilize.

RES can be asserted asynchronously to CLKOUT because RES
is synchronized internally. For proper initialization, VCC must be
within specifications, and CLKOUT must be stable for more than
four CLKOUT periods during which RES is asserted.

If RES is asserted while the watchdog timer is performing a
watchdog-timer reset, the external reset takes precedence over
the watchdog-timer reset. This means that the RESOUT signal
asserts as with any external reset and the WDTCON register
will not have the RSTFLAG bit set. In addition, the microcontroller
will exit reset based on the external reset timing, i.e., 4.5 clocks

after the deassertion of RES rather than 216 clocks after the
watchdog timer timeout occurred.

The microcontroller begins fetching instructions approximately
6.5 CLKOUT periods after RES is deasserted. This input is
provided with a Schmitt trigger to facilitate power-on RES
generation via a resistor-capacitor (RC) network.

RESOUT — O

Reset Out indicates that the microcontroller is being reset (either
externally or internally), and the signal can be used as a system
reset to reset any external peripherals connected to RESOUT.

During an external reset, RESOUT remains active (High) for two
clocks after RES is deasserted. The microcontroller exits reset
and begins the first valid bus cycle approximately 4.5 clocks after
RES is deasserted.

[UCLK]
[USBSOF]
[USBSCI]
PIO21

STI

UART Clock can be used instead of the processor clock as the
source clock for either the UART or the High-Speed UART. The
source clock for the UART and the High-Speed UART are
selected independently and both can use the same source.

USBX1

USBX2

—

—

STI

O

USB Controller Crystal Input (USBX1) and USB Controller
Crystal Output (USBX2) provide connections for a fundamental
mode, parallel-resonant crystal used by the internal USB
oscillator circuit.

If the CPU crystal is used to generate the USB clock, USBX1
must be pulled down.

X1

X2

—

—

O

STI

CPU Crystal Input (X1) and CPU Crystal Output (X2) provide
connections for a fundamental mode, parallel-resonant crystal
used by the internal oscillator circuit. If an external oscillator is
used, inject the signal directly into X1 and leave X2 floating.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description

CC CU

CC CU
Am186™CC/CH/CU Microcontrollers User’s Manual 3-15

System Overview
PINSTRAPS (See Table 3-5 on page 3-7.)

RESERVED

RSVD_75 —

—

On the Am186CH HDLC microcontroller, the RSVD_75 pin
should be tied externally to VSS.

On the Am186CH HDLC microcontroller, pins RSVD_75,
RSVD_76, RSVD_80, RSVD_81, and RSVD_101–RSVD_104
and are reserved.

On the Am186CC and Am186CU microcontrollers, pins
RSVD_101–RSVD_104 are reserved unless pinstrap
{USBXCVR} is sampled Low on the rising edge of RESET.

On the Am186CU USB microcontroller, pins RSVD_119–
RSVD_116 are reserved.

All other reserved pins should not be connected.

RSVD_76 —

RSVD_80 —

RSVD_81 —

RSVD_101 UTXDPLS

RSVD_102 UTXDMNS

RSVD_103 UXVOE

RSVD_104 UXVRCV

RSVD_116 —

RSVD_117 —

RSVD_118 —

RSVD_119 —

POWER AND GROUND

VCC (15)

 (16)
— STI

Digital Power Supply pins supply power (+3.3 ± 0.3 V) to the
microcontroller logic.

VCC _A (1) — STI
Analog Power Supply pin supplies power (+3.3 ± 0.3 V) to the
oscillators and PLLs.

VCC _USB (1)
— STI

USB Power Supply pin supplies power (+3.3 ± 0.3 V) to the
USB block.

VSS (15)

 (16)
— STI

Digital Ground pins connect the microcontroller logic to the
system ground.

VSS _A (1) — STI
Analog Ground pin connects the oscillators and PLLs to the
system ground.

VSS _USB (1) — STI USB Ground pin connects the USB block to the system ground.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description

CH

CH

CH

CH

CU

CU

CU

CU

CC CU

CH

CC CU

CC CU

CH

CC CU
3-16 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
DEBUG SUPPORT

QS1–QS0 — O

Queue Status 1–0 values provide information to the system
concerning the interaction of the CPU and the instruction queue.
The pins have the following meanings:

The following signals are also used by emulators: A19–A0, AD15–AD0, {ADEN}, ALE, ARDY, BHE, BSIZE8, CAS1–
CAS0, CLKOUT, {CLKSEL2}–{CLKSEL1}, HLDA, HOLD, LCS, MCS3–MCS0, NMI, {ONCE}, QS1–QS0, RAS1–
RAS0, RD, RES, RESOUT, S2–S0, S6, SRDY, UCS, {UCSX8}, WHB, WLB, WR. For more information, see
Chapter 4, “Emulator Support.”

CHIP SELECTS

LCS [RAS0] O

Lower Memory Chip Select indicates to the system that a
memory access is in progress to the lower memory block. The
base address and size of the lower memory block are
programmable up to 512 Kbyte. LCS can be configured for 8-bit
or 16-bit bus size. LCS is three-stated with a pullup resistor
during bus-hold or reset conditions.

[MCS0]

MCS1

MCS2

[MCS3]

{UCSX8}
PIO4

[CAS1]

[CAS0]

[RAS1]
PIO5

O

Midrange Memory Chip Selects 0–3 indicate to the system
that a memory access is in progress to the corresponding region
of the midrange memory block. The base address and size of
the midrange memory block are programmable. The midrange
chip selects can be configured for 8-bit or 16-bit bus size. The
midrange chip selects are three-stated with pullup resistors
during bus-hold or reset conditions.

[MCS0] can be programmed as the chip select for the entire
middle chip select address range.

Unlike the UCS and LCS chip selects that operate relative to the
earlier timing of the nonmultiplexed A address bus, the MCS
outputs assert with the multiplexed AD address and data bus
timing.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description

Queue Status Pins
QS1 QS0 Queue Operation

0 0 None

0 1
First opcode byte fetched from
queue

1 0 Queue was initialized

1 1
Subsequent byte fetched from
queue
Am186™CC/CH/CU Microcontrollers User’s Manual 3-17

System Overview
PCS0 [PIO13]
{USBSEL1}

O

Peripheral Chip Selects 0–7 indicate to the system that an
access is in progress to the corresponding region of the
peripheral address block (either I/O or memory address space).
The base address of the peripheral address block is
programmable. PCS7–PCS0 are three-stated with pullup
resistors during bus-hold or reset conditions.

Unlike the UCS and LCS chip selects that operate relative to the
earlier timing of the nonmultiplexed A address bus, the PCS
outputs assert with the multiplexed AD address and data bus
timing.

PCS1 [PIO14]
{USBSEL2}

PCS2 —

PCS3 —

[PCS4] PIO3
[CLKSEL2]

[PCS5] PIO2

[PCS6] PIO32

[PCS7] PIO31

UCS {ONCE} O

Upper Memory Chip Select indicates to the system that a
memory access is in progress to the upper memory block. The
base address and size of the upper memory block are
programmable up to 512 Kbytes. UCS is three-stated with a
weak pullup during bus-hold or reset conditions.

The UCS can be configured for an 8-bit or 16-bit bus size out of
reset. For additional information, see the {UCSX8} pin
description in Table 3-5 on page 3-7.

After reset, UCS is active for the 64-Kbyte memory range from
F0000h to FFFFFh, including the reset address of FFFF0h.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description
3-18 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
DRAM

[CAS0]

[CAS1]

MCS2

MCS1
O

Column Address Strobes 0–1 : When either the upper or lower
chip select regions are configured for DRAM, these pins provide
the column address strobe signals to the DRAM. The CAS
signals can be used to perform byte writes in a manner similar
to WLB and WHB, respectively, i.e., [CAS0] corresponds to the
low byte (WLB) and [CAS1] corresponds to the high byte (WHB).

[RAS0] LCS O
Row Address Strobe 0 : When the lower chip select region is
configured to DRAM, this pin provides the row address strobe
signal to the lower DRAM bank.

[RAS1]
[MCS3]
PIO5

O
Row Address Strobe 1 : When the upper chip select region is
configured to DRAM, this pin provides the row address strobe
signal to the upper DRAM bank.

INTERRUPTS

INT5–INT0 — STI Maskable Interrupt Requests 0–8 indicate to the
microcontroller that an external interrupt request has occurred.
If the individual pin is not masked, the microcontroller transfers
program execution to the location specified by the associated
interrupt vector in the microcontroller’s interrupt vector table.

Interrupt requests are synchronized internally and can be edge-
triggered or level-triggered. The interrupt polarity is
programmable.To guarantee interrupt recognition for edge-
triggered interrupts, the user should hold the interrupt source for
a minimum of five system clocks. A second interrupt from the
same source is not recognized until after an acknowledge of the
first.

The board designer is responsible for properly terminating the
INT8–INT0 inputs.

[INT6] PIO19

[INT7] PIO7

[INT8]
[PWD]
PIO6

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description
Am186™CC/CH/CU Microcontrollers User’s Manual 3-19

System Overview
NMI — STI

Nonmaskable Interrupt indicates to the microcontroller that an
interrupt request has occurred. The NMI signal is the highest
priority hardware interrupt and cannot be masked. The
microcontroller always transfers program execution to the
location specified by the nonmaskable interrupt vector in the
microcontroller’s interrupt vector table when NMI is asserted.

Although NMI is the highest priority hardware interrupt source,
it does not participate in the priority resolution process of the
maskable interrupts. There is no bit associated with NMI in the
interrupt in-service or interrupt request registers. This means
that a new NMI request can interrupt an executing NMI interrupt
service routine. As with all hardware interrupts, the interrupt flag
(IF) is cleared when the processor takes the interrupt, disabling
the maskable interrupt sources. However, if maskable interrupts
are re-enabled by software in the NMI interrupt service routine
(for example, via the STI instruction), the fact that an NMI is
currently in service does not have any effect on the priority
resolution of maskable interrupt requests. For this reason, it is
strongly advised that the interrupt service routine for NMI should
not enable the maskable interrupts.

An NMI transition from Low to High is latched and synchronized
internally, and it initiates the interrupt at the next instruction
boundary. To guarantee that the interrupt is recognized, the NMI
pin must be asserted for at least one CLKOUT period.

The board designer is responsible for properly terminating the
NMI input.

Also configurable as interrupts are PIO5, PIO15, PIO27, PIO29, PIO30, PIO33, PIO34, and PIO35. For more
information, see Chapter 9, “Programmable I/O Signals.”

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description
3-20 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
PROGRAMMABLE I/O (PIOS)

PIO47–PIO0

(For a list of the
multiplexed
signals ordered
by PIO number,
see Table 3-2.)

B

Shared Programmable I/O pins can be programmed with the
following attributes: PIO function (enabled/disabled), direction
(input/output), and weak pullup or pulldown.

After a reset, the PIO pins default to various configurations. Most
of the PIO pins are configured as PIO inputs with pullup after
reset. The system initialization code must reconfigure any PIO
pins as required.

PIO5, PIO15, PIO27, PIO29, PIO30, and PIO33–PIO35 are
capable of generating an interrupt on the shared interrupt
channel 14.

The multiplexed signals PIO8/ARDY, PIO13/PCS0,
PIO14/PCS1, PIO15/WR, PIO29/DT/R, PIO30/DEN,
PIO33/ALE, PIO34/BHE, and PIO35/SRDY default to non-PIO
operation at reset.

The following PIO signals are multiplexed with alternate signals
that can be used by emulators: PIO8, PIO15, PIO33, PIO34, and
PIO35. Consider any emulator requirements for the alternate
signals before using these pins as PIOs.

PROGRAMMABLE TIMERS

[PWD]
[INT8]
PIO6

STI

Pulse-Width Demodulator: If pulse-width demodulation is
enabled, [PWD] processes a signal through the Schmitt trigger
input. [PWD] is used internally to drive [TMRIN0] and [INT8], and
[PWD] is inverted internally to drive [TMRIN1] and an additional
internal interrupt. If interrupts are enabled and Timer 0 and Timer
1 are properly configured, the pulse width of the alternating
[PWD] signal can be calculated by comparing the values in Timer
0 and Timer 1.

In PWD mode, the signals [TMRIN0]/PIO27 and [TMRIN1]/PIO0
can be used as PIOs. If they are not used as PIOs they are
ignored internally.

The additional internal interrupt used in PWD mode uses the
same interrupt channel as [INT7]. If [INT7] is used, it must be
assigned to the shared interrupt channel.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description
Am186™CC/CH/CU Microcontrollers User’s Manual 3-21

System Overview
[TMRIN0]

[TMRIN1]

PIO27

PIO0

STI

STI

Timer Inputs 0–1 supply a clock or control signal to the internal
microcontroller timers. After internally synchronizing a Low-to-
High transition on [TMRIN1]–[TMRIN0], the microcontroller
increments the timer. [TMRIN1]–[TMRIN0] must be tied High if
not being used. When PIO is enabled for one or both, the pin is
pulled High internally.

[TMRIN1]–[TMRIN0] are driven internally by [INT8]/[PWD] when
pulse-width demodulation functionality is enabled. The
[TMRIN1]–[TMRIN0] pins can be used as PIOs when pulse-
width demodulation is enabled.

[TMROUT0]

[TMROUT1]

PIO28

PIO1

O

O

Timer Outputs 0–1 supply the system with either a single pulse
or a continuous waveform with a programmable duty cycle.
[TMROUT1]–[TMROUT0] are three-stated during bus-hold or
reset conditions.

ASYNCHRONOUS SERIAL PORTS (UART AND HIGH-SPEED UART)

UART

[RXD_U]
DCE_RXD_D
[PCM_RXD_D]
PIO26

STI
Receive Data UART is the asynchronous serial receive data
signal that supplies data from the asynchronous serial port to
the microcontroller.

[TXD_U]
[DCE_TXD_D]
[PCM_TXD_D]
PIO20

O
Transmit Data UART is the asynchronous serial transmit data
signal that supplies data to the asynchronous serial port from
the microcontroller.

[CTS_U]
[DCE_TCLK_D]
[PCM_FSC_D]
PIO24

STI

Clear-To-Send UART provides the Clear-to-Send signal from
the asynchronous serial port when hardware flow control is
enabled for the port. The [CTS_U] signal gates the transmission
of data from the serial port transmit shift register. When [CTS_U]
is asserted, the transmitter begins transmission of a frame of
data, if any is available. If [CTS_U] is deasserted, the transmitter
holds the data in the serial port transmit shift register. The value
of [CTS_U] is checked only at the beginning of the transmission
of the frame. [CTS_U] and [RTR_U] form the hardware
handshaking interface for the UART.

[RTR_U]
DCE_RCLK_D
[PCM_CLK_D]
PIO25

O

Ready-To-Receive UART provides the Ready-to-Receive
signal for the asynchronous serial port when hardware flow
control is enabled for the port. The [RTR_U] signal is asserted
when the associated serial port receive data register does not
contain valid, unread data. [CTS_U] and [RTR_U] form the
hardware handshaking interface for the UART.

HIGH-SPEED UART

[RXD_HU] PIO16 STI
Receive Data High-Speed UART is the asynchronous serial
receive data signal that supplies data from the high-speed serial
port to the microcontroller.

TXD_HU — O
Transmit Data High-Speed UART is the asynchronous serial
transmit data signal that supplies data to the high-speed serial
port from the microcontroller.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description
3-22 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
[CTS_HU]
[DCE_CTS_D]
[PCM_TSC_D]
PIO46

STI

Clear-To-Send High-Speed UART provides the Clear-to-Send
signal from the high-speed asynchronous serial port when
hardware flow control is enabled for the port. The [CTS_HU]
signal gates the transmission of data from the serial port transmit
shift register. When [CTS_HU] is asserted, the transmitter
begins transmission of a frame of data, if any is available. If
[CTS_HU] is deasserted, the transmitter holds the data in the
serial port transmit shift register. The value of [CTS_HU] is
checked only at the beginning of the transmission of the frame.
[CTS_HU] and [RTR_HU] form the hardware handshaking
interface for the High-Speed UART.

[RTR_HU]
[DCE_RTR_D]
PIO47

O

Ready-To-Receive High-Speed UART provides the Ready-to-
Receive signal to the high-speed asynchronous serial port when
hardware flow control is enabled for the port. The [RTR_HU]
signal is asserted when the associated serial port receive data
register does not contain valid, unread data. [CTS_HU] and
[RTR_HU] form the hardware handshaking interface for the
High-Speed UART.

SYNCHRONOUS SERIAL INTERFACE (SSI)

[SCLK] PIO11 O
Serial Clock provides the clock for the synchronous serial
interface to allow synchronous transfers between the
microcontroller and a slave device.

[SDATA] PIO12 B
Serial Data is used to transmit and receive data between the
microcontroller and a slave device on the synchronous serial
interface.

[SDEN] PIO10 O
Serial Data Enable enables data transfers on the synchronous
serial interface.

HIGH-LEVEL DATA LINK CONTROL SYNCHRONOUS COMMUNICATION INTERFACES

HDLC Channel A (DCE)

DCE_RXD_A [GCI_DD_A]
[PCM_RXD_A]

STI
DCE Receive Data Channel A is the serial data input pin for
the channel A DCE interface.

DCE_TXD_A [GCI_DU_A]
[PCM_TXD_A]

OD-
O

DCE Transmit Data Channel A is the serial data output pin for
the channel A DCE interface.

DCE_RCLK_A [GCI_DCL_A]
[PCM_CLK_A]

STI

DCE Receive Clock Channel A provides the receive clock to
the channel A DCE interface. If the same clock is to be used for
both transmit and receive, then this pin should be tied to the
DCE_TCLK_A pin externally.

The DCE function is the default at reset, so the board designer
is responsible for properly terminating the DCE_RCLK_A input.

DCE_TCLK_A [GCI_FSC_A]
[PCM_FSC_A]

STI

DCE Transmit Clock Channel A provides the transmit clock to
the channel A DCE interface. If the same clock is to be used for
both transmit and receive, then this pin should be tied to the
DCE_RCLK_A pin externally.

The DCE function is the default at reset, so the board designer
is responsible for properly terminating the DCE_TCLK_A input.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description

CC CH

CC CH

CC CH

CC CH

CC CH
Am186™CC/CH/CU Microcontrollers User’s Manual 3-23

System Overview
[DCE_CTS_A] [PCM_TSC_A]
PIO17

STI

DCE Clear-To-Send Channel A indicates to the channel A DCE
interface that an external serial interface is ready to receive data.
[DCE_CTS_A] and [DCE_RTR_A] provide the handshaking for
the channel A DCE interface.

[DCE_RTR_A]
PIO18 O

DCE Ready-to-Receive Channel A indicates to an external
serial interface that the internal channel A DCE interface is ready
to accept data. [DCE_CTS_A] and [DCE_RTR_A] provide the
handshaking for the channel A DCE interface.

HDLC Channel B (DCE)

[DCE_RXD_B] [PCM_RXD_B]
PIO36

STI
DCE Receive Data Channel B is the serial data input pin for
the channel B DCE interface.

[DCE_TXD_B] [PCM_TXD_B]
PIO37

OD-
O

DCE Transmit Data Channel B is the serial data output pin for
the channel B DCE interface.

[DCE_RCLK_B] [PCM_CLK_B]
PIO40

STI

DCE Receive Clock Channel B provides the receive clock to
the channel B DCE interface. If the same clock is to be used for
both transmit and receive, this pin should be tied to the
[DCE_TCLK_B] pin externally.

[DCE_TCLK_B] [PCM_FSC_B]
PIO41

STI

DCE Transmit Clock Channel B provides the transmit clock to
the channel B DCE interface. If the same clock is to be used for
both transmit and receive, this pin should be tied to the
[DCE_RCLK_B] pin externally.

[DCE_CTS_B] [PCM_TSC_B]
PIO38

STI

DCE Clear-To-Send Channel B indicates to the channel B DCE
interface that an external serial interface is ready to receive data.
[DCE_CTS_B] and [DCE_RTR_B] provide the handshaking for
the channel B DCE interface.

[DCE_RTR_B]
PIO39 O

DCE Ready-to-Receive Channel B indicates to an external
serial interface that the internal channel B DCE interface is ready
to accept data. [DCE_CTS_B] and [DCE_RTR_B] provide the
handshaking for the channel B DCE interface.

HDLC Channel C (DCE)

[DCE_RXD_C]
[PCM_RXD_C]
PIO42

STI
DCE Receive Data Channel C is the serial data input pin for
the channel C DCE interface.

[DCE_TXD_C]
[PCM_TXD_C]
PIO43

OD-
O

DCE Transmit Data Channel C is the serial data output pin for
the channel C DCE interface.

[DCE_RCLK_C]
[PCM_CLK_C]
PIO22

STI

DCE Receive Clock Channel C provides the receive clock to
the channel C DCE interface. If the same clock is to be used for
both transmit and receive, this pin should be tied to the
[DCE_TCLK_C] pin externally.

[DCE_TCLK_C]
[PCM_FSC_C]
PIO23

STI

DCE Transmit Clock Channel C provides the transmit clock to
the channel C DCE interface. If the same clock is to be used for
both transmit and receive, this pin should be tied to the
[DCE_RCLK_C] pin externally.

[DCE_CTS_C]
[PCM_TSC_C]
PIO44

STI

DCE Clear-To-Send Channel C indicates to the channel C DCE
interface that an external serial interface is ready to receive data.
[DCE_CTS_C] and [DCE_RTR_C] provide the handshaking for
the channel C DCE interface.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH

CC

CC

CC

CC

CC

CC
3-24 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
[DCE_RTR_C] PIO45 O

DCE Ready-to-Receive Channel C indicates to an external
serial interface that the internal channel C DCE is ready to accept
data. [DCE_CTS_C] and [DCE_RTR_C] provide the
handshaking for the channel C DCE interface.

HDLC Channel D (DCE)

DCE_RXD_D

[RXD_U] (UART)
[PCM_RXD_D]
PIO26

STI
DCE Receive Data Channel D is the serial data input pin for
the channel D DCE interface.

[DCE_TXD_D]

[TXD_U] (UART)
[PCM_TXD_D]
PIO20

OD-
O

DCE Transmit Data Channel D is the serial data output pin for
the channel D DCE interface.

DCE_RCLK_D

[RTR_U] (UART)
[PCM_CLK_D]
PIO25

STI

DCE Receive Clock Channel D provides the receive clock to
the channel D DCE interface. If the same clock is to be used for
both transmit and receive, then this pin should be tied to the
[DCE_TCLK_D] pin externally.

[DCE_TCLK_D]

[CTS_U] (UART)
[PCM_FSC_D]
PIO24

STI

DCE Transmit Clock Channel D provides the transmit clock to
the channel D DCE interface. If the same clock is to be used for
both transmit and receive, then this pin should be tied to the
DCE_RCLK_D pin externally.

[DCE_CTS_D]

[CTS_HU] (High-
Speed UART)
[PCM_TSC_D]
PIO46

STI

DCE Clear-To-Send Channel D indicates to the channel D DCE
interface that an external serial interface is ready to receive data.
[DCE_CTS_D] and [DCE_RTR_D] provide the handshaking for
DCE Channel D.

[DCE_RTR_D]

[RTR_HU] (High-
Speed UART)
PIO47

O

DCE Ready-To-Receive Channel D indicates to an external
serial interface that the internal channel D DCE interface is ready
to accept data. [DCE_CTS_D] and [DCE_RTR_D] provide the
handshaking for the channel D DCE interface.

HDLC Channel A (PCM)

[PCM_RXD_A] DCE_RXD_A

[GCI_DD_A]
STI

PCM Receive Data Channel A is the serial data input pin for
the channel A PCM Highway interface.

[PCM_TXD_A] DCE_TXD_A

[GCI_DU_A]

O-
LS-
OD

PCM Transmit Data Channel A is the serial data output pin for
the channel A PCM Highway interface.

[PCM_CLK_A] DCE_RCLK_A

[GCI_DCL_A]
STI

PCM Clock is the single transmit and receive data clock pin for
the channel A PCM Highway interface.

[PCM_FSC_A] DCE_TCLK_A

[GCI_FSC_A]
STI

PCM Frame Synchronization Clock provides the Frame
Synchronization Clock input (usually 8 kHz) for the channel A
PCM Highway interface.

[PCM_TSC_A] [DCE_CTS_A]
PIO17

OD
PCM Time Slot Control A enables an external buffer device
when channel A PCM Highway data is present on the
[PCM_TXD_A] output pin in PCM Highway mode.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description

CC

CC

CC

CC

CC

CC

CC

CC

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH
Am186™CC/CH/CU Microcontrollers User’s Manual 3-25

System Overview
HDLC Channel B (PCM)

[PCM_RXD_B] [DCE_RXD_B]
PIO36

STI
PCM Receive Data Channel B is the serial data input pin for
the channel B PCM Highway interface.

[PCM_TXD_B] [DCE_TXD_B]
PIO37

O-
LS-
OD

PCM Transmit Data Channel B is the serial data output pin for
the channel B PCM Highway interface.

[PCM_CLK_B] [DCE_RCLK_B]
PIO40

STI
PCM Clock is the single transmit and receive data clock pin for
the channel B PCM Highway interface.

[PCM_FSC_B] [DCE_TCLK_B]
PIO41

STI
PCM Frame Synchronization Clock provides the Frame
Synchronization Clock input (usually 8 kHz) for the channel B
PCM Highway interface.

[PCM_TSC_B] [DCE_CTS_B]
PIO38

OD
PCM Time Slot Control B enables an external buffer device
when channel B PCM Highway data is present on the
[PCM_TXD_B] output pin in PCM Highway mode.

HDLC Channel C (PCM)

[PCM_RXD_C]
[DCE_RXD_C]
PIO42

STI
PCM Receive Data Channel C is the serial data input pin for
the channel C PCM Highway interface.

[PCM_TXD_C]
[DCE_TXD_C]
PIO43

O-
LS-
OD

PCM Transmit Data Channel C is the serial data output pin for
the channel C PCM Highway interface.

[PCM_CLK_C]
[DCE_RCLK_C]
PIO22

B

PCM Clock: For PCM Highway operation, [PCM_CLK_C] is the
single transmit and receive data clock input pin for the channel
C PCM Highway interface. [PCM_CLK_C] becomes a clock
source output when the GCI to PCM Highway clock and frame
synchronization conversion are enabled.

[PCM_FSC_C]
[DCE_TCLK_C]
PIO23

B

PCM Frame Synchronization Clock: For PCM Highway
operation, [PCM_FSC_C] provides the Frame Synchronization
Clock input (usually 8 kHz) for the channel C PCM Highway
interface. [PCM_FSC_C] becomes a frame synchronization
source output when the GCI to PCM Highway clock and frame
synchronization conversion are enabled.

[PCM_TSC_C]
[DCE_CTS_C]
PIO44

OD
PCM Time Slot Control C enables an external buffer device
when channel C PCM Highway data is present on the
[PCM_TXD_C] output pin in PCM Highway mode.

HDLC Channel D (PCM)

[PCM_RXD_D]

[RXD_U] (UART)
DCE_RXD_D

PIO26
STI

PCM Receive Data Channel D is the serial data input pin for
the channel D PCM Highway interface.

[PCM_TXD_D]

[TXD_U] (UART)
[DCE_TXD_D]
PIO20

O-
LS-
OD

PCM Transmit Data Channel D is the serial data output pin for
the channel D PCM Highway interface.

[PCM_CLK_D]

[RTR_U] (UART)
DCE_RCLK_D

PIO25
STI

PCM Clock is the single transmit and receive data clock pin for
the channel D PCM Highway interface.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC
3-26 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
[PCM_FSC_D]

[CTS_U] (UART)
[DCE_TCLK_D]
PIO24

STI
PCM Frame Synchronization Clock provides the Frame
Synchronization Clock input (usually 8 kHz) for the channel D
PCM Highway interface.

[PCM_TSC_D]

[CTS_HU] (High-
Speed UART)
[DCE_CTS_D]
PIO46

OD
PCM Time Slot Control D enables an external buffer device
when channel D PCM Highway data is present on the
[PCM_TXD_D] output pin in PCM Highway mode.

HDLC Channel A (GCI)

[GCI_DD_A]
DCE_RXD_A

[PCM_RXD_A]
BO
D

GCI Data Downstream is the serial data input pin for the channel
A GCI interface.

[GCI_DU_A]
DCE_TXD_A

[PCM_TXD_A]
BO
D

GCI Data Upstream is the serial data output pin for the channel
A GCI interface.

[GCI_DCL_A]
DCE_RCLK_A

[PCM_CLK_A]
STI

GCI Data Clock is the single transmit and receive channel A
GCI data clock input generated by an upstream device. The data
clock frequency must be twice the data rate.

[GCI_FSC_A]
DCE_TCLK_A

[PCM_FSC_A]
STI

GCI Frame Synchronization Clock provides the 8-kHz Frame
Synchronization Clock input for the channel A GCI interface
generated by an upstream device.

UNIVERSAL SERIAL BUS (USB)

[UDMNS]

[UDPLS]

USBD–

USBD+

STI

STI

USB External Transceiver Gated Differential Plus and USB
External Transceiver Gated Differential Minus are inputs from
the external USB transceiver used to detect single-ended zero
and error conditions. The signals have the following meanings:

USBD+

USBD–

[UDPLS]

[UDMNS]

B

B

USB Differential Plus and USB Differential Minus form the
bidirectional electrical data interface for the USB port. The pins
form a differential pair that can be connected to a physical USB
connector without an external transceiver.

[USBSCI]

[UCLK]
[USBSOF]
PIO21

STI

USB Sample Clock Input is used to synchronize an external
clock to the internal USB peripheral controller for isochronous
transfers.

[USBSOF]

[UCLK]
[USBSCI]
PIO21

O

USB Start of Frame is a 1-kHz frame pulse used to synchronize
USB isochronous transfers to an external device on a frame-by-
frame basis.

UTXDMNS RSVD_102 O
USB External Transceiver Differential Minus is an output that
drives the external transceiver differential driver minus input.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description

CC

CC

CC

CC

CC

CC

CC

CC CU

CC CU

CC CU

USB External Transceiver Signals
UDPLS UDMNS Status

0 0
Single-Ended Zero
(SE0)

0 1 Full speed

1 0 Reserved

1 1 Error

CC CU

CC CU

CC CU

CC CU

CC CU
Am186™CC/CH/CU Microcontrollers User’s Manual 3-27

System Overview
3.6 BUS INTERFACE

3.6.1 Overview
The Am186CC/CH/CU bus interface controls all accesses to the peripheral control block
(PCB), memory-mapped and I/O-mapped external peripherals, and memory devices. The
bus interface accesses internal peripherals through the PCB. The microcontroller provides
an enhanced bus interface with the following features:

■ Multiplexed address and data bus

■ Nonmultiplexed address bus

■ Option to disable the address phase of the address/data bus for accesses to the upper
(UCS) and/or lower (LCS) memory regions

■ Option to globally disable the address phase of the address/data bus for all memory or
I/O accesses

■ Programmable bus sizing, individually selectable for the upper (UCS) memory space,
lower (LCS) memory space, all non-UCS and non-LCS memory space, and all I/O space

■ Option to boot from an 8-bit device

■ Separate byte write enables for high and low bytes

■ RD signal can act as output enable

■ Bus-mastering support of a PCnet-ISA interface by three-stating additional pins (UCS,
LCS, MCS3–MCS0, PCS7–PCS0, and ALE) during bus-hold

■ Integrated DRAM controller

■ Data Enable/Data Strobe (DEN/DS) and Data Transmit/Receive signal (DT/R) provided
to support an external data bus transceiver and to support a bus interface to 68xxx- style
peripherals

■ Support for the Reset Configuration (RESCON) register used to latch system
configuration information from the AD bus during a power-on reset

■ Peripheral Control Block Relocation (RELOC) register configurable to perform a “dual
decode” of PCB addresses; one address is locked at the default reset location and the
other address depends on how the RELOC register is programmed (default)

UTXDPLS RSVD_101 O
USB External Transceiver Differential Plus is an output that
drives the external transceiver differential driver plus input.

UXVOE RSVD_103 O

USB External Transceiver Transmit Output Enable is an
output that enables the external transceiver. UXVOE signals the
external transceiver that USB data is being output by the
microcontroller. When Low this pin enables the transceiver
output, and when High this pin enables the receiver.

UXVRCV RSVD_104 STI
USB External Transceiver Differential Receiver is a data input
received from the external transceiver differential receiver.

Notes:
1. Icons indicating microcontroller specific signals are used only in the Signal Name column.

Table 3-7 Signal Descriptions (Continued)

Signal Name1 Multiplexed
Signal(s)

Type Description

CC CU

CC CU

CC CU
3-28 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
3.6.2 Block Diagrams
Figure 3-1 shows an Am186CC/CH/CU microcontroller system with DRAM; Figure 3-2,
with SRAM.

Figure 3-1 Typical Microcontroller Memory System With DRAM

Figure 3-2 Typical Microcontroller Memory System With SRAM

CAS0

CAS1

RAS0

Flash Memory

4-Mbit DRAM

MA8–MA0

WE

OE

Data

CAS0

CAS1

RAS0

WR

A19–A0

UCS

AD15–AD0

RD

WE

Address

CS

Data

OE

(x8 or x16)

Am186CC/CH/CU
Microcontroller

Flash Memory (x8 or x16)

8-bit SRAM

x16 SRAM

WE

CS

OE

Address

Data

Data

Address

OE

CS

WE

CS

OE

WE

Address

D7–D0

WE

WR

UCS

RD

A19–A0

AD15–AD0

MCS0

LCS

WLB

WHB

Am186CC/CH/CU
Microcontroller
Am186™CC/CH/CU Microcontrollers User’s Manual 3-29

System Overview
3.6.3 Operation
3.6.3.1 Address and Data Buses

The 80C186 and 80C188 microcontrollers use a multiplexed address and data (AD) bus.
The address is present on the AD bus only during the t1 clock phase. The Am186CC/CH/CU
microcontrollers provide the multiplexed AD bus and, in addition, provide a nonmultiplexed
address (A) bus. The A bus provides an address to the system for the complete bus cycle.
During refresh cycles, the AD bus is driven during the t1 phase and the values are three-
stated during the t2, t3, and t4 phases. The value driven on the A bus is undefined during
a refresh cycle.

The nonmultiplexed address bus (A19–A0) is valid one-half CLKOUT cycle in advance of
the address on the AD bus. When used with the modified UCS and LCS outputs and the
byte write enable signals, the A19–A0 bus provides a seamless interface to external SRAM,
DRAM, and Flash/EPROM memory systems.

For systems where power consumption is a concern, it is possible to disable the address
from being driven on the AD bus on the microcontroller during the normal address portion
of the bus cycle for accesses to RAS0, RAS1, upper (UCS), and lower (LCS) address
spaces. In this mode, the affected bus is placed in a high-impedance state during the
address portion of the bus cycle. This feature is enabled through the DA bits (bit 7) in the
Upper Memory Chip Select (UMCS) and Lower Memory Chip Select (LMCS) registers. In
addition, the DISMEM bit (bit 11, for memory addresses) and the DISIO bit (bit 10, for I/O
addresses) in the SYSCON register serve as global address disables to prevent address
bits from appearing on the AD15–AD0 bus. Setting the DISMEM bit overrides clearing the
DA bits.

When address disable is in effect, the number of signals that assert on the bus during all
normal bus cycles to the associated address space is reduced, thus decreasing power
consumption, reducing processor switching noise, and preventing bus contention with
memory devices and peripherals when operating at high clock rates. For more information
about chip selects, see Chapter 5, “Chip Selects.”

If the ADEN pin is asserted during processor reset, the values of the DA, DISMEM, and
DISIO bits are ignored and the address is driven on the AD bus for all accesses, thus
preserving the industry-standard 80C186 and 80C188 microcontrollers’ multiplexed
address bus and providing support for existing emulation tools.

For timing diagrams, see the data sheets for the Am186CC/CH/CU microcontrollers. For
more information about the registers, see the Am186™CC/CH/CU Microcontrollers
Register Set Manual, order #21916.

3.6.3.2 Programmable Bus Sizing

The 80C186 microcontroller provided a 16-bit wide data bus over its entire memory and
I/O address ranges, but did not allow accesses to an 8-bit wide bus. However, the data bus
width on the Am186CC/CH/CU microcontrollers is programmable through the Upper
Memory Chip Select (UMCS), Lower Memory Chip Select (LMCS), and PCS and MCS
Auxiliary (MPCS) registers. The USIZ bit (bit 5) in the UMCS register determines the width
of the data bus for memory accesses to the upper memory region and the LSIZ bit (bit 5)
in the LMCS register determines the width for the lower memory region. The OMSIZ bit
(bit 5) in the MPCS register specifies the width of the data bus for memory accesses to all
non-upper and non-lower memory regions (i.e., MCS space, PCS space in memory, and
the remaining memory space that does not reside in one of the enabled chip-select memory
regions). The IOSIZ bit (bit 5) in the MPCS register specifies the width of the data bus for
all I/O accesses. Table 3-8 shows how the bit settings affect bus size.
3-30 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
The width of the data access should not be modified while the processor is fetching
instructions from the associated address space or while the peripheral control block is
overlaid on the affected address space.

3.6.3.3 Byte Write Enables

The Am186CC/CH/CU microcontrollers provide two signals that act as byte write enables—
WHB (Write High Byte, AD15–AD8) and WLB (Write Low Byte, AD7–AD0). WHB is the
logical OR of BHE and WR (WHB is Low when both BHE and WR are Low). WLB is the
logical OR of A0 and WR (WLB is Low when both A0 and WR are Low).

The byte write enables are driven with the nonmultiplexed address bus as required for the
write timing requirements of common SRAMs.

3.6.3.4 Output Enable

The Am186CC/CH/CU microcontrollers provide the RD (Read) signal, which can act as an
output enable for memory or peripheral devices. The RD signal is Low when the
microcontroller reads a word or byte.

3.6.3.5 Bus Mastering

When an external bus master requests control of the local bus (by asserting HOLD), the
microcontroller completes the bus cycle in progress. It then relinquishes control of the bus
to the external bus master by asserting HLDA and floating S2–S0, AD15–AD0, S6,
TMROUT1, and TMROUT0. During HOLD, internal pullups are active for BHE, DEN, DT/R,
LCS, MCS1/CAS1, MCS2/CAS0, MCS3/RAS1, PCS7–PCS0, PIO4/MCS0, RD, UCS,
WHB, WLB, and WR and an internal pulldown is active for A19–A0 and ALE.

Table 3-8 Programming Am186CC/CH/CU Microcontrollers Bus Width

Space Register Bit Value Bus Width Comments

UCS UMCS USIZ N/A N/A Dependent on boot option1

Notes:
1. UCS width on reset is determined by the {UCSX8} pin. If {UCSX8} is Low, the bus width is x8; if
{UCSX8} is High, the bus is x16. If UCS boots as 8-bit space, it can be overridden by clearing the
USIZ bit. If UCS boots as 16-bit space, it is not reconfigurable to 8-bit.

LCS LMCS LSIZ N/A N/A

MCS MPCS OMSIZ 0 16 bits Default

1 8 bits

PCS2

2. PCS space configured for memory only; not I/O.

MPCS OMSIZ 0 16 bits Default

1 8 bits

I/O3

3. If PCB space is mapped to I/O, its functions are not affected by this bit.

MPCS IOSIZ 0 16 bits Default

1 8 bits

Other

Memory4

4. The remaining memory space that does not reside in one of the enabled, memory, chip-select
regions. If PCB space is mapped to memory, its functions are not affected by this bit.

MPCS OMSIZ 0 16 bits Default

1 8 bits
Am186™CC/CH/CU Microcontrollers User’s Manual 3-31

System Overview
3.6.3.6 DRAM Controller

The microcontroller has a fully integrated DRAM controller that provides a glueliss interface
to 25-ns–70-ns EDO DRAM. The microcontroller provides zero-wait state operation at up
to 50 MHz with 40-ns DRAM. The DRAM controller includes the following features:

■ Multiplexed addresses for DRAM row and column accesses

■ 8-bit and 16-bit boot mode for UCS accesses

■ Two RAS signals that support two banks of DRAM

■ Two byte CAS signals

■ Direct support for 4-Mbit (256Kx16) extended data out (EDO) DRAMs

■ Prioritized PCS over DRAM space accesses

The various cycles in the microcontroller follow this priority ranking: refresh (highest priority),
HOLD, DMA, and CPU (lowest).

For more information about DRAM, see Chapter 6, “DRAM Controller.”

3.7 CLOCK CONTROL
The microcontroller clocks include the general system clock (CLKOUT), and the baud rate
generator clock for the two Universal Asynchronous Receiver Transmitters (UART and high-
speed UART). The Synchronous Serial Interface (SSI) and the timers (Timers 0, 1, and 2)
derive their clocks from the system clock.

3.7.1 Clock Features
The microcontroller includes the following clock features and characteristics. Figure 3-3
illustrates the clocks. For detailed information on the clocks, see the data sheets for
Am186CC/CH/CU microcontrollers.

■ One crystal-controlled oscillator that uses an external fundamental mode crystal or
oscillator to generate the system input clock.

■ One internal PLL that generates a system clock (CLKOUT) that is 1x, 2x, or 4x the
system input clock.

■ SSI clock (SCLK) is derived from the system clock, divided by 2, 4, 8, 16, 32, 64, 128,
or 256.

■ Timers 0 and 1 can be configured to be driven by the timer input pins (TMRIN1, TMRIN0)
or at one-fourth of the system clock. Timer 2 is driven at one-fourth of the CPU clock.

■ UART clock can be derived from the internal system clock frequency or from the UART
clock (UCLK) input.

The Am186CC and Am186CU microcontrollers also include the Universal Serial Bus (USB)
clock with the following features:

■ One independent crystal-controlled oscillator that uses an external fundamental mode
crystal or oscillator to generate the USB input clock.

■ One internal PLL that generates the 48-MHz clock required for the USB from either a
24-MHz or 12-MHz input.

■ Single clock source operation possible by sharing the clock source between the system
and the USB.

CUCC
3-32 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
The Am186CC and Am186CH microcontrollers also include the transmitter/receiver clocks
for each High-level Data Link Control (HDLC) channel.

In the Am186CC microcontroller, each HDLC channel receives its clock inputs directly from
the external communication clock pins (TCLK _X and RCLK_X) in all modes except in GCI
mode. In GCI mode the external GCI communication clocks (TCLK_A and RCLK_A) are
first converted to an internal clocking format (analogous to PCM Highway) before
presentation to the HDLC. The system clock must be at least the same frequency as any
HDLC clock. The Am186CC microcontroller supports the following clock frequencies:

■ HDLC DCE mode supports clocks up to 10 MHz.

■ HDLC PCM mode supports clocks up to 10 MHz.

■ HDLC GCI mode supports a 1.536-MHz clock input. (System clock must be at least
twice the GCI clock.)

In the Am186CH HDLC microcontroller, each HDLC channel receives its clock inputs
directly from the external communication clock pins (TCLK _X and RCLK_X) in all modes.
The system clock must be at least the same frequency as any HDLC clock. The Am186CH
HDLC microcontroller supports the following clock frequencies:

■ HDLC DCE mode supports clocks up to 10 MHz.

■ HDLC PCM mode supports clocks up to 10 MHz.

Figure 3-3 Am186CC/CH/CU Microcontroller Clocks

CHCC

CC

CH

{CLKSEL2}–{CLKSEL1}

CLKOUT

PLL Bypass Mode

48-MHz
USB Clock

{USBSEL2}–{USBSEL1}

1x

2x

4x

2x

4x

X1 X2

Am186CC/CH/CC Microcontroller

PLL

PLL
USBX1 UXBX2

CPU Clock

CC CU
Am186™CC/CH/CU Microcontrollers User’s Manual 3-33

System Overview
3.7.2 PLL Bypass Mode
The Am186CC/CH/CU microcontrollers provide a PLL Bypass mode that allows the X1
input frequency to be anything from 0 to 24 MHz. Select PLL Bypass by asserting CLKSEL1
and CLKSEL2.

When the microcontroller is in PLL Bypass mode, the CLKOUT frequency equals the X1
input frequency. When changing frequency in PLL Bypass mode, the X1 input must not
have any short or “runt” pulses. At 24 MHz, the nominal High/Low time is 21 ns. The actual
High times and Low times must not fall below 16 ns. These values allow a 60%/40% duty
cycle at X1.

In the Am186CC and Am186CU microcontrollers, the USB PLL and USBX1 determine the
USB clock. USB requires the CPU clock to be 24 MHz or greater. Therefore, disable the
USB peripheral controller before slowing the CPU clock to less than 24 MHz. If USB is not
used, you can pull down USBX1.

In the Am186CC and Am186CH microcontrollers, the system clock must be at the same
or a greater frequency than the HDLC clock and UCLK (if using UCLK). Therefore, if
reducing the system clock frequency, disable these interfaces or run them at a lower
frequency.

In the Am186CC microcontroller, the system clock must be the same or twice the frequency
of the GCI clock. Therefore, if reducing the system clock frequency, disable the GCI interface
or run it at a lower frequency.

3.8 HARDWARE-RELATED CONSIDERATIONS
■ Pins latched on reset (pinstraps) are not resampled during a watchdog-timer reset.

■ If the external reset (RES) signal is asserted while the watchdog timer is performing a
watchdog-timer reset, the external reset takes precedence over the watchdog-timer
reset. This means that the RESOUT signal asserts as with any external reset and the
WDTCON register does not have the RSTFLAG bit set. In addition, the microcontroller
exits reset based on the external reset timing (i.e., 4.5 clocks after the deassertion of

RES rather than 216 clocks after the watchdog timer time-out occurred).

3.9 COMPARISON TO OTHER DEVICES
■ The 80C186 microcontroller provided a 16-bit wide data bus over its entire address

range, memory, and I/O, but did not allow accesses to an 8-bit wide bus. However, the
data bus width on the Am186CC/CH/CU microcontrollers is programmable to be 8 bits
or 16 bits.

■ Earlier Am186 microcontrollers included a power save clock mode. The
Am186CC/CH/CU microcontrollers are not designed for low-power applications and
therefore do not incorporate the power save clock mode. However, the Am186CC/CH/CU
microcontrollers do have a PLL Bypass mode that allows the X1 clock input frequency
to be anything from 0 to 24 MHz.

3.10 INITIALIZATION
On both an external and internal reset, the following occurs:

■ The SYSCON register defaults to 00h, which has the following effects: sets normal timing
on DEN for read and writes, disables PWD mode, enables memory and I/O addresses
on the AD15–AD0 bus, and enables CLKOUT.

■ The PRL register defaults to the processor revision level.

■ Multiplexed signals default as shown in Table 3-7 on page 3-10.

CUCC

CHCC

CC
3-34 Am186™CC/CH/CU Microcontrollers User’s Manual

System Overview
■ On the Am186CC microcontroller, both an external and an internal reset selects full
HDLC with flow control for external interface D and sets HDLC Channel C for raw DCE
or PCM Highway mode.

On an external reset, the following also occurs:

■ Pinstraps are sampled (see Table 3-5 on page 3-7).

■ The RESCON register defaults to the value on AD15–AD0.

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 3-35

System Overview
3-36 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
4 E
MULATOR SUPPORT
4.1 OVERVIEW
This chapter describes the various features available in the Am186CC/CH/CU
microcontrollers to facilitate the design and operation of an In-Circuit Emulator (ICE). Most
of the discussion centers around the operation of pins. Because different debug tool
manufacturers take different approaches to emulator implementation, restrictions imposed
by the use of one type of emulator may not apply to another. However, there are a number
of common concerns shared among ICE developers. This chapter discusses those
concerns.

4.2 SYSTEM DESIGN
The main issues to consider are multiplexed pin use and emulator connection.

4.2.1 Multiplexed Pins
Because pins are an expensive resource, many of the pins on the Am186CC/CH/CU
microcontrollers serve more than one purpose. These multiplexed pins enable the system
designer to select, by hardware or software means, the required operation of the pin. It can
often be difficult for an emulator to know the function of such multiplexed pins, particularly
if the system modifies pin operation on-the-fly. Therefore, before committing a design to
hardware, the system designer should contact potential emulator suppliers for a list of
emulator pin requirements.

Certain pins are critical for successful emulator operation; these are address pins, chip
selects, and memory access timing signals. It is important that these pins not be multiplexed
in such a way as to compromise the emulator operation. Fortunately, several pin functions
can be successfully multiplexed. Emulators generally do not monitor pins relating to input/
output (PIO) operation and on-chip peripherals.

The Am186CC/CH/CU microcontrollers were designed to minimize conflicts. In most cases,
pin conflict is avoided. For example, if the Address Latch Enable (ALE) signal is required
for multiplex bus support, then it is not programmed as PIO33. If the multiplexed AD bus is
used for data only (not addresses), then ALE can be programmed as a PIO pin and the
emulator will not require the ALE signal. However, an emulator is likely to always use the
de-multiplexed address, regardless of how the AD bus is programmed.

The following PIO signals are multiplexed with alternate signals that may be used by
emulators: PIO8, PIO15, PIO33, PIO34, and PIO35. Consider any emulator requirements
for the alternate signals before using these pins as PIOs.

4.2.2 Emulator Connection
Several package types present emulation problems. At the time of publication, the
Am186CC/CH/CU microcontrollers ship in 160-pin PQFP packages.

When a PQFP device is soldered to a board, it cannot be removed and replaced with an
emulator. In this situation, the CPU must be disabled somehow, and the emulator must be
connected to the CPU to duplicate its functionality. The Am186CC/CH/CU microcontrollers
do this with the On-Circuit Emulation (ONCE) mode. Placing the microcontroller in ONCE
mode causes the output pins to become three-state and inactive. This feature allows a
Am186™CC/CH/CU Microcontrollers User’s Manual 4-1

Emulator Support
designer to clip an emulator pod over the target CPU, then use ONCE mode to disable the
target CPU and provide a connection to each of the PQFP processor pins. Be aware of any
horizontal and vertical areas required by the emulators’ physical attachment method, and
plan the board layout accordingly. One common mistake is to place connectors, switches,
or other board controls under an area that will be partially covered by the emulator target
board. Also consider the arrangement of Pin 1 versus the emulator attachment and plan
accordingly.

4.3 OPERATION

4.3.1 Usage
To use an emulator, the microcontroller must be put into ONCE mode. To enter ONCE
mode, use the ONCE reset configuration pin (pinstrap). ONCE is sampled on the rising
edge of RES. If the ONCE pin is asserted, the microcontroller enters ONCE mode.
Otherwise, it operates normally. In ONCE mode, all pins are three-stated and remain that
way until a subsequent reset occurs. To ensure the microcontroller does not inadvertently
enter ONCE mode, ONCE has a weak internal pullup resistor that is active only during an
external reset.

Note: Before using an emulator, ensure multiplexed pins are configured to reflect the use
of the emulator and not other functionality.

4.3.2 Emulator-Related Signals

4.3.2.1 A19–A0

To facilitate emulation, the Am186CC/CH/CU microcontrollers do not multiplex any of the
A19–A0 address pins. Therefore, these pins are always available for emulation.

4.3.2.2 AD15–AD0

The Am186CC/CH/CU microcontrollers do not multiplex any AD15–AD0 address/data pins
with other functionality, except that the value present on AD15–AD0 as the device comes
out of external reset is latched and saved internally to the Reset Configuration (RESCON)
register. Using this mechanism, a set of weak pullups and pulldowns can be put on the bus
to allow hardware to communicate configuration information to the software. Because this
is an input function, it should not interfere with the operation of the emulator. However, the
emulator should not interfere with the value present at reset, as software may be relying
on the value for proper operation.

4.3.2.3 {ADEN} / BHE

Deasserting ADEN on reset can prevent the multiplexed AD bus from providing address
information for lower (LCS) and upper (UCS) memory regions. Some older ICE designs
force ADEN active to force address information on the AD bus. System designers should
be aware if their emulator uses this operation and any conflicts this can cause with their
hardware.

186 processors use BHE along with A0 to determine the type and width of external bus
accesses. 188’s do not have BHE, because all data on a 188 is 8 bits wide and routed
through AD7–AD0. The Am186CC/CH/CU microcontrollers do not support a 188 version,
but do allow defining memory regions as 8-bit memory. When making accesses to 8-bit
wide memory regions, BHE cannot be used to derive any information about the access.
Use the BSIZE8 signal to determine the width of a memory region unambiguously.
4-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Emulator Support
186 processors also use BHE with A0 to denote refresh cycles to 16-bit DRAM (both
inactive). The Am186CC/CH/CU microcontrollers do not support 8-bit wide DRAM designs,
so using this mechanism to determine refresh cycles is reliable under all allowed DRAM
designs.

4.3.2.4 ALE

In multiplexed bus mode, ALE indicates that a valid address is on the AD bus. Some
emulators may require this signal. In most instances, an active chip select signal can also
be used to indicate a valid address.

4.3.2.5 ARDY and SRDY

If the target requires ready signals to operate, ARDY and SRDY cannot be used as PIOs.
Some emulators give the user control over the external ready target requirement. For
instance, ready may be required by the emulator to match overlay memory speeds to faster
target wait-state setups.

4.3.2.6 BHE

See “{ADEN}/BHE” on page 4-2.

4.3.2.7 BSIZE8

The absence of BHE for 8-bit memory regions when an emulator design uses 16-bit overlay
memory for a memory region defined as 8 bits wide poses problems for an emulator. The
emulator must know when memory accesses are targeted at 8-bit regions to correctly steer
the data between the low half of the data bus and the high half of the data bus. Although it
is possible to snoop all events that determine the memory width (chip select pulldowns
during reset, and UMCS, LMCS and MPCS register accesses), these methods can be
unreliable. The Am186CC/CH/CU microcontrollers’ BSIZE8 pin unambiguously signals the
intended size of the memory region during external bus cycles.

4.3.2.8 [CAS1–CAS0] and [RAS1–RAS0]

The on-chip DRAM controller can be configured to work with DRAM in the lower (LCS) or
upper (UCS) memory regions. The emulator needs to reconstruct the address used during
an access. The CAS signal can come too late for fast address generation. However, the
complete address appears on the A19–A0 bus during the RAS cycle. Additionally, because
the full address bus is nonmultiplexed, it is a simple task to identify an access to the DRAM
region.

CAS-before-RAS cycles could also be used to determine if an access is a refresh, but the
late arrival of the RAS signal makes this problematic.

The DRAM can only be accessed in 16-bit mode. This eliminates the problem of determining
object size due to dynamic bus sizing.

4.3.2.9 CLKOUT

The internal processor clock can be sent out on the CLKOUT pin. Emulators generally
require this.

4.3.2.10 LCS

The system uses LCS as a RAM chip select. Emulators use this to determine when RAM
accesses occur, and can intercept it for overlay memory purposes.
Am186™CC/CH/CU Microcontrollers User’s Manual 4-3

Emulator Support
4.3.2.11 MCS3–MCS0

The system uses MCS1 and MCS2 as DRAM CAS strobes. MCS0 and MCS3 can be used
as extra memory chip selects. Emulators can use these to determine when accesses occur
to these memory spaces, and can intercept it for overlay memory purposes.

4.3.2.12 {ONCE}

ONCE is not a dedicated pin but rather a pinstrap option that allows an external emulator
to place a target device into On-Circuit Emulation mode. On reset of the microcontroller, if
the ONCE pinstrap is held low, all Am186CC/CH/CU pins enter a high-impedance state.
There is an internal pullup to prevent inadvertent assertion of ONCE.

4.3.2.13 QS1–QS0

The Am186CC/CH/CU microcontrollers provide information about the execution queue on
the Queue Status bus, QS1–QS0. These signals assist in disassembling trace buffer
information.

4.3.2.14 [RAS1–RAS0]

See “[CAS1–CAS0] and [RAS1–RAS0]” on page 4-3.

4.3.2.15 RD

The RD strobe can be intercepted by the emulator for use with overlay memory.

4.3.2.16 RES

The Am186 processor family provides a Schmitt trigger on the RES input to enable the
system designer to use an inexpensive RC circuit to provide system reset. The only
restriction on power-up is for RES to stay active (Low) for at least 1 ms. Systems that use
this feature introduced a problem for In-Circuit Emulators because emulators need to know
when the target processor comes out of reset. This can be difficult to determine when the
target is being placed in ONCE mode and the reset signal has a very slow rise time. Emulator
vendors solve this problem by providing a reset signal with a fast rise time. The hardware
designer must use this emulator-supplied reset instead of the standard RC reset circuit.

The Am186CC/CH/CU microcontrollers provide a RESOUT signal that unambiguously
indicates when the device has come out of reset, eliminating this problem. However, many
emulators still generate a target reset (in response to a user console command, for
instance), and therefore need a means to connect the emulator-supplied reset to the target
hardware.

Therefore, if ICE usage is required, be aware of the emulators’ reset requirements and take
them into consideration when designing the target hardware, typically by providing a
convenient means to allow the emulator-supplied reset to be the main system reset.

4.3.2.17 RESOUT

RESOUT is activated by the Am186CC/CH/CU microcontrollers in response to either RES
being held active, or a system reset being generated by the internal watchdog timer. During
reset, this pin is actively driven, regardless of the state of the ONCE mode pinstrap (in
contrast, all other output pins go to three-state if both RES and ONCE are active). When
RES is deasserted, RESOUT is driven inactive. This high-to-low edge on RESOUT is the
signal that latches the value of all pinstrap options. When ONCE is active and RES is
inactive, RESOUT is driven inactive (all other outputs are three-stated), and held Low for
one clock cycle. After this one-clock period, RESOUT is three-stated. This sequence of
events allows an attached emulator to determine with certainty that the device has entered
ONCE mode.
4-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Emulator Support
4.3.2.18 S2–S0

The S2–S0 bus indicates the type of memory cycle in progress.

4.3.2.19 S6

The S6 signal is active from t1–t4 on the microcontroller and signals a refresh or DMA
access.

4.3.2.20 SRDY

See “ARDY and SRDY” on page 4-3.

4.3.2.21 UCS

The system typically uses UCS as a FLASH or ROM chip select. Emulators use this to
determine when ROM accesses occur, and can intercept it for overlay memory purposes.

4.3.2.22 {UCSX8} and WLB

During processor reset, the UCSX8 pin configures the upper memory region for 8-bit
operation. The BSIZE8 signal unambiguously indicates the width of a memory region for a
given access.

4.3.2.23 WHB and WR

The emulator can intercept WHB and WR for use with overlay memory. Although most
emulators use S2–S0 to determine cycle type, some may use the WR signal to determine
when writes occur. This prevents the use of WR as a PIO when using the emulator.

4.3.2.24 WLB

See �{UCSX8} and WLBÿ .

4.3.2.25 WR

See “WHB and WR” .

4.3.3 Hardware-Related Considerations
■ Be sure to allow room for pucks and emulator heads on your target board.

■ The following PIO signals are multiplexed with alternate signals that may be used by
emulators: PIO8, PIO15, PIO33, PIO34, and PIO35. Consider any emulator
requirements for the alternate signals before using these pins as PIOs.

4.3.4 Comparison to Other Devices
■ Previous Am186 watchdog timer implementations required the application to disable the

watchdog timer to prevent watchdog time-outs while emulator code was executing. The
Am186CC/CH/CU watchdog timer does not have this limitation. A feature of the
watchdog timer allows ICE code to inhibit the count of the watchdog timer.

4.4 INITIALIZATION
On both external and internal reset, the following occurs:

■ Multiplexed pins used in emulation default to signals shown in Chapter 3, “System
Overview.”
Am186™CC/CH/CU Microcontrol lers Use r ’s Manual 4-5

Emulator Support
4-6 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
5 C
HIP SELECTS
5.1 OVERVIEW
Signals that allow the CPU to select specific memory or peripheral devices are called chip
selects.

The microcontroller provides six chip select outputs for use with memory devices (UCS,
LCS, and MCS3–MCS0) and eight chip selects for use with peripherals (PCS7–PCS0) in
either memory or I/O space. The six memory chip selects can be used to address three
memory ranges. Each peripheral chip select addresses a 256-byte block offset from a
programmable base address in memory or I/O.

The microcontroller can sense a ready signal for each of the memory or peripheral chip
select lines. The R2 bit in each of the memory chip select control registers determines
whether the external ready signal is required or ignored.

In addition, the R1–R0 bits in each of the memory chip select control registers control the
number of wait states inserted in the bus cycle. Although most memory and peripheral
devices can be accessed with three or fewer wait states, some slower devices cannot. This
feature allows devices to use externally generated wait states to slow down the bus.

Address and data bus size options and enabling or disabling the address bus during the
address phase of a bus cycle are configured on a chip select basis. UCS and LCS can also
be configured for DRAM support.

The chip select lines are active for all memory and I/O cycles in their programmed areas,
whether they are generated by the CPU or by the integrated DMA unit.

The UCS and LCS chip selects assert relative to the timing of the nonmultiplexed address
(A) bus; the MCS and PCS chip selects assert relative to the multiplexed address and data
(AD) bus. The timing for chip selects is shown in the data sheets for each of the Am186CC/
CH/CU microcontrollers.

The CAS0 and CAS1 signals can be used to perform byte writes in a manner similar to
WLB and WHB, respectively. That is, CAS0 corresponds to the low byte (WLB) and CAS1
corresponds to the high byte (WHB).
Am186™CC/CH/CU Microcontrollers User’s Manual 5-1

Chip Selects
5.2 BLOCK DIAGRAM
Figure 5-1 shows the block diagram for the chip selects.

Figure 5-1 Chip Selects and DRAM Block Diagram

5.3 SYSTEM DESIGN
Table 5-1 lists the chip select signals that are multiplexed with other Am186CC/CH/CU
functions. Pinstraps are sampled only at external reset and do not affect the pin’s other
functions, so they are not shown in this table. Other multiplexed signals, when enabled,
either disable or alter any other functions that use the same pin.

For diagrams of some example applications, see Chapter 3, “System Overview.”

Internal UCS

CS/DRAM
Registers

PCB_AD

Write Data

Read Data

RD

WR

BOOT_WIDTH

(CDRAM)

Refresh Value

Refresh Enable

Current Value
(EDRAM)

Internal Chip
Selects Decode

LCS_DRAM

UCS_DRAM

Internal PCS7–PCS0

DRAM Address

Internal RAS0

(from PADS)

Internal A19-A11

Control to 186

Control from 186 (to PADS)

Internal MCS0

PCS7–PCS0

MCS0

Internal RAS1

Internal CAS0

Internal CAS1

Control

N
M

C
S

U
M

C
S

LM
C

S

P
A

C
S

M
P

C
S

UCS

MCS3–MCS1

LCS

Control to/from 186

Refresh
Control

Chip Select
Generation

DRAM
Control

Pads
5-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Chip Selects
.

5.4 REGISTERS
Program the chip selects through the five 16-bit peripheral registers (see Table 5-2).
Appendix A summarizes the bits in all the registers. For a complete description of all the
peripheral registers, see the Am186™CC/CH/CU Microcontrollers Register Set Manual,
order #21916.

Table 5-1 Chip Selects Multiplexed Signals

Signal
Multiplexed

Signal(s)
Default
Signal

Function

LCS RAS0 LCS Lower memory chip select

MCS0 PIO4 PIO4

Midrange memory chip selects
MCS1 CAS1 MCS1

MCS2 CAS0 MCS2

MCS3
RAS1
PIO5

PIO5

PCS0 PIO13 PCS0

Peripheral chip selects

PCS1 PIO14 PCS1

PCS2 — PCS2

PCS3 — PCS3

PCS4 PIO3 PIO3

PCS5 PIO2 PIO2

PCS6 PIO32 PIO32

PCS7 PIO31 PIO31

UCS — UCS Upper memory chip select

Table 5-2 Chip Select Register Summary

Offset
Register
Mnemonic

Register Name Description

3A0h UMCS Upper Memory Chip Select
Programs the lower boundary of the Upper Memory Chip
Select, UCS.
Also supports DRAM.

3A2h LMCS Lower Memory Chip Select
Programs the upper boundary of the Lower Memory Chip
Select, LCS.
Also supports DRAM.

3A4h PACS Peripheral Chip Select
Partially configures the peripheral chip selects, PCS7–
PCS0 (along with the MPCS register). Sets the base
address of the memory block selected by PCS.

3A6h MMCS
Midrange Memory Chip
Select

Partially configures the Midrange Memory Chip Selects,
MCS3–MCS0 (along with the MPCS register). Sets the
base address of the memory block selected by MCS.

3A8h MPCS PCS and MCS Auxiliary

Partially configures PCS7–PCS0 (along with the PACS
register). Determines whether PCS chip selects are
mapped to memory or I/O space.
Also partially configures MCS3–MCS0 (along with the
MMCS register). Sets the block size of the memory block
selected by MCS.
Am186™CC/CH/CU Microcontrollers User’s Manual 5-3

Chip Selects
5.5 OPERATION

5.5.1 Usage
Note: Before using the chip selects, ensure multiplexed pins are configured to reflect the
use of the chip selects and not other functionality (see Table 5-1 on page 5-3).

Except for the UCS chip select, which is active on reset, chip selects are not activated until
the associated register is written (not when it is read). All these signals are three-stated
during a bus-hold condition and during reset to allow an external bus master to drive these
signals directly.

■ To use the Upper Memory Chip Select (UCS), configure the following UMCS register
options:

– Lower boundary of UCS (LB bit field)

– AD bus disable (DA bit)

– DRAM enable (UDEN bit)

– Data bus width (USIZ bit)

– External Ready mode (R2 bit)

– Wait state value (R1 and R0 bits)

UCS is active on reset.

■ To use the Lower Memory Chip Select (LCS), configure the following LMCS register
options:

– Upper boundary of LCS (UB bit field)

– AD bus disable (DA bit)

– DRAM enable (UDEN bit)

– Data bus width (LSIZ bit)

– External Ready mode (R2 bit)

– Wait state value (R1 and R0 bits)

LCS is activated when the LMCS register is written.

■ To use the Peripheral Chip Select (PCS), configure the following options in the PACS
and MPCS registers:

– Base address (BA bit field in PACS)

– External Ready mode (R2 bit in PACS)

– Wait state value (R0, R1, and R3 bits in PACS)

– PCS mapped to memory or I/O (MS bit in MPCS)

– Memory data bus width for all non-UCS and non-LCS memory (OMSIZ bit in MPCS)

– I/O data bus width (IOSIZ bit in MPCS)

The PCS chip selects are activated after both the PACS and MPCS registers are written.
5-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Chip Selects
■ To use the Midrange Memory Chip Select (MCS), configure the following options in the
MMCS and MPCS registers:

– Base address (BA[19–13] bit field in MMCS)

– MCS0-Only mode (MCS0_ONLY bit in MMCS)

– External Ready mode (R2 bit in MMCS)

– Wait state value (R1 and R0 bits in MMCS)

– MCS block size (M[6–0] bits in MPCS)

– Memory data bus width for all non-UCS and non-LCS memory (OMSIZ bit in MPCS)

The MCS chip selects are activated after both the MMCS and MPCS registers are written.

Note: To configure the bus width for memory that does not reside in the LCS or UCS chip-
select memory regions, program the OMSIZ bit in the MPCS register. To configure the bus
width for I/O space, program the IOSIZ bit in the MPCS register.

5.5.2 Selecting Memory and I/O Space
All the chip selects can refer to addresses in memory. Only the PCS chip selects can
reference I/O space. Figure 5-2 on page 5-6 shows which part of memory each chip select
can address. The MCS chip selects should not be configured to overlap with memory space
used by UCS, LCS, or PCS. Figure 5-3 on page 5-7 shows the I/O space PCS7–PCS0 can
select.

5.5.2.1 UCS

The Am186CC/CH/CU microcontrollers provide the UCS chip select for the top of the
1-Mbyte memory address space. The upper boundary is FFFFFh; the lower boundary is
programmable with the LB bit field in the UMCS register. The block size must be a multiple
of 64 Kbyte.

5.5.2.2 LCS

The LCS chip select is for the bottom of the 1-Mbyte memory address space. The lower
boundary is 00000h; the upper boundary is programmable with the UB bit field in the LMCS
register. The block size must be a multiple of 64 Kbyte.

5.5.2.3 MCS3–MCS0

MCS3–MCS0 provide for a user-locatable memory block. The base address can reside
anywhere in the 1-Mbyte memory address space as long as the base is an integer multiple
of the block size (0 is a valid multiple), and memory space is not already mapped to by
UCS, LCS (unless they are mapped to DRAM), or PCS.

The Am186CC/CH/CU microcontrollers also offer MCS0 Only mode. When the MCS0-
ONLY bit in the MMCS register is cleared (the default) and the MCS chip selects are enabled,
MCS3–MCS0 are each asserted over one fourth of the total block size. When this bit is set
and the MCS chip selects are enabled, MCS0 is asserted over the entire MCS address
range, and MCS3–MCS1 are still asserted over their individual address ranges. This means
the entire middle chip select range is selectable through MCS0; the remaining MCS pins
are available for other functions. This mode is useful if only one chip select is required or
if DRAM is selected. For more information, see “Selecting DRAM Using the Chip Selects”
on page 5-7.

The BA bit field in the MMCS register programs the base address; the M[6–0] bits in the
MPCS register program the total block size; the MCS0_ONLY bit in the MMCS register
enables MCS0 Only mode.
Am186™CC/CH/CU Microcontrollers User’s Manual 5-5

Chip Selects
5.5.2.4 PCS7–PCS0

The Am186CC/CH/CU microcontrollers each provide eight chip selects for eight
contiguous, user-locatable, 256-byte address ranges within memory or I/O space. The base
address can reside anywhere in the 1-Mbyte memory address space as long as it is a
multiple of 2 Kbytes (0 is a valid multiple), and the memory space is not already mapped
to by UCS, LCS, or MCS. (The PCS address range can overlap the UCS or LCS address
ranges if they are mapped to DRAM.) The PCS chip selects can also access the 64-Kbyte
I/O space, as long as the base address is a multiple of 2 Kbytes.

The PCS chip selects are programmable with two registers. The BA bit field of the PACS
register sets the base address (0 is a valid address). If the chip selects are programmed
to reside in the CPU’s I/O space, bits BA[19–16] are forced to 0 by hardware, as the upper
bound of the CPU’s I/O space is 64 Kbytes. The MS bit in the MPCS register determines
whether PCS chip selects are mapped to memory or I/O space.

Figure 5-2 Chip Selectable Memory Space

8-, 16-, 32-,
64-, 128-,
256-, or

512-Kbyte
Block

1-Mbyte
Memory
Space

FFFFFh

00000h

80000h 7FFFFh

UCS Selectable

64-, 128-,
256-, or

512-Kbyte
Block

LCS Selectable MCS3–MCS0
Selectable

C0000h

E0000h

64-, 128-,
256-, or

512-Kbyte
Block

0FFFFh

1FFFFh

3FFFFh Base1

Base + 8K

Base + 16K

Base + 32K

Base + 64K

Base + 128K

Base + 256K

Base + 512K

Notes:
1. Base must be an integer multiple of the block size and can be anywhere in memory space from 00000h to FDFFFh,

as long as memory space is not already mapped to by UCS, LCS, or PCS.

2. Base must be a multiple of 2 Kbytes and PCS memory region must not be configured to overlap with MCS space
or non-DRAM LCS or UCS space.

FFFFFh FFFFFh

00000h00000h

PCS7–PCS0
Selectable

Base2
Base + 2047 bytes

FFFFFh

00000h

8 Contiguous
256-Byte
Address
Regions

F0000h
5-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Chip Selects
Figure 5-3 Chip Selectable I/O Space

5.5.3 Selecting DRAM Using the Chip Selects
UCS and LCS can be configured for DRAM support with the UDEN bit in the UMCS register
and the LDEN bit in the LMCS register, respectively. PSRAM is not supported. If both UCS
and LCS are configured for DRAM, up to two banks of 256 Kbit x 16 DRAM can be accessed.
Neither, either, or both DRAM banks can be activated.

Table 5-3 shows how the signals are configured when either UCS or LCS is configured for
DRAM.

Table 5-3 Signal Function When UCS or LCS is Configured for DRAM

Signal Function

UCS configured for DRAM

MCS11

Notes:
1. Even if MCS3–MCS1 can no longer be used as chip selects, the MCS0 signal can select the en-
tire middle chip select range when MCS Only mode is enabled. Also, the MCS3–MCS1 pins are
multiplexed with programmable I/O pins. To enable their DRAM functionality, the PIO Mode and Di-
rection registers must be cleared. For more information, see Chapter 9, “Programmable I/O Sig-
nals.”

Acts as upper Column Address Strobe signal (CAS1)

MCS2 Acts as lower Column Address Strobe signal (CAS0)

MCS3 Acts as upper Row Address Strobe signal (RAS1)

UCS
UCS is held High. This means any memory device that uses UCS is disabled.
This permits the user to disable a nonvolatile memory device providing boot-
up code and replace it with DRAM memory.

LCS configured for DRAM

LCS Acts as lower Row Address Strobe signal (RAS0)

MCS1 Acts as upper Column Address Strobe signal (CAS1)

MCS2 Acts as lower Column Address Strobe signal (CAS0)

PCS7–PCS0
Selectable

Base

Base + 2047 bytes

FFFFh

0000h

64-Kbyte
I/O Space

8 Contiguous
256-Byte
Address
Regions
Am186™CC/CH/CU Microcontrollers User’s Manual 5-7

Chip Selects
PCS7–PCS0 can overlap any UCS or LCS space which has been configured for DRAM.
(Overlap of the PCS signals with UCS or LCS in non-DRAM mode is not recommended.)
Overlapping PCS with DRAM is fully supported as long as the PCS chip selects are
programmed for a greater or equal number of wait states than that of the DRAM.

Note: Because of how the DRAM access is terminated, it is illegal to allocate a PCS space
with fewer wait states than the DRAM it is overlapping.

If PCS overlaps LCS or UCS configured for DRAM, PCS access takes precedence over
the LCS or UCS access. The DRAM controller asserts RAS and stops the CAS signal from
asserting. This does not modify the contents of the DRAM, and the access continues as a
normal PCS access.

Overlapping the PCS chip selects with DRAM makes a 2-Kbyte block of the DRAM
inaccessible. In its place, the peripherals associated with the PCS can be accessed. This
is especially useful when the entire memory space is used with two banks of DRAM or a
bank of DRAM and a 512-Kbyte Flash memory.

5.5.4 Overlapping Chip Selects
Although programming the various chip selects on the Am186CC/CH/CU microcontrollers
so that multiple chip select signals are asserted for the same physical address is not
recommended, it may be unavoidable in some systems. Note that configuring PCS in I/O
space with LCS or any other chip select configured for memory address 0 is not considered
overlapping of the chip selects. Overlapping chip selects refers to configurations where
more than one chip select asserts for the same physical address. PCS overlaps are allowed
when UCS or LCS are configured for DRAM. For more information about this overlapping,
see “Selecting DRAM Using the Chip Selects” on page 5-7.

In systems where the chip selects must overlap, the chip selects whose assertions overlap
must have the same configuration for ready (external ready required or not required) and
for the number of wait states to be inserted into the cycle by the processor.

The peripheral control block (PCB) is accessed using internal signals. These internal signals
function as chip selects configured with zero wait states and no external ready. Therefore,
the PCB can reside at addresses that overlap external chip select signals if those external
chip selects are programmed to zero wait states with no external ready required.

When overlapping an additional chip select with either the LCS or UCS chip selects, note
that setting the Disable Address (DA) bit in the LMCS or UMCS register disables the address
from being driven on the AD bus for all accesses for which the associated chip select is
asserted, including any accesses for which multiple chip selects assert.

The MCS and PCS chip select pins can be configured as either chip selects or as PIO
inputs or outputs. However, the ready and wait state generation logic for these chip selects
is in effect regardless of their configurations as chip selects or PIOs. This means that if
these chip selects are enabled (by a write to the MMCS and MPCS registers for the MCS
chip selects, or by a write to the PACS and MPCS registers for the PCS chip selects), the
ready and wait state programming for these signals must agree with the programming for
any other chip selects with which their assertion would overlap if they were configured as
chip selects.

Failure to configure overlapping chip selects with the same ready and wait state
requirements may cause the processor to hang with the appearance of waiting for a ready
signal. This behavior can occur even in a system in which ready is always asserted (ARDY
or SRDY tied High).
5-8 Am186™CC/CH/CU Microcontrollers User’s Manual

Chip Selects
5.5.5 Configuring Address and Data Buses
5.5.5.1 UCS and LCS

When UCS or LCS are asserted, the DA bit in the UMCS or LMCS register selects whether
the AD15–AD0 bus is driven during the address phase of a bus cycle.

The DA bit is still valid when UCS or LCS supports DRAM (either UDEN or LDEN is 1).
That is, even though the UCS signal is held High and the LCS signal becomes RAS0 in
DRAM mode, the address phase on AD15–AD0 is still disabled during DRAM accesses to
UCS/LCS space if DA is set to 1. In addition, the DISMEM (for memory addresses) and
DISIO (for I/O addresses) bits in the SYSCON register can act as global address disables
to prevent address bits from appearing on the AD15–AD0 bus. Setting the DISMEM bit
overrides clearing the DA bits. The block size programmed should match the size of the
DRAM being used, otherwise the full capacity of the DRAM is not utilized.

The UCSX8 signal is sampled during every external reset. If UCSX8 is 0, the LSIZ/USIZ
bit is set in the LMCS/UMCS register, which defines memory as an 8-bit space. This allows
the microcontroller to boot from an 8-bit wide device. It is possible to later clear this bit, thus
redefining the space to be 16 bits wide. Only a hard system reset can cause this bit to be
set; therefore, it is only possible to go from an 8-bit to a 16-bit space through software and
not the reverse. If the system does a watchdog timer reset, this bit reverts to the value
sampled on UCSX8 during the last external reset. The UCSX8 signal has a weak pullup
that defaults the part into 16-bit operation. If DRAM is enabled for UCS or LCS, the bus
size is forced to 16 bits. For more information about controlling the bus width, see Table 3-8
on page 3-31.

5.5.5.2 Non-UCS and Non-LCS

The OMSIZ bit determines the width of the data bus (i.e., x8 or x16) for memory accesses
between the LCS and UCS memory regions (i.e., accesses above the LCS region and
below the UCS region).

An MCS space cannot overlap LCS or UCS memory, so it always lies in the space affected
by the OMSIZ bit. A PCS space is only affected by the OMSIZ bit if the PCS space is in
memory and does not overlap an LCS or UCS region. If a PCS space overlaps an LCS or
UCS region, the PCS space is accessed as x16 memory.

If the PCB space resides in an x8 memory region, each word-wide PCB register access
generates two external bus cycles, but all 16 register bits are accessed internally on the
first cycle. For more information, see “Peripheral Registers” on page 2-4.

5.5.5.3 PCS I/O Space

The IOSIZ bit in the MPCS register determines the width of the data bus (x8 or x16) for all
I/O accesses.

If the PCB space is mapped to I/O and the I/O bus width is x8, each word-wide PCB register
access generates two external bus cycles, but all 16 register bits are accessed internally
on the first cycle. For more information, see “Peripheral Registers” on page 2-4.
Am186™CC/CH/CU Microcontrollers User’s Manual 5-9

Chip Selects
5.5.6 Programming Ready Signals and Wait States
The Am186CC/CH/CU microcontrollers can sense a ready signal for each of the peripheral
or memory chip select lines. The ready signal can be either the ARDY or SRDY signal.
Each chip select control register (UMCS, LMCS, PACS, MMCS, and MPCS) contains a
single-bit field, R2, that determines whether the external ready signal is required or ignored.
When R2 is set to 1, external ready is ignored. When R2 is cleared to 0, external ready is
required.

The number of wait states to be inserted for each access to a peripheral or memory region
is programmable. 0–3, 5, 7, 9, or 15 wait states can be inserted for the PCS7–PCS4
peripheral chip selects.

Note: Because of how the DRAM access is terminated, it is illegal to allocate a PCS space
with fewer wait states than the DRAM it is overlapping.

Zero to three wait states can be inserted for all other chip selects. Two bits, R1 and R0, in
each of the chip select control registers program the wait states. The PACS register also
has the R3 bit for the additional PCS wait states.

When external ready is required (R2 is 0), internally programmed wait states always
complete before external ready terminates or extends a bus cycle. For example, if the
internal wait states are set to insert two wait states (R1–R0 = 10b), the processor samples
the external ready signal during the first wait cycle. If external ready is asserted at that time,
the access completes after six cycles (four cycles plus two wait states). If external ready is
not asserted during the first wait cycle, the access is extended until ready is asserted, which
is followed by one more wait state followed by t4.

When external readys are ignored (R2 is 1), the R1 and R0 bits alone configure the number
of wait states. If DRAM is enabled for UCS or LCS, external readys are ignored regardless
of the setting of R2.

The ARDY signal on the Am186CC/CH/CU microcontrollers is a true asynchronous ready
signal. The ARDY signal accepts a rising edge that is asynchronous to CLKOUT and is
active High. If the falling edge of ARDY is not synchronized to CLKOUT as specified, an
additional clock period may be added.

5.5.7 Chip Select Timing
The timing for the UCS and LCS outputs has been modified from the original 80C186
microcontroller. These outputs now assert with the nonmultiplexed address bus (A19–A0)
for normal memory timing. To allow these outputs to be available earlier in the bus cycle,
the number of programmable memory size selections has been reduced.

The MCS and PCS chip selects assert with the AD bus.

For more information about chip select timing, see the data sheets for the Am186CC/CH/
CU microcontrollers.

5.5.8 Hardware-Related Considerations
■ The LCS memory space supports use of either the DRAM interface or the SRAM

interface, not both.

5.5.9 Software-Related Considerations
■ The chip selects are activated only by a write to a register. Chip selects on previous

Am186 devices activated with a read or a write.

■ The UMCS, LMCS, and MPCS registers contain a new data bus width bit; therefore,
legacy code may accidentally change the bus width when writing to these registers.
5-10 Am186™CC/CH/CU Microcontrollers User’s Manual

Chip Selects
5.5.10 Comparison to Other Devices
■ General enhancements over the original 80C186 include bus mastering (three-state)

support for all chip selects, and activation only when the associated register is written,
not when it is read. In addition, each peripheral chip select asserts over a 256-byte
address range, which is twice the address range covered by peripheral chip selects in
the 80C186.

■ The chip selects for the Am186CC/CH/CU microcontrollers are similar to the Am186EM
and Am186ES microcontroller implementations except that the UCS and LCS space is
now capable of gluelessly supporting DRAM.

■ The chip selects are activated by a write to a register. Chip selects on previous Am186
devices activated with a read or a write.

■ The Am186CC/CH/CU microcontrollers offer eight peripheral chip selects rather than
the six in other Am186 implementations.

■ Unlike previous Am186 designs, PCS5 and PCS6 cannot be modified to provide latched
address bits A1 and A2.

■ Unlike previous Am186 products, no refresh information is ever provided on MCS3.

■ Unlike the Am186EM and Am186ES products, the Am186CC/CH/CU microcontrollers
do not support PSRAM mode.

■ Data bus width is programmable to x8 or x16. This feature was not previously available
on Am186 devices.

5.6 INITIALIZATION
On both an external and internal reset, the following occurs:

■ The microcontroller begins fetching and executing instructions starting at memory
location FFFF0h, so upper memory is typically used as instruction memory. To facilitate
this usage, UCS defaults to active on reset.

■ The LCS, MSC3–MCS0, and PCS7–PCS0 signals are not active on reset; activation
requires a write access to the applicable memory chip select control register.

■ The MCS0, MCS3, and PCS7–PCS4 signals default to PIOs. See Table 5-1 on page 5-3
for the multiplexed pin defaults.

■ The value of the UMCS register defaults to F0xBh, where x is 00y1b and y is the inverted
state of UCSX8 that was latched upon exiting reset. This defaults UCS to a 64-Kbyte
memory block starting at F0000h, with the AD bus enabled, UCS DRAM disabled,
external ready, and three wait states. This action allows the UCS memory region to
function as a non-DRAM bank so a system can boot from a nonvolatile memory device
before software switches this memory region to a DRAM bank.

■ The value of the LMCS register is set to 0F1Bh, which defaults LCS to a 64-Kbyte
memory block ending at 0FFFFh, with the AD bus enabled, LCS DRAM disabled,
external ready, and three wait states. However, the LCS chip select is not enabled until
software writes to the LMCS register.

■ The value of the PACS register is set to 0073h, and the MPCS register is set to 8183h,
which defaults PCS to a 256-byte block in I/O space starting at 0h, with external ready
and three wait states. However, the PCS chip select is not enabled until software writes
to both the PACS and MPCS registers.
Am186™CC/CH/CU Microcontrollers User’s Manual 5-11

Chip Selects
■ The value of the MMCS register is set to 7FDBh and the MPCS register is set to 8183h,
which defaults MCS3–MCS0 each to 2 Kbytes with a total MCS block size of 8 Kbytes
at a base address of 3Fh, with external ready, and three wait states. However, the MCS
chip selects are not enabled until software writes to both the MMCS and MPCS registers.

■ Data bus widths are set as follows:

– LCS is 16 bits wide.

– Non-UCS and non-LCS memory (MCS, PCS, and the remaining memory that does
not reside in one of the enabled, memory chip-select regions) accesses are 16 bits
wide.

– All I/O accesses are 16 bits wide.

■ UCS is the inverse of the state of the UCSX8 that was latched on exiting external reset.
If UCSX8 is 0, UCS is 8 bits wide; if UCSX8 is 1, UCS is 16 bits wide. In either case,
UCS defaults to non-DRAM.
5-12 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
6 D
RAM CONTROLLER
6.1 OVERVIEW
Dynamic Random Access Memory (DRAM) offers memory at moderate speed and low
cost. DRAM memory cells consist of one transistor and one capacitor. DRAM also uses a
multiplexed address bus in a row/column format, which results in a lower pin count and
smaller device package.

DRAM is volatile; that is, if the capacitors for the memory cells are not periodically recharged,
the contents of memory is lost. The process of periodically recharging the capacitors is
called refresh.

The DRAM controller’s purpose is to use the processor’s address, status, and control lines
to generate the multiplexed address strobes. The Row Address Strobe (RAS) and Column
Address Strobe (CAS) signals latch the row and column addresses inside the DRAM.

To support DRAM, the Am186CC/CH/CU microcontrollers each have a fully integrated
DRAM controller that provides a glueless interface to 40-ns, 50-ns, 60-ns, and 70-ns
Extended Data Out (EDO) DRAM (EDO DRAM is sometimes called Hyper-Page Mode
DRAM). Up to two banks of 4-Mbit (256 Kbit x 16 bit) DRAM can be accessed. Page Mode,
Fast Page Mode (FPM), Asymmetrical, and 8-bit wide DRAM are not supported.

The Am186CC/CH/CU microcontrollers support the most common DRAM refresh option,
CAS-Before-RAS. All refresh cycles contain three wait states to support the DRAMs at
various frequencies. The DRAM controller never performs a burst access. All accesses are
single accesses to DRAM. If the PCS chip selects are decoded to be in the DRAM address
range, PCS accesses take precedence over the DRAM.
Am186™CC/CH/CU Microcontrollers User’s Manual 6-1

DRAM Controller
6.2 BLOCK DIAGRAM
Figure 6-1 shows the block diagram for the DRAM controller.

Figure 6-1 Chip Selects and DRAM Block Diagram (Same as Figure 5-1)

6.3 SYSTEM DESIGN
Table 6-1 lists the DRAM signals that are multiplexed with other functions. Pinstraps are
sampled only at external reset and do not affect the pin’s other functions, so they are not
shown in this table. Other multiplexed signals, when enabled, either disable or alter any
other functions that use the same pin.

For diagrams of some example applications, see Chapter 3, “System Overview.”

.

Table 6-1 DRAM Multiplexed Signals

Signal
Multiplexed

Signal(s)
Default
Signal

Function

CAS0 MCS2 MCS2
Column address strobes

CAS1 MCS1 MCS1

RAS0 LCS LCS
Row address strobes

RAS1
MCS3
PIO5

PIO5

Internal UCS

CS/DRAM
Registers

PCB_AD

Write Data

Read Data

RD

WR

BOOT_WIDTH

(CDRAM)

Refresh Value

Refresh Enable

Current Value
(EDRAM)

Internal Chip
Selects Decode

LCS_DRAM

UCS_DRAM

Internal PCS7–PCS0

DRAM Address

Internal RAS0

(from PADS)

Internal A19-A11

Control to 186

Control from 186 (to PADS)

Internal MCS0

PCS7–PCS0

MCS0

Internal RAS1

Internal CAS0

Internal CAS1

Control

N
M

C
S

U
M

C
S

LM
C

S

P
A

C
S

M
P

C
S

UCS

MCS3–MCS1

LCS

Control to/from 186

Refresh
Control

Chip Select
Generation

DRAM
Control

Pads
6-2 Am186™CC/CH/CU Microcontrollers User’s Manual

DRAM Controller
6.4 REGISTERS
Table 6-2 lists the 16-bit peripheral registers that determine the operation of the DRAM
controller. You must also program the LDEN bit of the LMCS register and the UDEN bit of
the UMCS register for DRAM operation. Appendix A summarizes the bits in all the registers.
For a complete description of all the peripheral registers, see the Am186™CC/CH/CU
Microcontrollers Register Set Manual, order #21916.

6.5 OPERATION

6.5.1 Usage
Note: Before using the DRAM controller, ensure the multiplexed pins listed in Table 6-1 on
page 6-2 (PIOs, chip selects, and DRAM) are configured to reflect the use of the DRAM
controller and not other functionality.

To enable DRAM support for the Am186CC/CH/CU microcontrollers, use the following
process:

1. Configure the UCS or LCS chip selects for DRAM. For information, see “Selecting DRAM
Using the Chip Selects” on page 5-7.

2. Set the RC bit field in the CDRAM register to the DRAM refresh rate. This is the number
of CPU clocks between refresh cycles. All refresh cycles contain three wait states to
accommodate the various DRAMs supported. Note that changing the value of this field
after DRAM refresh has been enabled does not load the new value into the refresh
counter until the current counter value has reached 0.

3. Set the EN bit of the EDRAM register to 1 to enable DRAM refresh.

6.5.2 DRAM Supported
The Am186CC/CH/CU microcontrollers support one or two banks of 40-ns, 50-ns, 60-ns,
or 70-ns, 4-Mbit (256 Kbit x 16 bit), symmetrical Extended Data Out (EDO) DRAM (EDO
DRAM is sometimes called Hyper-Page Mode DRAM).

Eight-bit (byte-wide) DRAM is not supported, and the DRAM does not operate properly if
configured as an 8-bit area. However, it is still possible to perform byte accesses to 16-bit
DRAM. Simply perform a 16-bit read and choose the upper or lower byte as needed.

The Am186CC/CH/CU microcontrollers can boot from a nonvolatile memory device in UCS
space and later switch the UCS space to a DRAM. The microcontrollers also support an
8-bit UCS boot mode, which allows the user to boot from an 8-bit device and later switch
to 16-bit operation. It is not possible to boot from a 16-bit memory device and later switch
to an 8-bit device. See Chapter 5, “Chip Selects,” for details.

Table 6-3 shows the wait states used to support DRAM.

Table 6-2 DRAM Controller Register Summary

Offset
Register
Mnemonic

Register Name Description

3AAh CDRAM Refresh Clock Prescaler Used to configure the DRAM refresh rate.

3ACh EDRAM Enable Refresh Control
Used to enable the refresh counter. It can also
be used to sample the present value of the
refresh down counter.
Am186™CC/CH/CU Microcontrollers User’s Manual 6-3

DRAM Controller
6.5.3 DRAM Interface
The microcontroller provides zero-wait state operation at up to 50 MHz with 40-ns DRAM.
Internal wait states can be inserted to support slower DRAM; however, external ready
detection is not supported. All signals required by the DRAM are generated on the
microcontroller and no external logic is required.

The DRAM multiplexed address pins are connected to the odd address pins starting with
A1 on the microcontroller to MA0 on the DRAM (see Table 6-4). The correct row and column
addresses are generated on these pins during a DRAM access. Table 6-4 shows how the
physical address bits are mapped to row and column addresses on external pins.

The CAS0 and CAS1 signals select which byte of the DRAM is accessed during a read or
write. The RAS0 signal controls the lower bank of DRAM, which starts at 00000h in the
address map and is bounded by the ending address selected with the UB bit field in the
LMCS register. The RAS1 signal controls the upper bank of DRAM, which ends at FFFFFh
and is bounded by the starting address selected in the LB bit field in the UMCS register.
When RAS1 is asserted, UCS is automatically deasserted. Neither, either, or both DRAM
banks can be activated.

Table 6-3 DRAM Supported by the Am186CC/CH/CU Microcontrollers

CPU Clock
Speed

DRAM Speed Wait States
Refresh
Cycles

25 MHz

50 ns

0

7 clocks

60 ns 7 clocks

70 ns 7 clocks

40 MHz

50 ns 0 7 clocks

60 ns 1 7 clocks

70 ns 2 7 clocks

50 MHz

40 ns 0 7 clocks

50 ns 1 7 clocks

60 ns 2 7 clocks

70 ns 3 7 clocks

Table 6-4 Address Multiplexing Reference

Am186CC/CH/CU
Address Pin

DRAM
Address Pin

Row Column

A1 MA0 PA1 PA2

A3 MA1 PA3 PA4

A5 MA2 PA5 PA6

A7 MA3 PA7 PA8

A9 MA4 PA9 PA10

A11 MA5 PA11 PA12

A13 MA6 PA13 PA14

A15 MA7 PA15 PA16

A17 MA8 PA17 PA18
6-4 Am186™CC/CH/CU Microcontrollers User’s Manual

DRAM Controller
The user can re-enable UCS by clearing the UDEN bit in the UMCS register. Doing so
disables refreshing the upper bank of DRAM. If the data in the upper bank of DRAM does
not have to be retained, no special action is required. If the data in the upper bank of DRAM
must be retained, two options are available. The refresh control unit counter can be
monitored through the EDRAM register. When the counter reaches all zeros, a refresh
occurs. The user can then disable the upper bank of DRAM using the UDEN bit in the
UCMS register, access the UCS-connected device, and then re-enable the upper bank of
DRAM before the next refresh is scheduled to occur (usually 15.6 µs). This retains the data
in the upper bank of DRAM.

Alternatively, a software routine can conduct a read from all rows of the upper DRAM. Then
the UDEN bit can be switched to enable UCS and disable RAS1. The user then has the
total refresh time (usually 16 ms) before the DRAM must be re-enabled to retain its data.
After re-enabling the DRAM, the user should once again conduct reads on all the DRAM
row addresses before letting the refresh controller resume refreshing the DRAM.

6.5.4 Option to Overlap DRAM with PCS
The PCS7–PCS0 signals can overlap DRAM blocks with different wait states without
external or internal bus contention. The RAS0 or RAS1 signals assert along with the
appropriate PCS signal. The CAS0 and CAS1 signals do not assert, preventing the DRAM
from writing erroneously or driving the data bus during a read. The PCS signals must be
configured to have the same or greater number of wait states than the DRAM. In the case
of an overlap, the bus width during PCS accesses is 16 bits.

6.5.5 DRAM Refresh

6.5.5.1 DRAM Refresh Cycle

When DRAM refresh is enabled, it operates off the processor internal clock. The following
steps outline the refresh process:

1. The Refresh Control unit (RCU) checks the T bit field in the EDRAM register to see if
the counter = 0. If not, the clock decrements by 1 and the counter is checked again. This
process is repeated until the counter = 0.

2. When the refresh counter = 0, the counter reloads the value from the RC field of the
CDRAM register and starts again, simultaneously generating a CAS-before-RAS
request to the bus interface unit. The DRAM refresh process continues until the EN bit
in the EDRAM register is cleared.

3. The bus interface acknowledges the request. The refresh request stays active until the
bus becomes available.

4. When the bus is free, the bus interface runs a “dummy read” cycle. Note that the refresh
clock counter continues counting independent of when the bus interface services the
refresh request. If the HLDA signal is active when a refresh request is generated
(indicating a bus hold condition), then the microcontroller deactivates the HLDA signal
to perform a refresh cycle when the hold is negated. The circuit external bus master
must negate the HOLD signal for at least one clock to allow the refresh cycle to execute.
The refresh cycle has priority over all other bus cycles (CPU, DMA, and so on). Refresh
changes no bits and looks like a read cycle. The various cycles follow this priority ranking:
refresh (highest priority), HOLD, DMA, and CPU (lowest).

5. After the refresh cycle completes, the HLDA signal goes active and the controller
continues with whatever activity was occurring before the refresh.

6. The request is removed.
Am186™CC/CH/CU Microcontrollers User’s Manual 6-5

DRAM Controller
6.5.5.2 DRAM Refresh Intervals

During a refresh cycle, the AD bus drives the address to FFFFh, which prevents the PCS
and MCS signals from asserting inadvertently. PCS and MCS decode should never contain
the address FFFFFh. The UCS signal does not assert during a refresh cycle. If two banks
of DRAM are being used in a system (i.e., RAS0 and RAS1), then both banks are refreshed
at the same time.

The interval counter (CDRAM register and EDRAM register) is expanded by two bits over
earlier Am186 microcontrollers. The refresh counter has a maximum timer count that
reaches 163.9 µs at 50 MHz. See Table 6-5 and Equation 6-1.

The normal refresh rate on a DRAM is 15.6 µs. This refresh rate allows for each of the 1024
row addresses to be refreshed in the required 16 ms. Some DRAMs might have different
refresh rates for low-power DRAMs and special considerations. Table 6-5 demonstrates
the typical values that a programmer might want to use for refresh time intervals to be placed
into the RC bit field of the CDRAM register.

The Am186CC/CH/CU microcontrollers support DRAMs with a CAS-before-RAS refreshing
scheme. A refresh is generated based on the system clock frequency. The maximum count
value for a refresh is 163.9 µs at 50 MHz. The CAS-before-RAS refresh cycle is seven clock
cycles long. An 11-bit counter inserts a refresh bus cycle after the last bus cycle concludes
to run the CAS-before-RAS cycle.

Equation 6-1 Refresh Interval Time Equation

6.5.6 Hardware-Related Considerations
■ The LCS memory space supports use of either the DRAM interface or the SRAM

interface, not both.

■ An external bus master needs to be able to deassert HOLD in response to HLDA going
inactive for DRAM refresh cycles to take place.

6.5.7 Software-Related Considerations
Do not program the refresh period too small. If you do, the system does not have time to
execute code.

Table 6-5 Refresh Interval Times

CPU
Frequency

Clock
Period

CDRAM
Counter

(hex)

CDRAM
Counter
(decimal)

Refresh
Interval

Time

50 MHz 20 ns 30Ch 780d 15.6 µs

40 MHz 25 ns 270h 624d 15.6 µs

25 MHz 40 ns 186h 390d 15.6 µs

CDRAM Counter Value (Decimal) =
Refresh Interval Time

Clock Period
6-6 Am186™CC/CH/CU Microcontrollers User’s Manual

DRAM Controller
6.5.8 Comparison to Other Devices
The DRAM controller is similar to the Am186ED DRAM controller, with these primary
enhancements: 50 MHz, extended refresh interval times, and faster DRAMs. The
Am186CC/CH/CU microcontrollers support 25-ns to 70-ns EDO DRAM only. It does not
support Fast Page mode DRAM.

6.6 INITIALIZATION
On both an external and internal reset, the following occurs:

■ The value of the CDRAM register becomes 0000h, setting the DRAM refresh period to 0.

■ The value of the EDRAM register becomes 0000h, clearing and disabling the refresh
counter.

■ The UDEN bit of the UMCS register and the LDEN bit of the LMCS register both become
0, disabling UCS and LCS DRAM. See Chapter 5, “Chip Selects.”.

■ The CAS and RAS multiplexed pins default to their alternate functions as shown in
Table 6-1 on page 6-2.

■ UCS is the inverse of the state of the UCSX8 that was latched on exiting external reset.
If UCSX8 is 0, UCS is 8 bits wide; if UCSX8 is 1, UCS is 16 bits wide. In either case,
UCS defaults to non-DRAM.
Am186™CC/CH/CU Microcontrollers User’s Manual 6-7

DRAM Controller
6-8 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
7 I
NTERRUPTS
7.1 OVERVIEW
An interrupt is a request to the CPU for service. CPUs receive interrupt requests from a
variety of sources, both internal and external. When the CPU receives a request, it stops
executing the current task, and if the new task is of higher priority, begins executing that
routine. At the end of the routine, the CPU returns to the original task.

Some interrupts can be disabled. These are called maskable interrupts. Nonmaskable
interrupts cannot be disabled.

The Am186CC/CH/CU microcontrollers feature an interrupt controller, which arranges the
maskable interrupt requests by priority and presents them one at a time to the CPU. In
addition to interrupts managed by the interrupt controller, the microcontroller supports eight
nonmaskable interrupts—an external or internal nonmaskable interrupt (NMI), a trace
interrupt, and software interrupts and exceptions.

The interrupt controller supports the maskable interrupt sources through the use of 15
channels. To make this possible, most interrupt channels support multiple interrupt sources.
These channels are programmable to support the external interrupt pins or various
peripheral devices that can be configured to generate interrupts. The maskable interrupt
sources include 17 external sources plus a number of internal sources.

The Am186CC microcontroller has 19 internal maskable interrupt sources.

The Am186CH HDLC microcontroller has 14 internal maskable interrupt sources.

The Am186CU USB microcontroller has 13 internal maskable interrupt sources.

The following Am186CC microcontroller peripherals can generate internal interrupts:

■ Three on-board timers (two of the timers can operate as pulse width modulators)

■ Two UARTs

■ Four HDLC channels

■ The GCI

■ Four pairs of transmit/receive SmartDMA channels

■ Four general-purpose DMA channels

■ The USB peripheral controller

CC

CH

CU

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 7-1

Interrupts
The following Am186CH HDLC microcontroller peripherals can generate internal interrupts:

■ Three on-board timers (two of the timers can operate as pulse width modulators)

■ Two UARTs

■ Two HDLC channels

■ Two pairs of transmit/receive SmartDMA channels

■ Four general-purpose DMA channels

The following Am186CU USB microcontroller peripherals can generate internal interrupts:

■ Three on-board timers (two of the timers can operate as pulse width modulators)

■ Two UARTs

■ Two pairs of transmit/receive SmartDMA channels

■ Four general-purpose DMA channels

■ The USB peripheral controller

System configuration determines which of these devices and signals are available as
interrupt sources. In addition to these internal interrupts, nine interrupt signals and eight
PIOs can be configured as external interrupt sources.

An NMI can be generated externally or internally. An external NMI is generated with the
NMI signal. An internal NMI is generated by the microcontroller’s watchdog timer. For more
information on the watchdog timer, see Chapter 11, “Watchdog Timer.”

A trace interrupt is generated with the trace flag (TF bit) in the Processor Status Flags
(FLAGS) register. See Chapter 2, “Configuration Basics.”

Software can also generate interrupts and exceptions. A software interrupt is generated
with the INT or INTO instruction; a software exception is an interrupt resulting from an error
condition after executing any instruction. Software interrupt and exception sources are:
divide error exception, breakpoint interrupt, INTO detected overflow exception, array
bounds exception, unused opcode exception, and ESC opcode exception.

7.2 BLOCK DIAGRAM
Figure 7-1 shows how the microcontroller supports interrupts. The interrupt controller is the
interface between the execution unit and all the peripheral interrupt requests and external
interrupt signals. The watchdog timer can generate an NMI when a time-out value is
reached. Software can determine whether an NMI was generated externally or internally
by reading the RSTFLAG and EXRST bits in the Watchdog Timer Control (WDTCON)
register.

CH

CH
7-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Interrupts
Figure 7-1 Interrupts Block Diagram

7.3 SYSTEM DESIGN
Table 7-1 lists the interrupt signals that are multiplexed with other microcontroller functions.
Pinstraps are sampled only at external reset and do not affect the pin’s other functions, so
they are not shown in this table. Other multiplexed signals, when enabled, either disable or
alter any other functions that use the same pin.

For diagrams of some example applications, see Chapter 3, “System Overview.”

Watchdog Timer

Interrupt
Controller

Execution Unit/

External NMI

Internal NMI

INT request

Control

Priority

Bus Grant

Bus Request

Interrupt State

EOI

Execution Unit

Notes:
1. Software interrupt and traps are generated and resolved within the execution unit.

Interrupt Sources

Timers (3)

INT8/PWD (1)

INT7–INT0 (8)

PIO5, 15, 27, 29, 30, 33, 34, 35 (8)

General-Purpose DMAs (4)

High-Speed UART (1)

UART (1)

HDLCs (4)

GCI (1)

SmartDMAs (4)

USB (1)

HDLCs (2)

SmartDMAs (2)

USB (1)

SmartDMAs (2)

CC

CH

CU

Bus Interface1
Am186™CC/CH/CU Microcontrollers User’s Manual 7-3

Interrupts
.

7.4 REGISTERS
Table 7-2 lists the registers used by the microcontroller for interrupts. In addition, the IF flag
in the Processor Status Flags (FLAGS) processor register is used to enable or disable
interrupts (see “Registers Used” on page 7-18). Appendix A summarizes the bits in all the
registers. For a complete description of all the peripheral registers, see the Am186™CC/
CH/CU Microcontrollers Register Set Manual, order #21916.

Table 7-1 Interrupt Multiplexed Signals

Signal
Multiplexed

Signal(s)
Default
Signal

Function

INT0 — INT0

Maskable interrupt requests

INT1 — INT1

INT2 — INT2

INT3 — INT3

INT4 — INT4

INT5 — INT5

INT6 PIO191

Notes:
1. For information about using PIOs as external interrupt sources, see “PIOs as
Interrupts” on page 7-18.

PIO191

INT7 PWD2, PIO71

2. Selected by setting the PWD bit in the SYSCON register.

PIO71

INT8 PWD2, PIO61 PIO61

PIO51 RAS1, MCS3 RAS1

PIO151 WR WR

PIO271 TMRIN0 PIO27

PIO291 DT/R DT/R

PIO301 DEN/DS DEN

PIO331 ALE ALE

PIO341 BHE, ADEN BHE

PIO351 SRDY SRDY

NMI — NMI Nonmaskable interrupt
7-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Interrupts
Table 7-2 Interrupt Controller Register Summary

Offset
Register
Mnemonic

Register Name Description

300h CH0CON Interrupt Channel 0 Control

Configures one of the 15 interrupt channels.

302h CH1CON Interrupt Channel 1 Control

304h CH2CON Interrupt Channel 2 Control

306h CH3CON Interrupt Channel 3 Control

308h CH4CON Interrupt Channel 4 Control

30Ah CH5CON Interrupt Channel 5 Control

30Ch CH6CON Interrupt Channel 6 Control

30Eh CH7CON Interrupt Channel 7 Control

310h CH8CON Interrupt Channel 8 Control

312h CH9CON Interrupt Channel 9 Control

314h CH10CON Interrupt Channel 10 Control

316h CH11CON Interrupt Channel 11 Control

318h CH12CON Interrupt Channel 12 Control

31Ah CH13CON Interrupt Channel 13 Control

31Ch CH14CON Interrupt Channel 14 Control

320h EOI End-Of-Interrupt
Used to clear the in-service bit of an interrupt
that is currently in service.

322h POLL Poll
Indicates the interrupt type of the highest
priority pending interrupt.

324h POLLST Poll Status
Copy of the POLL register. Reading the Poll
Status register has no effect on the rest of the
system.

326h IMASK Interrupt Mask

Contains the mask bits for interrupt channels
0–14. These are the same physical mask bits
that exist in all of the Channel Control registers,
but here all channels are accessible at one
time.

328h PRIMSK Priority Mask
Determines the minimum priority required for
a maskable interrupt source to be requested.

32Ah INSERV In-Service
Indicates which channels are in-service—the
channel’s interrupt service routine is active.

32Ch REQST Interrupt Request
Indicates which channels have pending
requests.

32Eh INTSTS Interrupt Status
Indicates the status of the General-Purpose
DMA and Timer interrupt channels.

330h DMAHLT DMA Halt

Contains the DHLT bit which, when Set, halts
all DMA activity. This bit is set by an NMI, and
cleared by any IRET instruction. This bit can
be read or written by software.
Am186™CC/CH/CU Microcontrollers User’s Manual 7-5

Interrupts
7.5 OPERATION

7.5.1 Usage
Note: Before using the interrupts, ensure multiplexed signals are configured to reflect the
use of the interrupts and not other functionality (see Table 7-1 on page 7-4).

7.5.1.1 Types of Interrupt Channels

The interrupt channels can be organized into five groups: Channel 0 (timers), Channel 1
(INT0 only), channels which support both an external and internal source (Channels 2, 3,
and 8–13), channels which support two internal sources (Channels 4–7), and Channel 14
(shared interrupts). Channel 1 is a straightforward, single interrupt channel. For a list of
interrupt types, see Table 7-3 on page 7-12. For a map of the interrupt channels, see
Table 7-4 on page 7-16. The following sections discuss the other groups.

7.5.1.1.1 Timer Interrupt Requests Channel
Interrupt Channel 0 supports the three timers. Each timer has a bit in its control register
that determines whether it is enabled to generate interrupt requests to the channel. The
timers share a single programmable priority set in the CH0CON register. In addition, the
three timers have relative priorities (see Table 7-3 on page 7-12). The Interrupt Controller
uses the relative priority to arbitrate between the timers when more than one has an interrupt
request pending. The channel logic determines which of the sources has the highest priority
pending request and generates the interrupt vector based on that request. In previous parts,
it could be confusing that all three interrupts required the same EOI (that of TMR0) even
though they had different vectors. This happened because for all other sources, the vector
number was identical with the EOI type. In the Am186CC/CH/CU microcontrollers, any of
the three vector numbers can be used for the EOI; however, all three function identically by
clearing the in-service bit for Channel 0. Table 7-3 on page 7-12 lists the EOI type for each
interrupt.

Channel 9 (supports general-purpose DMA0 and general-purpose DMA1 as well as INT4)
and Channel 10 (supports general-purpose DMA2 and general-purpose DMA3 as well as
INT5) have similar behavior to the timers in regard to their support of the two DMA channels.

7.5.1.1.2 External and Internal Interrupt Request Channels
At any given point in time, interrupt channels 2, 3, 8, 9, 10, 11, 12, and 13 all support either
an external or an internal source, but not both. The SRC bit in the CHxCON register
determines the source for Channels 2, 3, and 8–11. Channels 12 and 13 support the
external source until the PWD bit in the SYSCON register is set. For example, Channel 2
services the USB when the SRC bit is set, or INT1 when the SRC bit is cleared. The setting

332h SHREQ Interrupt Shared Request
Indicates if an INT signal that is enabled for
shared interrupts is currently requesting an
interrupt on the shared channel, Channel 14.

334h SHMASK Interrupt Shared Mask
Determines if an INT signal is masked
(disabled) as a source for Channel 14.

336h INTPOL Interrupt Polarity
Sets the polarity, active High or active Low, of
the INT signals.

338h PIOPOL PIO Polarity
Sets the polarity, active High or active Low, of
the eight PIO signals that can be configured as
interrupt sources.

Table 7-2 Interrupt Controller Register Summary (Continued)

Offset
Register
Mnemonic

Register Name Description
7-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Interrupts
or clearing of the SRC bit does not affect the vector generated, so INT1 and the USB share
the same interrupt vector. Because only one can be generating interrupts at a time, this is
unambiguous. All channels have a single programmable priority that is set in the CHxCON
register.

7.5.1.1.3 Two Internal Interrupts Request Channels
Channels 4, 5, 6, and 7 support two internal interrupts. There is no SRC bit in the CHxCON
registers for these channels because both sources on the channel can be active at the
same time. For example, channel 4 supports both HDLC_A and SMDA0. These sources
are programmed to either generate or mask their interrupt requests to the channel through
bits in the control registers of the individual peripherals. The channel logic distinguishes
between the different interrupt request sources and generates the vector based on the
source. The channel has a single programmable priority that is set in the CHxCON register.
In addition, the two sources for the channel have relative priorities (see Table 7-3 on
page 7-12). The Interrupt Controller uses the relative priorities to arbitrate between the two
sources when both have interrupt requests pending.

7.5.1.1.4 Shared Interrupt Request Channel
Channel 14 is the shared interrupt request channel. All sources on the shared channel have
the same interrupt vector and the same priority. Software must examine the Shared Request
(SHREQ) register to determine which source generated the interrupt. Note that software
must configure a PIO pin as a PIO input or output before using it as an interrupt source.

7.5.1.2 Using Maskable Interrupts

1. Before configuring the external interrupts INT8–INT0 and the PIO interrupts, clear the
IF flag in the FLAGS register (with the CLI instruction). However, most of the
microcontroller’s internal interrupts can be safely configured while maskable interrupts
are enabled (i.e., the IF flag is set). The IF flag is cleared, disabling maskable interrupts,
when the processor comes out of reset.

2. For PIO interrupts, program the associated PIO pin as a PIO input through the
PIOMODEx and PIODIRx registers.

3. For external interrupts INT8–INT0, program the polarity, active High vs. active Low,
through the INTPOL register.

4. Program the source and priority for the associated interrupt channel through the SRC
and PR bits in the CHxCON register.

Note: Do not perform Step 3 and Step 4 in a single write for edge-sensitive external
interrupts. In this case, the polarity transition may be latched and generate a spurious
interrupt request. Level-sensitive interrupts are not latched so any spurious request
disappears before external interrupts are enabled.

5. Specify the minimum priority required for an interrupt request to be recognized by setting
the PRI bits in the PRIMSK register.

6. Specify the priority for the interrupts generated on a channel by setting the PRI bits in
each of the CHxCON registers. The MSK (mask or enable) bit can be set concurrently.

7. Enable the desired interrupts by programming the CH bits in the IMASK register (if the
MSK bits were not configured in step 6). Because these bits are physically identical to
the MSK bits in each of the CHxCON registers, individual channels can be configured
with the associated CHxCON register.

Note: Do not write to the IMASK register while interrupts are enabled (the IF bit in the
FLAGS register is set). In this case, spurious interrupt requests may be generated, including
requests from devices whose interrupts were disabled both before and after the write to
Am186™CC/CH/CU Microcontrollers User’s Manual 7-7

Interrupts
the IMASK register. It is safe to write the MSK bits in the CHxCON registers while interrupts
are enabled.

8. Program the SHMASK register to enable the INT and PIO interrupts that share
Channel 14. The SHREQ interrupt request is generated if any shared interrupt is
asserted that is not masked off in the SHMASK register.

9. If interrupts are not enabled, enable interrupts by setting the IF flag in the FLAGS register
using the STI instruction.

7.5.1.3 Using Nonmaskable Interrupts

To generate an NMI, use the NMI signal or watchdog timer. To generate a trace interrupt,
set the TF bit in the FLAGS register. To generate a software interrupt, execute an Am186
instruction that generates an interrupt. This can be the INT or INTO instruction, or a software
exception caused by an instruction. For more information, see “Nonmaskable Interrupts”
on page 7-18.

7.5.2 Definitions of Interrupt Terms
The following definitions cover some of the terminology used in describing interrupts.

■ Interrupt Channel: The group of logic that is comprised of a control register, an in-
service bit, a request bit, and a mask bit.

■ Interrupt Source: Any source such as an on-chip peripheral (internal) or physical pin
(external) that can request an interrupt.

■ Interrupt Type: An eight-bit number assigned to each discrete interrupt, as listed in
Table 7-3 on page 7-12. Each interrupt type does not need a unique interrupt channel;
one interrupt channel can support more than one interrupt type. However, if one channel
supports two interrupt types, then those two types have the same level of programmable
priority.

■ Programmable Priority: Each channel has eight levels of programmable priority, which
are set in the Channel Control (CHxCON) register. Programmable priority determines
which interrupt to service when two interrupts are requested at the same time. An
interrupt service routine is interrupted by another interrupt request of equal or higher
programmable priority, as long as the IF flag in the FLAGS register is set. For more
information on setting the FLAGS register, see Chapter 2, “Configuration Basics.” If the
programmable priority levels are equal, the overall priority number is used to resolve
requests generated at the same time. The overall priority is not used to determine if a
pending interrupt can interrupt an already executing interrupt service routine (ISR).

■ Overall Priority: Each interrupt source has an overall priority number which is only used
to arbitrate between two interrupt sources that have priority requests pending with the
same programmable priority level. Overall priority is not used if the programmable priority
is sufficient to resolve the pending highest-priority request.

■ Interrupt Vector Address: This equals the interrupt type times four and is the location
in memory that stores the address of the interrupt service routine for each interrupt type.

■ Interrupt Vector Table: A memory area of 1 Kbyte beginning at address 00000h that
contains up to 256 four-byte interrupt vector addresses organized by segment/offset.

■ Maskable Interrupts: Maskable interrupts can be affected by programming and are
enabled and disabled by setting the IF flag in the FLAGS register.

■ Nonmaskable Interrupts: Nonmaskable interrupts cannot be affected by programming,
nor are they affected by the IF flag.
7-8 Am186™CC/CH/CU Microcontrollers User’s Manual

Interrupts
■ Software Interrupt: An interrupt initiated by the INT or INTO software instruction, or by
a software exception. A software interrupt does not affect the IF flag.

■ Software Exception: A software interrupt that occurs when an instruction causes a
particular condition in the processor. A software exception does not affect the IF flag.

■ Trace Interrupt: The trace interrupt is the highest priority interrupt. It is a software
interrupt in that it is initiated by software, but unlike other software interrupts, it does
clears the IF flag.

■ Hardware Interrupt: Any one of the maskable interrupts, the NMI, and the watchdog
timer interrupt. When a hardware interrupt is generated, the IF flag is cleared unless in
polled mode.

7.5.3 Interrupt Sequence
The following sections describe how the microcontroller services interrupts.

7.5.3.1 Requesting the Interrupt

When an interrupt is requested, the internal interrupt controller verifies that the interrupt is
enabled and that there are no higher priority interrupt requests being serviced or pending.
If the interrupt request is granted, the interrupt controller uses the interrupt type to access
a vector from the interrupt vector table.

Each interrupt source has a corresponding interrupt type. Each interrupt type has a four-
byte vector available in the interrupt vector table. The interrupt vector table is located in the
1024 bytes from 00000h to 003FFh. Each four-byte vector consists of a 16-bit offset (IP)
value and a 16-bit segment (CS) value. The 8-bit interrupt type is shifted left two bit positions
(multiplied by four) to generate the index into the interrupt vector table, as shown in Figure
7-2.

Figure 7-2 Interrupt Vector Translation

When an interrupt is taken, the type is multiplied by four and the processor fetches the
pointer to the interrupt service routine from that interrupt vector address. Table 7-3 on
page 7-12 shows a list of the types assigned to each interrupt source, as well as the interrupt
vector address and the overall priority. The first entries in the table are the nonmaskable
and software interrupt sources. The overall priority numbers are used only to resolve two
interrupts that have identical programmable priority requests pending. In these cases, the
type with the lowest overall priority number gets the highest priority. For overall priority
numbers with letters, the lower letter is considered of higher priority (e.g., 2A is a higher
priority than 2B).

Interrupt Vector
Table Locations

EF 01

AB CD

12 34

56 78

Interrupt Vector
for Type 1

Interrupt Vector
for Type 0

0008 (2 • 4)

0004 (1 • 4)

0000 (0 • 4)

Interrupt Vector Type 1 = EF01:ABCD
Interrupt Vector Type 0 = 1234:5678
Am186™CC/CH/CU Microcontrollers User’s Manual 7-9

Interrupts
7.5.3.2 Servicing the Interrupt

Nonmaskable interrupts—the trace interrupt, the NMI/watchdog timer interrupt, and
software interrupts (both user-defined (INT) and software exceptions)—are serviced
regardless of the setting of the IF flag in the FLAGS register. For more information about
nonmaskable interrupts, see “Nonmaskable Interrupts” on page 7-18.

For maskable hardware interrupt requests to be serviced, the IF flag must be set by the
STI instruction, and the mask bit associated with each interrupt must be reset. For more
information about maskable interrupts, see “Maskable Interrupts” on page 7-13.

To service an interrupt request, the processor goes through the following steps:

1. When the processor senses a valid hardware interrupt, it pushes the next instruction
address (CS:IP) and the FLAGS register onto the stack.

2. After the processor pushes the FLAGS register onto the stack, it clears the interrupt
enable flag (IF) to disable maskable interrupts during the interrupt service routine (ISR).

3. The processor then loads the segment:offset values from the interrupt vector table into
the code segment (CS) and the instruction pointer (IP), and begins executing the ISR.

7.5.3.3 Acknowledging the Interrupt

When the microcontroller services an interrupt, it sets the corresponding CHx bit in the
INSERV register.

The microcontroller generates no external acknowledge cycles; the only external indication
that an interrupt is being serviced is that the processor reads the interrupt vector table.

7.5.3.4 End-of-Interrupt (EOI)

Software must write to the End-of-Interrupt (EOI) register to reset the CHx bit in the INSERV
register when an interrupt service routine for a maskable interrupt completes. There are
two types of writes to the EOI register—specific EOI and non-specific EOI.

In a specific EOI, software must specify the interrupt type in the EOI register S bit field to
indicate which CHx bit is to be reset. Specific EOI is applicable when interrupt nesting is
possible or when the highest priority CHx bit that was set does not belong to the service
routine in progress.

In a non-specific EOI, software does not specify which CHx bit is to be reset. Instead, the
interrupt controller clears the CHx bits for all interrupt channels whose priorities match that
of the highest priority interrupt in service.

7.5.3.5 Returning from the Interrupt

The interrupt return (IRET) instruction pops the FLAGS register and the return address off
the stack. Program execution resumes at the point where the interrupt occurred.

The Interrupt Enable (IF) flag is restored by the IRET instruction along with the rest of the
processor status flags. If the IF flag was set before the interrupt was serviced, interrupts
are re-enabled when IRET is executed. If there are valid interrupts pending when the IRET
is executed, the instruction at the return address is not executed. Instead, the processor
services the new interrupt immediately.

If an ISR intends to permanently modify the value of any of the saved flags, it must modify
the copy of the FLAGS register that was pushed onto the stack.
7-10 Am186™CC/CH/CU Microcontrollers User’s Manual

Interrupts
7.5.4 Interrupt Priority
Table 7-3 on page 7-12 shows the predefined types and overall priority structure for the
Am186CC/CH/CU microcontrollers. The Overall Priority column shows the priority for the
interrupts at power-on reset and at watchdog timer reset. Interrupt sources that constitute
one request source share the same overall priority level with respect to other interrupt
sources but are prioritized among themselves. This priority is indicated by letters following
the priority number, with A having the highest priority, then B, etc.

Nonmaskable interrupts (types 0h–7h) are always higher priority than maskable interrupts.

Maskable interrupts have a programmable priority, set in the Channel Control (CHxCON)
registers, which overrides the overall priority.

7.5.4.1 Nonmaskable Interrupt and Software Interrupt Priority

The nonmaskable interrupts and software interrupts from 00h to 07h always take priority
over the maskable hardware interrupts. Within the nonmaskable and software interrupts,
the trace interrupt has the highest priority, followed by the NMI/watchdog-timer interrupt,
followed by the remaining software exceptions.

After the trace interrupt and the NMI/watchdog-timer interrupt, the remaining software
exceptions are mutually exclusive and can only occur one at a time, so there is no further
priority breakdown.

7.5.4.2 Maskable Hardware Interrupt Priority

Beginning with interrupt type 08h (the timer 0 interrupt), the maskable hardware interrupts
have both an overall priority and a programmable priority (see Table 7-3). The programmable
priority is the primary priority for maskable hardware interrupts and is set with the PR bit in
the CGxCON registers. The overall priority is the secondary priority for maskable hardware
interrupts.

Each of the maskable hardware interrupts has a programmable priority from zero to seven,
with zero being the highest priority. Because all maskable interrupts are set to a
programmable priority of seven on reset, the overall priority of the interrupts determines
the priority in which each interrupt is granted by the interrupt controller until programmable
priorities are changed by reconfiguring the CHxCON registers.

For example, if the INT6–INT0 interrupts are all changed to programmable priority six and
no other programmable priorities are changed from the reset value of seven, then the INT6–
INT0 interrupts take precedence over all other maskable interrupts. (Within INT6–INT0, the
hierarchy is as follows: INT0>INT1>INT2>INT3>INT4>INT5>INT6.)
Am186™CC/CH/CU Microcontrollers User’s Manual 7-11

Interrupts

Table 7-3 Interrupt Types

Interrupt Source
Interrupt/
EOI Type

Vector Table
Address

Related Instruction or
Channel1

Notes:
1. See the Am186 and Am188 Family Instruction Set Manual, order #21267, for more information about the in-
structions. See Table 7-5 on page 7-17 for more information about the channels.

Overall
Priority

Nonmaskable Interrupts
Divide Error Exception 00h 00h DIV, IDIV 1C2

2. These software exceptions can only occur one at a time, so there is no further priority breakdown.

Trace Interrupt 01h 04h All 1A

NMI / Watchdog 02h 08h N/A 1B

Breakpoint Interrupt 03h 0ch INT3 1C2

INTO Detected Overflow Exception 04h 10h INTO 1C2

Array Bounds Exception 05h 14h BOUND 1C2

Unused Opcode Exception 06h 18h Undefined Opcodes 1C2

ESC Opcode Exception 07h 1ch ESC Opcodes 1C2

Maskable Interrupts

Timer 0 08h 20h Channel 0 2A

Timer 1 09h 24h Channel 0 2B

Timer 2 0Ah 28h Channel 0 2C

INT0 0Bh 2Ch Channel 1 3

INT13 / USB 0Ch 30h Channel 2 4

INT23 / High-Speed UART 0Dh 34h Channel 3 5

HDLC A 0Eh 38h Channel 4 6A

SDMA0 0Fh 3Ch Channel 4 6B

HDLC B 10h 40h Channel 5 7A

SDMA1 11h 44h Channel 5 7B

HDLC C 12h 48h Channel 6 8A

SDMA2 13h 4Ch Channel 6 8B

HDLC D 14h 50h Channel 7 9A

SDMA3 15h 54h Channel 7 9B

INT33 / GCI 16h 58h Channel 8 10A

INT43 / GP DMA0 17h 5Ch Channel 9 10B

GP DMA1 18h 60h Channel 9 10A

INT53 / GP DMA2 19h 64h Channel 10 11A

GP DMA3 1Ah 68h Channel 10 11B

INT63 / UART 1Bh 6Ch Channel 11 12

INT73 / 2nd PWD4 1Ch 70h Channel 12 13

INT8 / PWD4 1Dh 74h Channel 13 14

PIO5, PIO15, PIO27, PIO29, PIO30,

PIO33–PIO35 / INT 7–1 (Channel 14)5
1Eh 78h Channel 14 15

CC CU

CC CH

CC CH

CC CH

CC CH

CC

CC CU

CC

CC CU

CC
7-12 Am186™CC/CH/CU Microcontrollers User’s Manual

Interrupts
7.5.5 Maskable Interrupts
7.5.5.1 Maskable Interrupt Cycle

When the interrupt controller receives a request, it does the following:

1. Sets the appropriate channel bit in the Interrupt Request (REQST) register to indicate
a pending interrupt. If the request is from the on-board timers or general-purpose DMA,
it also sets the appropriate bit in the Interrupt Status (INTSTS) register to indicate a
pending interrupt. If the request is for a Channel 14 interrupt, it also sets a bit in the
Shared Request (SHREQ) register to indicate a pending interrupt.

2. Verifies the request by checking that the interrupt is enabled. An interrupt is enabled
when the associated MSK bit in the IMASK register is set. An interrupt request coming
in through the shared request channel, Channel 14, must also have the associated MSK
bit in the SHMASK register set. If the associated MSK bit is not set, the interrupt is not
recognized.

3. Verifies that the requesting interrupt’s priority, set in the PRI field of the CHxCON register,
is equal to or greater than the priority set in the PRIMASK register. If the interrupt source
has not been programmed to equal or greater priority than the PRIMASK, the interrupt
is not recognized.

4. Compares the programmable priority of the requesting interrupt with that of any interrupts
currently in service. If the interrupt source is not of equal or greater priority than the
highest priority interrupt in service, the interrupt is not recognized.

5. If the interrupt is recognized, the controller generates an interrupt request to the
execution unit.

6. If the IF flag in the FLAGS register is set, the execution unit recognizes the request.
Otherwise, the request remains pending until interrupts are enabled or the interrupting
condition is cleared.

7. Passes the interrupt type (also called interrupt number) to the bus interface so the
processor can fetch the associated vector from the interrupt vector table. The interrupt
type provides an index into the interrupt vector table. The actual interrupt vector, the
address of the interrupt service routine, is found in the table at the address indicated by
the interrupt type times 4.

8. Sets the associated CH bit for the interrupt channel in the INSERV register to indicate
that an interrupt on that channel is currently being serviced by software.

9. The controller clears the CH bit for the channel when an EOI instruction is executed with
either of two conditions: a specific EOI that specifies this channel or a non-specific EOI
when this channel is the highest priority interrupt whose CH bit is set.

3. The type and overall priority for the INT1–INT7 pins in this table assume that these pins are being serviced by
a dedicated channel; that is, they are not being serviced by channel 14. When the INT1–INT7 pins are being ser-
viced by Channel 14, they share type 1Eh, overall priority 15, as indicated by the last row in Table 7-3.
4. PWD is generated on the Low-to-High transition of the PWD input; the second PWD is generated on the High-
to-Low transition.
5. See the SHREQ register description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order
#21916, for information on the shared Channel 14.
Am186™CC/CH/CU Microcontrollers User’s Manual 7-13

Interrupts
7.5.5.2 Interrupts In Polled Mode

Software can handle interrupt requests in polled mode. In polled mode, configure the
interrupt sources exactly as in normal interrupt mode, but do not set the IF bit in the FLAGS
register. This disables automatic hardware servicing of interrupt requests. In this case,
software must periodically read the POLL or POLLST register to determine if a valid interrupt
request is pending. Reading the POLL or POLLST register provides identical information;
however, a read of the POLL register generates an interrupt recognition cycle whereas a
read of the POLLST register does not.

Except for the manner in which the interrupt recognition is generated, and the fact that
software must jump to the interrupt service routine, the behavior under normal interrupt
and polled mode interrupt is identical. This means, for example, that the CHx bit in the
INSVR register must be cleared by an EOI instruction as in normal interrupt mode.

7.5.5.3 Considerations for NMI, Software Interrupts, and Traps

The nonmaskable interrupt (NMI) is not processed through the interrupt controller. Its
detection is not affected by the settings of the IF flag, the bits in the INSRV register, or by
the priority mask. When an NMI interrupt is taken, the IF flag is cleared and the DHLT bit
is set. This disables maskable interrupts and inhibits DMA transfers.

Although the NMI is the highest priority hardware interrupt, it does not participate in the
priority resolution scheme of the maskable interrupts. Setting the IF flag using the STI
instruction during an NMI service routine is discouraged because any maskable interrupt
may interrupt an executing NMI routine, assuming it meets the criteria outlined above. DMA
activity may be re-enabled by clearing the DHLT bit but this could increase the number of
cycles required to complete the NMI routine and, consequently, the number of cycles during
which interrupts are disabled.

A currently executing NMI service routine may be preempted by a second NMI request.
NMI is active when the part is reset and cannot be disabled.

The NMI can be generated externally through the NMI pin or internally through the watchdog
timer. The microcontroller logically ORs the two sources internally to provide a single signal
to the execution unit. Because the NMI signal is edge-sensitive, it is possible to block the
recognition of a watchdog timer NMI by holding the external NMI signal asserted. Systems
that do not use external NMI should hold this pin low to yield control to the watchdog timer
NMI.

A software interrupt or trap is not processed through the interrupt controller and is not
affected by the setting of the IF flag, the bits in the INSRV register, by the priority mask, or
by a currently executing NMI service routine.

7.5.5.4 Maskable Interrupt Overview

Interrupt types 08h through 1Eh are maskable (see Table 7-3 on page 7-12). The maskable
interrupts are enabled and disabled by the IF flag in the FLAGS register, but the INT
command can execute any interrupt regardless of the setting of IF.

Maskable interrupts are supported through the interrupt controller, which contains the
configuration and status of all the interrupt sources, as well as priority resolution logic to
select which interrupts to process in which order. The interrupt controller supports maskable
interrupts with 15 interrupt channels. Because of the large number of interrupt sources
available, some sources share interrupt channels. Table 7-4 on page 7-16 and Table 7-5
on page 7-17 show which channels service each source.
7-14 Am186™CC/CH/CU Microcontrollers User’s Manual

Interrupts
The interrupt controller uses the peripheral registers listed in Table 7-2 on page 7-5 to
support generating a maskable interrupt. In addition, the FLAGS processor register contains
a flag to enable the interrupts and one to set the trace interrupt. For more information about
the interrupt registers, see “Registers Used” on page 7-18.

Of the maskable interrupts, 17 signals are provided for external interrupt sources: 9 interrupt
signals and 8 PIOs (the NMI signal is nonmaskable and is generally used for unusual events
like power failure). The interrupt types for these inputs are generated internally. Every
interrupt channel has an in-service bit. If a lower-priority device requests an interrupt while
the in-service bit (IS) is set for a high-priority interrupt, the interrupt controller does not
generate an interrupt. In addition, if another interrupt request occurs from the same interrupt
source while the in-service bit is set, the interrupt controller does not generate an interrupt.
This allows interrupt service routines operating with interrupts enabled to be suspended
only by interrupts of equal or higher priority than the in-service interrupt.

When an interrupt service routine completes, software must reset the proper in-service bit
by writing the EOI type to the EOI register. This is required to allow subsequent interrupts
from this interrupt source and to allow servicing of lower-priority interrupts. Software should
execute a write to the EOI register at the end of the interrupt service routine just before the
return from interrupt instruction.

7.5.5.5 Maskable Interrupt Block Diagram

Figure 7-3 shows a partial block diagram of how the sources and channels are used (see
Figure 7-1 on page 7-3 for another block diagram). The three timers share Channel 0 and
produce three separate types. The INT0 signal is dedicated to Channel 1. The GP DMA0
and GP DMA1 are MUXed with the INT4 signal onto Channel 9, and they produce up to
two separate types (only one type is generated if Channel 9 services the INT4 signal). The
INT4 signal is also connected to the Channel 14 shared interrupts through a mask register
and shares the same type as the rest of the Channel 14 shared interrupts.

Figure 7-3 Partial Block Diagram of Interrupt Controller Scheme

15 Interrupt Channels

3 TypesCH0

INT4

GP DMA1

GP DMA0

CH9

CH14

2 Types

8 PIOs

INT1-3,5-7

1 Shared Type

CH1

INT0

TIM0
TIM1
TIM2

1 Type

MASK

CH1
Am186™CC/CH/CU Microcontrollers User’s Manual 7-15

Interrupts
Table 7-4 Interrupt Channel Map

Interrupt Source Interrupt Channel1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Timer 0 X

Timer 1 X

Timer 2 X

High-Speed UART X

UART X

HDLC_A X

HDLC_B X

HDLC_C X

HDLC_D X

GCI X

SDMA0 X

SDMA1 X

SDMA2 X

SDMA3 X

GP DMA0 X

GP DMA1 X

GP DMA2 X

GP DMA3 X

USB X

INT0 X

INT1 X X

INT2 X X

INT3 X X

INT4 X X

INT5 X X

INT6 X X

INT7 X X

INT8 X

PWD2 X

2nd PWD2 Interrupt X

PIO5 X

PIO15 X

PIO27 X

PIO29 X

PIO30 X

PIO33 X

PIO34 X

PIO35 X

CC CH

CC CH

CC

CC

CC

CC CH

CC CH

CC CU

CC CU

CC CU
7-16 Am186™CC/CH/CU Microcontrollers User’s Manual

Interrupts
Notes:
1. Channels 0 to 3 and 8 to 13 can have only one interrupt source active at a time (e.g., Channel 2 can only service
the INT1 signal or the USB at any one time). Channels 4 to 7 (shaded) can service up to two sources at once (e.g.,
Channel 4 can service the HDLC_A as well as SDMA0 interrupt requests). The peripherals that generate the inter-
rupts on channels 4 to 7 have the option of enabling or disabling their requests. Channel 14 (shaded) is provided to
allow a second channel to service interrupt requests from external signals. This is useful for systems that require a
large number of peripheral interrupts (e.g., if a system is using USB interrupts via Channel 2, the INT1 signal is able
to request an interrupt through Channel 14). Channel 14 can simultaneously service any source indicated in its col-
umn. For Channel 14, a register individually masks on or off the signals serviced by this channel so that individual
control of interrupt sources is possible.
2. For a complete description of Pulse Width Demodulation (PWD) mode, see Chapter 10, “Programmable Timers.”

Table 7-5 Interrupt Channel Sources

Interrupt
Channel

Default Source Optional Source

0 Timer 0, Timer 1, and Timer 2 —

1 INT0 —

2 INT1 USB

3 INT2 High-Speed UART

4 HDLC Channel A

and

SmartDMA Channel Pair 0

—

5 HDLC Channel B

and

SmartDMA Channel Pair 1

—

6 HDLC Channel C

and

SmartDMA Channel Pair 2

—

7 HDLC Channel D

and

SmartDMA Channel Pair 3

—

8 INT3 GCI

9 INT4 General-Purpose DMA 0 and 1

10 INT5 General-Purpose DMA 2 and 3

11 INT6 UART

12 INT7 PWD1

Notes:
1. The PWD source is selected by setting the PWD bit in the SYSCON register.

13 INT8 PWD1

14 Shared Request2

2. The Shared Request source is controlled by the SHREQ and SHMASK registers. The following
sources can be enabled to use the Shared Request channel: PIO5, PIO15, PIO27, PIO29, PIO30,
PIO33, PIO34, and PIO35; and INT pins 7–1.

—

CC CU

CC CH

CC CH

CC CH

CC CH

CC

CC CU

CC

CC CU

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 7-17

Interrupts
7.5.5.6 PIOs as Interrupts

Eight PIOs (PIO5, PIO15, PIO27, PIO29, PIO30, PIO33, PIO34, and PIO35) are
programmable as external interrupt sources on shared Channel 14. These PIOs are level-
triggered. PIO15, PIO29, PIO30, PIO33, PIO34, and PIO35 default to their alternate
function at external or internal reset. To use these signals as interrupts, enable them as
interrupts in the SHMASK register. Typically, software should configure these signals as
inputs in the PIOMODEx and PIODIRx registers when using them as interrupt sources. If
any of these signals is configured as both a PIO output and as an interrupt source, the PIO
output signal generates interrupts. For more information, see Table 9-3 on page 9-6.

In addition, three PIOs (PIO6, PIO7, and PIO19) are multiplexed with external interrupt
signals (INT8, INT7, and INT6, respectively) so they can act as interrupts when the signal’s
interrupt signal is enabled. These signals can be programmed with the LTM bit in the
CHxCON register to be edge- or level-triggered.

7.5.5.7 Registers Used

Each interrupt channel has a control register, an in-service bit, a request bit, and a mask
bit programmed with the 15 Channel Control registers, the In-Service register, the Interrupt
Request register, and the Interrupt Mask register. Because Channel 14 shares interrupts,
it requires two additional registers to implement the shared interrupts: the Shared Mask
register and the Shared Request register. The control register for Channel 14 contains a
priority field and mask bit only. For detailed information about these and the other peripheral
registers used to control interrupts, see the Am186™CC/CH/CU Microcontrollers Register
Set Manual, order #21916.

In addition, bits 8 and 9 in the FLAGS register relate to interrupt operation.

Bit 8 of the FLAGS register is the Trace Flag (TF). When TF is set to 1, a trace interrupt
occurs after each instruction executes. TF is cleared by the trace interrupt after the
processor status flags are pushed onto the stack. The trace service routine can continue
tracing by popping the flags back with an IRET instruction.

Bit 9 of the FLAGS register is the Interrupt Enable Flag (IF). IF acts as an enable for all
maskable interrupts.

If IF is set to 1, maskable interrupts are enabled and can cause processor interrupts.
Individual maskable interrupts can still be disabled through their corresponding mask bit in
the IMASK or CHxCON registers. Some peripheral devices have their own interrupt mask
bits, as well.

Clearing IF to 0 disables all maskable interrupts regardless of the setting of the mask bits
in the IMASK or CHxCON registers or any other peripheral control mask bits. The IF flag
does not affect the NMI, trace, or software exception interrupts (interrupt types 00h to 07h),
and it does not affect the execution of any interrupt through the INT instruction.

7.5.6 Nonmaskable Interrupts
Interrupt types 00h through 07h (see Table 7-3 on page 7-12) and all software interrupts
cannot be masked by programming, and are not affected by the setting of the IF flag.
Software interrupts are initiated with the INT or INTO instruction. A software exception
interrupt occurs when an instruction causes an interrupt due to some condition in the
processor. Interrupt types 00h, 03h, 04h, 05h, 06h, and 07h are software exception
interrupts. For more information about INT or other instructions, see the Am186 and Am188
Family Instruction Set Manual, order #21267.
7-18 Am186™CC/CH/CU Microcontrollers User’s Manual

Interrupts
7.5.6.1 Software Interrupts

Up to 256 possible interrupts can be initiated by the INT or INTO instructions. INT 21h
causes an interrupt to the vector located at 00084h in the interrupt vector table. INT FFh
causes an interrupt to the vector located at 003FCh in the interrupt vector table.

7.5.6.2 Divide Error Exception (Interrupt Type 00h)

When a DIV or IDIV instruction quotient cannot be expressed in the number of destination
bits, it generates a Divide Error exception.

7.5.6.3 Trace Interrupt (Interrupt Type 01h)

If the Trace Flag (TF) in the FLAGS register is set, the trace interrupt is generated after
most instructions. The trace interrupt is the highest priority interrupt. This interrupt allows
programs to execute in single-step mode. The interrupt is not generated after prefix
instructions like REP, instructions that modify segment registers like POP DS, or the WAIT
instruction.

Taking the trace interrupt clears the TF bit after the flags are pushed onto the stack. The
IRET instruction at the end of the single step interrupt service routine restores the processor
status flags (including the TF bit) and transfers control to the next instruction to be traced.
Taking the trace interrupt also clears the IF flag.

Trace mode is initiated by pushing the FLAGS register onto the stack, then setting the TF
flag on the stack, and then popping the flags.

For more information about the FLAGS register, see Chapter 2, “Configuration Basics.”

7.5.6.4 Nonmaskable Interrupt (Interrupt Type 02h)

An NMI can be generated internally or externally. An internal NMI is generated with the
watchdog timer. For more information about the watchdog timer, see Chapter 11,
“Watchdog Timer.”

An external NMI is generated with the NMI signal. This signal indicates to the microcontroller
that an interrupt request has occurred. The NMI signal is the highest priority hardware
interrupt and, unlike the INT8–INT0 signals, cannot be masked. When NMI is asserted, the
processor transfers program execution to the location specified by the nonmaskable
interrupt vector in the interrupt vector table.

Additionally, when an NMI occurs, DMAs are suspended. If your application is using a DMA
channel, the NMI interrupt handler may need to update the DMA configuration settings to
account for the DMA being suspended by the NMI.

An NMI transition from Low to High is latched and synchronized internally, and it initiates
the interrupt at the next instruction boundary. To guarantee that the interrupt is recognized,
the NMI signal must be asserted for at least one CLKOUT period.

For information about the nonmaskable interrupt and interrupt priority processing, see
“Considerations for NMI, Software Interrupts, and Traps” on page 7-14.

7.5.6.5 Breakpoint Interrupt (Interrupt Type 03h)

The 1-byte version of the INT instruction (INT3) causes a breakpoint interrupt.

7.5.6.6 INT0 Detected Overflow Exception (Interrupt Type 04h)

If the OF bit is set in the FLAGS register, an INT0 instruction generates the INT0 Detected
Overflow exception. For more information about the FLAGS register, see Chapter 2,
“Configuration Basics.”
Am186™CC/CH/CU Microcontrollers User’s Manual 7-19

Interrupts
7.5.6.7 Array Bounds Exception (Interrupt Type 05h)

If an array index is outside the array bounds, a BOUND instruction generates an Array
Bounds exception. The array bounds are located in memory at a location indicated by one
of the instruction operands. The other operand indicates the value of the index to be
checked. For more information, see the Am186 and Am188 Family Instruction Set Manual,
order #21267.

7.5.6.8 Unused Opcode Exception (Interrupt Type 06h)

If the processor attempts to execute an undefined opcode, it generates an Unused Opcode
exception.

7.5.6.9 ESC Opcode Exception (Interrupt Type 07h)

If the processor attempts to execute an ESC opcode (D8h–DFh), it generates the ESC
Opcode exception. The processor does not check the escape opcode trap bit. The return
address of this exception points to the ESC instruction that caused the exception. If a
segment override prefix preceded the ESC instruction, the return address points to the
segment override prefix.

Note: All numeric coprocessor opcodes cause a trap. The Am186CC/CH/CU
microcontrollers do not support the numeric coprocessor interface.

7.5.7 Software-Related Considerations
■ The watchdog timer can generate an NMI. This interrupt can be taken at any time. Unlike

the maskable interrupts, the controller is not inhibited from taking a second NMI request
while the NMI interrupt service routine is executing. Therefore a watchdog timer-
generated NMI can interrupt, or be interrupted by, an externally generated NMI. For more
information about the watchdog timer NMI, see “Considerations for NMI, Software
Interrupts, and Traps” on page 7-14.

■ Writing a zero to the appropriate channel bit in the Interrupt Request (REQST) register
clears the pending interrupt. This facility provides a simple way to clear a spurious edge-
triggered interrupt that may have occurred when initially configuring a PIO pin as an
interrupt source.

7.5.8 Comparison to Other Devices
The interrupt controller supports the Fully Nested Master mode and Polled mode operation
available in all AMD Am186 devices. The interrupt controller does not support Slave mode,
Cascade mode, or Special Fully Nested mode. Support for the NMI and software interrupts
are similar to Master mode in AMD’s Am186ES microcontroller.

7.6 INITIALIZATION
On both an external and internal reset, the following occurs:

■ All priority bits in the Channel Control (CHxCON) registers are set to 1. This places all
sources at the lowest priority (level 7). The overall priority of the interrupts determines
the priority in which each interrupt is granted by the interrupt controller until
programmable priorities are changed by reconfiguring the CHxCON registers.

■ All mask bits in the Channel Control (ChxCON) registers are set to 1, so all interrupts
are masked.

■ All Level-Triggered Mode (LTM) bits in the Channel Control (CHxCON) registers are
cleared, resulting in edge-triggered mode.

■ All source bits in the Channel Control (CHxCON) registers are cleared, defining the
source as that channel’s external interrupt source.
7-20 Am186™CC/CH/CU Microcontrollers User’s Manual

Interrupts
■ The End-of-Interrupt (EOI) register is cleared, so no in-service bits are cleared.

■ The Poll (POLL) and Poll Status (POLLST) registers are cleared, so Polling mode is
disabled.

■ The Interrupt Mask (IMASK) register and Shared Mask (SHMASK) registers are set to
FFFFh, so all interrupts are masked.

■ The PRM bits in the Priority Mask (PRIMSK) register are set to 7d, allowing interrupts
of all priorities.

■ The In-Service (INSERV) register is cleared, indicating that no interrupts are active.

■ The Interrupt Request (REQST), Interrupt Status (INTSTS), and Shared Request
(SHREQ) registers are cleared, indicating there are no pending interrupts.

■ The DMA Halt (DMAHLT) register is cleared, so DMA activity is unaffected.

■ All bits in the Interrupt Polarity (INTPOL) and PIO Polarity (PIOPOL) registers are set
to 1, so INT9–INT0 and PIO5, PIO15, PIO27, PIO29, PIO30, and PIO33–PIO35 are set
to be active High.

■ Multiplexed signals INT8–INT6 default to PIO functionality as shown in Table 7-1 on
page 7-4.

■ Multiplexed signals PIO15, PIO29, PIO30, and PIO33–PIO35 default to their alternate
functionality, as described in Chapter 9, “Programmable I/O Signals.”

■ The IF flag in the FLAGS register is cleared, disabling maskable interrupts.
Am186™CC/CH/CU Microcontrollers User’s Manual 7-21

Interrupts
7-22 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
8 D
MA CONTROLLER
8.1 OVERVIEW
Direct memory access (DMA) permits the transfer of data between memory and peripherals
without CPU involvement. With DMA transfers, the DMA controller becomes the bus master.
The arbitration for the bus is internal to the processor and is not visible externally. When
the DMA no longer has transfers pending (no internal or external DRQs are asserted) or a
higher priority event occurs, the DMA controller removes its request for the bus thus freeing
the bus for other types of cycles. The type of DMA transfer dictates how long the DMA
controller has control of the bus. However, because a DMA transfer is using the bus, the
processor can be slowed down if it also needs the bus.

Each of the Am186CC/CH/CU microcontrollers contains a DMA controller that provides
both SmartDMA channels and general-purpose DMA channels. The general-purpose DMA
channels can be used for data transfer between memory and I/O spaces (i.e., memory-to-
I/O or I/O-to-memory) or within the same space (i.e., memory-to-memory or I/O-to-I/O). In
addition, the general-purpose DMA controller supports data transfer between some internal
peripherals and memory or I/O.

The SmartDMA channels provide a method for transmission and reception of data across
multiple memory buffers and a sophisticated buffer-chaining mechanism. These channels
are always used in pairs: transmitter and receiver. The transmit channels can only transfer
data from memory to a peripheral; the receive channels can only transfer data from a
peripheral to memory.

The Am186CC microcontroller provides a total of 12 DMA channels: eight SmartDMA
channels and four general-purpose DMA channels. Four of the SmartDMA channels (two
pairs) are dedicated for use with two of the on-board HDLC channels. The remaining four
SmartDMA channels (two pairs) can support either the third or fourth HDLC channel or
Universal Serial Bus (USB) endpoints A, B, C, or D. On-chip peripherals that support
general-purpose DMA are Timer 2, the two asynchronous serial ports (the UART and the
High-Speed UART), and the USB peripheral controller. External peripherals support DMA
transfers through the external DMA request signals. Each general-purpose channel accepts
a DMA request from one of four sources: the DMA request signals (DRQ1–DRQ0), Timer
2, the UARTs, or the USB peripheral controller. (Note that Timer 2 acts only as a DMA
request source; no data is transferred to or from Timer 2.)

The Am186CH HDLC microcontroller provides a total of eight DMA channels: four
SmartDMA channels (two transmit-receive pairs, 0 and 1) and four general-purpose DMA
channels. The SmartDMA channel pairs are dedicated to the two on-board HDLC channels.
On-chip peripherals that support general-purpose DMA are Timer 2, and the two
asynchronous serial ports (the UART and the High-Speed UART). External peripherals
support DMA transfers through the external DMA request signals. Each general-purpose
channel accepts a DMA request from one of three sources: the DMA request signals
(DRQ1–DRQ0), Timer 2, or the UARTs. (Note that Timer 2 acts only as a DMA request
source; no data is transferred to or from Timer 2.)

The Am186CU USB microcontroller also provides four SmartDMA channels (two transmit-
receive pairs, 2 and 3) and four general-purpose DMA channels. The SmartDMA channel

CC

CH

CU
Am186™CC/CH/CU Microcontrollers User’s Manual 8-1

DMA Controller
pairs support the USB endpoints A, B, C, or D. On-chip peripherals that support general-
purpose DMA are Timer 2, the two asynchronous serial ports (the UART and the High-
Speed UART), and the USB peripheral controller. External peripherals support DMA
transfers through the external DMA request signals. Each general-purpose channel accepts
a DMA request from one of four sources: the DMA request signals (DRQ1–DRQ0), Timer
2, the UARTs, or the USB peripheral controller. (Note that Timer 2 acts only as a DMA
request source; no data is transferred to or from Timer 2.)

Up to 64 Kbytes or 64 Kwords can be transferred to or from even or odd addresses on the
Am186CC/CH/CU microcontrollers. Two bus cycles (a minimum of eight clocks) are
necessary for each general-purpose DMA data transaction. For word transfers, both the
source and destination addresses must be configured as 16-bit addresses.

The SmartDMA channels only support byte transfers. Data is written or read from sequential
byte addresses in the memory buffers. The SmartDMA channels also feature fly-by DMA
transfers—what would typically take two cycles (a read and write) is moved in a single cycle
on the external processor bus; read and write are performed concurrently in one cycle.

The general-purpose DMA channels and the SmartDMA channels can be programmed so
that one channel/channel pair is always given priority over the other, or they can be
programmed to alternate cycles when both have DMA requests pending.
8-2 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
8.2 BLOCK DIAGRAM
Figure 8-1 shows the block diagram for the general-purpose DMA and SmartDMA
controllers.

Figure 8-1 DMA Block Diagram

DMA3–0 CONTROL (2)

DMA3–0 TRANSFER COUNT

DMA3–0 DEST ADDR (2)

DMA3–0 SOURCE ADDR (2)

SDMA3–0 CONTROL

TX_DMA3–0

TX_DMA3–0

 20-Bit

GP DMA

SDMA

SDMA Control

Arbiter

DMA

Generator

Cycle
DRQ

Select

DRQ1–DRQ0 Control Bus

T
C

 B
us

D
S

T
/S

R
C

 A
D

D
R

 B
us

S
el

ec
t D

R
Q

11
–D

R
Q

0

RX_DMA3–0

RX_DMA3–0

Bus RequestBus Grant

PCB Interface

Address
Decode

DRQ11–DRQ0

SDMA3–0 STATUS

TX_DMA3–0

DMAREG

PCB
Block

USB

HDLC

Timer

 BIU
INT CNTL

 BIU

ADD/SUB

State Machine

State Machine

Buffer Descriptor COUNT

Buffer Descriptor POINTER

CURRENT Buffer Descriptor

Buffer Descriptor COUNT

Buffer Descriptor POINTER

CC

CU

CC

CH
DHLT

UART/
High-Speed

UART
Am186™CC/CH/CU Microcontrollers User’s Manual 8-3

DMA Controller
8.3 SYSTEM DESIGN
Table 8-1 lists the DMA signals that are multiplexed with other microcontroller functions.
Pinstraps are sampled only at external reset and do not affect the pin’s other functions, so
they are not shown in this table. Other multiplexed signals, when enabled, either disable or
alter any other functions that use the same pin.

.

8.4 REGISTERS
The DMA controller is programmed through the use of registers: seven registers for each
general-purpose channel and nine for each pair of SmartDMA channels (see Table 8-2).
In addition, software can use the DMA Halt (DMAHLT) register (an Interrupt Controller
register) to halt DMA activity. Appendix A summarizes the bits in all the registers. For a
complete description of all the peripheral registers, see the Am186™CC/CH/CU
Microcontrollers Register Set Manual, order #21916.

DMA channel control registers can be changed while the channel is operating. Any changes
made during DMA operations affect the current DMA transfer.

All DMA registers except the GDxCON0 and GDxCON1 registers can be modified or
altered during any DMA activity. Any changes made to these registers are reflected
immediately in DMA operation.

Table 8-1 DMA Multiplexed Signals

Signal Function
Multiplexed

Signal(s)
Default
Signal

DRQ0
DMA requests

PIO9 PIO9

DRQ1 — DRQ1

Table 8-2 DMA Controller Register Summary

Offset
Register
Mnemonic

Register Name Description

General-Purpose DMA Channel Registers

100h GD0CON0 General-Purpose DMA0 Control 0 Set up general-purpose DMA Channel 0.
Software must stop DMA operation before
writing to these registers, or results will be
unpredictable.

102h GD0CON1 General-Purpose DMA0 Control 1

104h GD0SRCL
General-Purpose DMA0 Source
Address Low

The 16 bits of this register, combined with four
bits of the high register, produce a 20-bit
source address for general-purpose DMA
Channel 0.

106h GD0SRCH
General-Purpose DMA0 Source
Address High

Four bits of this register [19–16], combined
with the 16 bits of the low register, produce a
20-bit source address for general-purpose
DMA Channel 0.

108h GD0DSTL
General-Purpose DMA0 Destination
Address Low

The 16 bits of this register, combined with four
bits of the high register, produce a 20-bit
destination address for general-purpose DMA
Channel 0.
8-4 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
10Ah GD0DSTH
General-Purpose DMA0 Destination
Address High

Four bits of this register [19–16], combined
with the 16 bits of the low register, produce a
20-bit destination address for general-purpose
DMA Channel 0.

10Ch GD0TC General-Purpose DMA0 Transfer Count
Sets the transfer count (the number of DMA
transfers to be performed) for general-purpose
DMA Channel 0.

110h GD1CON0 General-Purpose DMA1 Control 0

Behaves the same as General-Purpose DMA0
registers, but for DMA Channel 1.

112h GD1CON1 General-Purpose DMA1 Control 1

114h GD1SRCL
General-Purpose DMA1 Source
Address Low

116h GD1SRCH
General-Purpose DMA1 Source
Address High

118h GD1DSTL
General-Purpose DMA1 Destination
Address Low

11Ah GD1DSTH
General-Purpose DMA1 Destination
Address High

11Ch GD1TC General-Purpose DMA1 Transfer Count

120h GD2CON0 General-Purpose DMA2 Control 0

Behaves the same as General-Purpose DMA0
registers, but for DMA Channel 2.

122h GD2CON1 General-Purpose DMA2 Control 1

124h GD2SRCL
General-Purpose DMA2 Source
Address Low

126h GD2SRCH
General-Purpose DMA2 Source
Address High

128h GD2DSTL
General-Purpose DMA2 Destination
Address Low

12Ah GD2DSTH
General-Purpose DMA2 Destination
Address High

12Ch GD2TC General-Purpose DMA2 Transfer Count

130h GD3CON0 General-Purpose DMA3 Control 0

Behaves the same as General-Purpose DMA0
registers, but for DMA Channel 3.

132h GD3CON1 General-Purpose DMA3 Control 1

134h GD3SRCL
General-Purpose DMA3 Source
Address Low

136h GD3SRCH
General-Purpose DMA3 Source
Address High

138h GD3DSTL
General-Purpose DMA3 Destination
Address Low

13Ah GD3DSTH
General-Purpose DMA3 Destination
Address High

13Ch GD3TC General-Purpose DMA3 Transfer Count

Table 8-2 DMA Controller Register Summary (Continued)

Offset
Register
Mnemonic

Register Name Description
Am186™CC/CH/CU Microcontrollers User’s Manual 8-5

DMA Controller
SmartDMA Channel Pair 0 and 1 Registers

140h SD0CON SmartDMA0 Control Sets up SmartDMA Channel 0.

142h SD0TRCAL
SmartDMA0 Transmit Ring Count /
Address Low

Indicates the number of available buffer
descriptors per transmit ring in SmartDMA
Channel 0.
Also contains the low address bits [15–4] of the
transmit buffer descriptor ring address for
SmartDMA Channel 0.

144h SD0TRAH
SmartDMA0 Transmit Ring Address
High

Points to the transmit buffer descriptor ring high
address bits [19–16] for SmartDMA Channel 0.

146h SD0RRCAL
SmartDMA0 Receive Ring Count /
Address Low

Indicates the number of available buffer
descriptors per receive ring in SmartDMA
Channel 0.
Also contains the low address bits [15–4] of the
receive buffer descriptor ring address for
SmartDMA Channel 0.

148h SD0RRAH
SmartDMA0 Receive Ring Address
High

Points to the receive buffer descriptor ring high
address bits [19–16] for SmartDMA Channel 0.

14Ah SD0STAT SmartDMA0 Status Indicates the status of SmartDMA Channel 0.

14Ch SD0CBD SmartDMA0 Current Buffer Descriptor
Indicates the buffer descriptor currently
accessed by SmartDMA Channel 0.

14Eh SD0CTAD SmartDMA0 Current Transmit Address
Indicates the current address of the data being
transmitted by SmartDMA Channel 0.

150h SD0CRAD SmartDMA0 Current Receive Address
Indicates the current address of the data being
received by a SmartDMA channel.

158h SD1CON SmartDMA1 Control

Behaves the same as SmartDMA Channel 0
registers, but for SmartDMA Channel 1.

15Ah SD1TRCAL
SmartDMA1 Transmit Ring Count /
Address Low

15Ch SD1TRAH
SmartDMA1 Transmit Ring Address
High

15Eh SD1RRCAL
SmartDMA1 Receive Ring Count /
Address Low

160h SD1RRAH
SmartDMA1 Receive Ring Address
High

162h SD1STAT SmartDMA1 Status

164h SD1CBD SmartDMA1 Current Buffer Descriptor

166h SD1CTAD SmartDMA1 Current Transmit Address

168h SD1CRAD SmartDMA1 Current Receive Address

Table 8-2 DMA Controller Register Summary (Continued)

Offset
Register
Mnemonic

Register Name Description

CC CH
8-6 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
8.5 OPERATION
The Am186CC/CH/CU microcontrollers contain two distinct types of DMA channels:
general-purpose DMA channels and SmartDMA channels. The SmartDMA channels are
further broken down into transmit and receive channels, which are used in pairs. The
microcontroller’s DMA channels can be used as shown in Table 8-3, Table 8-4, and Table
8-5. The discussion of general-purpose DMA channels begins in “General-Purpose DMA
Channels” on page 8-11; the discussion of SmartDMA channels begins in “SmartDMA
Channels” on page 8-26. In some cases, a hybrid between DMA processing and interrupt
processing is appropriate. This is described in “DMA and Interrupts” on page 8-10.

SmartDMA Channel Pair 2 and 3 Registers

170h SD2CON SmartDMA2 Control

Behaves the same as SmartDMA Channel 0
registers, but for SmartDMA Channel 2.

172h SD2TRCAL
SmartDMA2 Transmit Ring Count /
Address Low

174h SD2TRAH
SmartDMA2 Transmit Ring Address
High

176h SD2RRCAL
SmartDMA2 Receive Ring Count /
Address Low

178h SD2RRAH
SmartDMA2 Receive Ring Address
High

17Ah SD2STAT SmartDMA2 Status

17Ch SD2CBD SmartDMA2 Current Buffer Descriptor

17Eh SD2CTAD SmartDMA2 Current Transmit Address

180h SD2CRAD SmartDMA2 Current Receive Address

188h SD3CON SmartDMA3 Control

Behaves the same as SmartDMA Channel 0
registers, but for SmartDMA Channel 3.

18Ah SD3TRCAL
SmartDMA3 Transmit Ring Count /
Address Low

18Ch SD3TRAH
SmartDMA3 Transmit Ring Address
High

18Eh SD3RRCAL
SmartDMA3 Receive Ring Count /
Address Low

190h SD3RRAH
SmartDMA3 Receive Ring Address
High

192h SD3STAT SmartDMA3 Status

194h SD3CBD SmartDMA3 Current Buffer Descriptor

196h SD3CTAD SmartDMA3 Current Transmit Address

198h SD3CRAD SmartDMA3 Current Receive Address

Table 8-2 DMA Controller Register Summary (Continued)

Offset
Register
Mnemonic

Register Name Description

CC CU
Am186™CC/CH/CU Microcontrollers User’s Manual 8-7

DMA Controller
Table 8-3 Am186CC Communications Controller DMA Channel Use

DMA Channel Associated Peripheral

General-Purpose DMA Channels 0–3

Memory-to-memory transfers (note I/O space
can be used in addition to memory space),
Timer 2, external peripherals (via the DRQ
signals), internal UART or High-Speed UART, or
any USB data endpoint (A–D) configured in
either direction

SmartDMA Pair 0 Receive Channel HDLC A receiver

SmartDMA Pair 0 Transmit Channel HDLC A transmitter

SmartDMA Pair 1 Receive Channel HDLC B receiver

SmartDMA Pair 1 Transmit Channel HDLC B transmitter

SmartDMA Pair 2 Transmit Channel
HDLC C transmitter or USB data endpoint B if

configured as a USB IN endpoint1

SmartDMA Pair 2 Receive Channel
HDLC C receiver or USB data endpoint A if

configured as a USB OUT endpoint1

Notes:
1. For SmartDMA channels 2 and 3, the transmit and receive cannot be assigned to different pe-
ripherals. For example, if SmartDMA Channel 2 receive is assigned to USB data endpoint A, then
SmartDMA Channel 2 transmit can be used for USB data endpoint B, but cannot be used with the
HDLC controller.

SmartDMA Pair 3 Transmit Channel
HDLC D transmitter or USB data endpoint D if

configured as a USB IN endpoint1

SmartDMA Pair 3 Receive Channel
HDLC D receiver or USB data endpoint C if

configured as a USB OUT endpoint1

Table 8-4 Am186CH HDLC Microcontroller DMA Channel Use

DMA Channel Associated Peripheral

General-Purpose DMA Channels 0–3

Memory-to-memory transfers (note I/O space
can be used in addition to memory space),
Timer 2, external peripherals (via the DRQ
signals), internal UART or High-Speed UART

SmartDMA Pair 0 Receive Channel HDLC A receiver

SmartDMA Pair 0 Transmit Channel HDLC A transmitter

SmartDMA Pair 1 Receive Channel HDLC B receiver

SmartDMA Pair 1 Transmit Channel HDLC B transmitter

CC

CH
8-8 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
8.5.1 When to Use DMA
Using DMA is appropriate under certain circumstances. In general, using DMA means
trading programming simplicity for efficient data movement between peripherals. For most
devices, using DMA does not mean that interrupt handlers are no longer needed, although
the interrupt handlers perform differently than when DMA is not used.

Using DMA can produce the following benefits:

■ Reduced system interrupt latency, thereby helping to guarantee data integrity

Note that this is often a second-order effect (e.g., if system interrupt latency is too long
for device A, it may be useful to use DMA with device B to rectify it).

■ Reduced bus or CPU cycles

DMA code consumes fewer bus and CPU cycles than interrupt or polling code.

■ Improved communications performance

Some peripheral devices require DMA for proper operation. For example, the USB
peripheral controller in the Am186CC and Am186CU microcontrollers requires DMA to
transmit or receive packets which are larger than an endpoint’s FIFO size.

8.5.2 DMA Priority
DMA channels can be programmed to three levels of priority (a single value applies to both
the transmit and receive channels for one SmartDMA channel pair). Higher priority DMA
channels are granted the bus before lower priority channels and can effectively hold off
lower priority DMA requests for multiple transfers. When two DMA requests of the same
programmed priority have transfers pending, they alternate transfers. When three or more
requests of equal priority have transfers pending, they take turns (i.e., 123123123...).

DMA cycles always have priority over internal CPU cycles except between internally locked
memory accesses or word accesses to odd memory locations. However, an external bus
hold or a refresh cycle takes priority over a DMA cycle.

Because an interrupt request cannot suspend a DMA operation and the CPU cannot access
memory during a DMA cycle, interrupt latency time suffers during sequences of continuous
DMA cycles. However, an NMI request causes all internal DMA activity to halt. This allows

Table 8-5 Am186CU USB Microcontroller DMA Channel Use

DMA Channel Associated Peripheral

General-Purpose DMA Channels 0–3

Memory-to-memory transfers (note I/O space
can be used in addition to memory space),
Timer 2, external peripherals (via the DRQ
signals), internal UART or High-Speed UART, or
any USB data endpoint (A–D) configured in
either direction

SmartDMA Pair 2 Transmit Channel
USB data endpoint B if configured as a USB IN
endpoint

SmartDMA Pair 2 Receive Channel
USB data endpoint A if configured as a USB
OUT endpoint

SmartDMA Pair 3 Transmit Channel
USB data endpoint D if configured as a USB IN
endpoint

SmartDMA Pair 3 Receive Channel
USB data endpoint C if configured as a USB
OUT endpoint

CU
Am186™CC/CH/CU Microcontrollers User’s Manual 8-9

DMA Controller
the CPU to respond quickly to the NMI request. Software can also inhibit DMA transfers by
setting the DHLT bit in the DMAHLT register.

Priorities for the general-purpose DMA channels are set through the GDxCON0 registers;
SmartDMA channel priorities are set with the SDxCON registers.

8.5.3 DMA Request Synchronization
Synchronized data transfers are either source or destination synchronized—either the
source of the data or the destination of the data generates a DRQ to request the data
transfer. Note that the terms source and destination are relative to the data movement. For
example, a UART receiver is source-synchronized; the UART is the source of the data and
the DRQ (see Figure 8-2).

DMA transfers can also be unsynchronized (i.e., DRQ is always asserted, and the transfer
takes place continually until the correct number of transfers has occurred).

For more information about general-purpose DMA channel synchronization, see “Setting
Synchronization” on page 8-17. For more information about SmartDMA channel
synchronization, see “SmartDMA Channel Request Source and Synchronization” on
page 8-27.

Figure 8-2 Source Versus Destination Synchronization

8.5.4 DMA Acknowledge
The Am186CC/CH/CU microcontrollers do not provide an explicit DMA acknowledge signal.
Because both source and destination registers are maintained, a read from a requesting
source or a write to a requesting destination serves as the DMA acknowledge signal.
Because the chip-select lines can be programmed to be active for a given block of memory
or I/O space, and the DMA source and destination address registers can point to the same
given block, a chip-select line can indicate a DMA acknowledge.

8.5.5 DMA and Interrupts
In some cases, a combination of both DMA processing and interrupt processing is
appropriate (e.g., when a certain amount of protocol processing must be performed for
each character, and this processing should take place at the interrupt level). In this situation,
using a circular receive buffer with extended reads can effectively extend or replace the
UART FIFO with a buffer in main memory. For more information, see “Using Buffer Queues

Serial Port Receive Data

Serial Port Transmit Data

(SPRXD) Register

(SPTXD) Register

RXD

TXD

Memory Buffer
UART Receiver

UART Transmitter

Here the source of the data is requesting
the transfer so the UART Receiver is
source-synchronized.

Here the destination of the data is requesting
the transfer so the UART Transmitter is
destination synchronized.
8-10 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
or Circular Buffers” on page 8-20. This method helps guarantee data integrity by ensuring
that data is transferred to main memory whether or not the interrupt task can execute. The
DMA channel can be set to interrupt immediately on receipt of data by setting the Interrupt
(INT) and Terminal Count (TC) bits in the GDxCON0 register. The interrupt task is then a
relatively low priority because it does not have to pull the characters out of the UART before
they are overwritten by new data. (The effective UART FIFO size has been increased by
the DMA buffer size.) When the interrupt task has finished processing all the data in the
circular buffer (its read pointer is equal to the destination address), the interrupt can set TC
to cause another interrupt as soon as additional characters arrive.

Processing the received data within a low-priority interrupt routine means that flow-control
information, such as XONs and XOFFs, may not be seen as quickly. To alleviate this
condition, transmission can be done without using DMA (e.g., from within the same interrupt
routine, or by programming the interrupt code). In the latter, the interrupt code could program
the Transfer Count (GDxTC) register to send a maximum of n characters at a time, using
DMA, where '2 • n' is a value that does not overrun the far side's receive FIFO high-water
mark.

8.5.6 General-Purpose DMA Channels
The Am186CC/CH/CU microcontrollers each provide four general-purpose DMA channels,
which are similar to legacy Am186 general-purpose DMA channels. The four channels can
be used for data transfers as shown in Table 8-6.

Table 8-6 General-Purpose DMA Data Transfers

Source Destination

Memory

Memory
I/O
Internal peripherals:

UART
High-Speed UART

USB
External peripherals

I/O

Memory
I/O
Internal peripherals:

UART
High-Speed UART

USB
External peripherals

Internal Peripherals:

Timer 21

UART
High-Speed UART

USB

Notes:
1. Timer 2 acts as a DMA request source only; no data is transferred to or from Timer 2.

Memory
I/O

External Peripherals
Memory
I/O

CC CU

CC CU
Am186™CC/CH/CU Microcontrollers User’s Manual 8-11

DMA Controller
8.5.6.1 General-Purpose DMA Usage

Note: Before using the general-purpose DMA channels, ensure multiplexed signals are
configured to reflect the use of DMA and not other functionality (see Table 8-1 on page 8-4).

To use any of the four general-purpose DMA channels, software must perform the following
steps. Note that while the source, destination, and count registers can be set in any order,
the control registers must be set last.

1. Specify the source address in the GDxSRCL and GDxSRCH source address registers
for the corresponding DMA channel.

2. Specify the destination address in the GDxDSTL and GDxDSTH destination address
registers for the corresponding DMA channel.

3. Specify the transfer count in the GDxTC count register for the corresponding DMA
channel.

4. When performing a DMA transfer to or from a peripheral, configure the DMA before
enabling the peripheral. For configuration of peripherals, see the applicable chapter.

5. Configure the DMA transfer options in the GDxCON0 and GDxCON1 control registers
for the corresponding DMA channel.

6. Enable DMA transfer in the GDxCON0 and GDxCON1 control registers for the
corresponding DMA channel.

All DMA registers except the GDxCON0 and GDxCON1 registers can be modified while
the channel is operating. Any changes made to these registers affect the current DMA
transfer.

8.5.6.2 General-Purpose DMA Cycle

The four general-purpose DMA channels on the Am186CC/CH/CU microcontrollers are
completely interchangeable, and the register sets are identical. From the programmer’s
point of view, a DMA cycle proceeds as follows:

1. The DMA channel receives a DMA request. Each DMA channel can service requests
from Timer 2, an external peripheral, or the internal UARTs.

DMA channels on the Am186CC and Am186CU microcontrollers can also service
requests from the USB peripheral controller.

DMA channels can also be set to unsynchronized, which causes the DRQ to be
continuously asserted. This is used for memory-to-memory transfers.

2. The DMA controller reads a byte or word from the programmed source address, which
can be in I/O space or in memory, and then writes that byte or word to the programmed
destination address, which can also be in I/O space or memory. Unless the channel is
set to unsynchronized or to accept requests from Timer 2, the channel should be
programmed so that either reading from the source or writing to the destination clears
the request. For example, reading from the Serial Port Receive Data (SPRXD) register
clears a UART receive DMA request.

3. The source and destination address pointers are then adjusted by independently
programmable amounts. The adjustment increment for each pointer can be 0 (e.g., for
a peripheral address that does not change), +1, +2, –1, or –2. (Unpredictable results
may occur when the transfer size is a word (two bytes) and the adjustment increment is
1 or –1; when the transfer size is one byte and the adjustment increment is +2 or –2,
the high byte is ignored.) To implement circular buffers, the pointers can also wrap on
1-, 2-, 4-, 8-, 16-, 32-, or 64-Kbyte boundaries.

CUCC
8-12 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
4. If the GDxTC register is non-zero, it decrements.

5. If the GDxTC register became zero and either the Terminal Count (TC) bit is set or the
transfer type is unsynchronized, the Start/Stop (ST) bit is reset, and further DMA requests
on that channel are ignored.

6. If the GDxTC register became zero and the Interrupt (INT) bit is set, an interrupt request
is generated. This action is independent of whether the TC bit is set.

An entire sequence of DMA cycles is initiated by setting the ST bit. This bit can be set
manually at any time, and is also set automatically by any write to the GDxTC register when
the Auto Start (AST) bit is set. Setting the ST bit initiates a sequence of DMA transactions
if one of the following is true:

■ The GDxTC register is non-zero.

■ The TC bit is 0 and the transfer type is source or destination synchronized.

If neither of these conditions are met, hardware resets the ST bit without executing any
DMA transfers. Otherwise, the ST bit is reset by the hardware after executing one or more
transfers as discussed in the previous DMA cycle description. If a transfer is synchronized
and the TC bit is 0, DMA transfers continue as long as DMA requests are being made until
the ST bit is manually cleared. This mode is typically used with the address wrap option to
implement circular buffers (see “Using Buffer Queues or Circular Buffers” on page 8-20).

8.5.6.3 General-Purpose DMA Transfer Suspension

The following conditions suspend general-purpose DMA transfers:

■ Deassertion of DRQ

■ A bus hold condition

■ A refresh cycle by an NMI/watchdog timer interrupt

■ A pending DMA request of equal or higher priority

■ The DHLT bit in the DMAHLT register set to 1 by an NMI or by software

8.5.6.4 General-Purpose DMA Source and Destination Addresses

Each general-purpose DMA channel has a 20-bit source address and a 20-bit destination
address. The 20-bit addresses are split over two source registers (GDxSRCL and
GDxSRCH) and two destination registers (GDxDSTL and GDxDSTH), with the four most
significant bits (AD19–AD16) going into a separate register from the 16 low-order bits
(AD15–AD0). The address is specified as a 20-bit linear address, not as a segment:offset
pair. For example, for the segment C000h and offset 1000h, the linear address would be:
(C000h x 16) + 1000h = C1000h; therefore, the low register = 1000h and the high
register = 0Ch. To use a DMA channel, software must initialize all four address registers
for that channel.

The addresses can be individually incremented or decremented after each transfer. For
more information, see “Incrementing or Decrementing Addresses” on page 8-15.

The source and destination addresses can each be in either memory space or I/O space.
This is specified by programming the SM/IO bit in the GDxCON1 register. The AD19–AD16
bits are ignored when the address is in I/O space. Because the DMA channels can perform
transfers to or from odd addresses, there is no restriction on values for the destination and
source address registers. Higher transfer rates can be achieved if all word transfers are
performed to and from even addresses so that accesses can occur in single 16-bit bus
Am186™CC/CH/CU Microcontrollers User’s Manual 8-13

DMA Controller
cycles. Word transfers to 8-bit address spaces are supported only when the source
decrement or increment is 2 bytes.

The Am186CC/CH/CU microcontrollers have the added feature of being able to transfer by
DMA to and from the UART and High-Speed UART.

The Am186CC and Am186CU microcontrollers can also transfer by DMA to and from USB
peripherals.

Transfering between DMA and peripherals is accomplished by programming the DMA
controller to perform transfers between a data buffer (located either in memory or I/O space)
and the peripheral data register. It is important to note that when a DMA channel is in use
by a peripheral, the corresponding external DMA request signal is deactivated. For a
discussion of using DMA and the on-chip peripherals, see “Selecting DMA Request
Sources” on page 8-15.

8.5.6.5 General-Purpose DMA Terminal Count

Each DMA channel has a 16-bit Transfer Count (GDxTC) register. Software must program
the GDxTC register with the desired number of transfers and set the Terminal Count (TC)
bit in the GDxCON0 register to 1 to enable terminal count. If terminal count is enabled, the
channel performs the requested number of transfers, decrementing the value in the GDxTC
register after each transfer. When the count reaches zero, the DMA transfer terminates.

If the TC bit is 0, the DMA controller decrements the value of GDxTC after each transfer
but does not terminate the transfer when the count reaches zero. The GDxTC register wraps
back to its maximum value and continues decrementing. If the current transfer is an
unsynchronized transfer, DMA terminates when the count reaches zero.

If the Auto Start (AST) bit in the GDxCON0 register is set, DMA resumes transferring every
time the GDxTC register is reloaded with a new value.

When a channel is connected to a USB transmit endpoint, the Am186CC or Am186CU
microcontroller generates a signal internally when the terminal count is reached. The USB
peripheral can use this signal to signal the end-of-packet on a transmit.

8.5.6.6 General-Purpose DMA Channel Operations

The general-purpose DMA control registers (GDxCON0 and GDxCON1) determine the
DMA channel operations. These registers specify the following options:

■ The relative priority of the DMA channel with respect to other DMA channels (see “DMA
Priority” on page 8-9)

■ Whether the DMA resumes a transfer every time the count register is reloaded with a
new value (see “General-Purpose DMA Terminal Count” on page 8-14)

■ Whether the source or destination address is in memory or I/O space (see “General-
Purpose DMA Source and Destination Addresses” on page 8-13)

■ If an interrupt is generated when the transfer count is reached (see “Generating
Interrupts” on page 8-15)

■ Whether bytes or words are transferred (see “Transferring Bytes or Words” on page 8-15)

■ Whether the source or destination address is incremented, decremented, or maintained
constant after each transfer (see “Incrementing or Decrementing Addresses” on
page 8-15)

■ The DMA request source for the channel (see “Selecting DMA Request Sources” on
page 8-15)

CUCC

CUCC
8-14 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
■ The DMA synchronization for the channel (“Setting Synchronization” on page 8-17)

■ Whether DMA transfers use buffer queues or circular buffers (see “Using Buffer Queues
or Circular Buffers” on page 8-20)

8.5.6.6.1 Generating Interrupts
The general-purpose DMA channels can generate an interrupt request when the terminal
count value in the GDxTC register reaches 0. To program this feature, set the INT bit in the
GDxCON0 register to 1.

8.5.6.6.2 Transferring Bytes or Words
The TS bit in the GDxCON0 register can enable either byte or word transfers.

8.5.6.6.3 Incrementing or Decrementing Addresses
The source and destination addresses can increment or decrement after each transfer, or
remain constant. Specify the action with the SINC and DINC bits in the GDxCON1 register.
The increment or decrement factor of the source and destination addresses are
programmed independently; however, both the source and destination have to be the same
size. Word transfers are only supported when the address is incremented or decremented
by 2 (an increment by one causes unpredictable results). Byte transfers can be incremented
or decremented by 1 or 2. When a byte transfer is incremented or decremented by 2, the
high byte is ignored.

Because the DMA controller stores addresses as 20-bit linear values, there are no segment
restrictions on the address increment and decrement. However, when using the circular
buffer feature, the address boundary is limited to the size of the buffer. For example, when
using a 1-Kbyte circular buffer, the address has to start at a 1-Kbyte boundary. For more
information, see “Using Buffer Queues or Circular Buffers” on page 8-20.

8.5.6.6.4 Selecting DMA Request Sources
The DSEL bit field in the GDxCON0 register sets the DMA request source for that channel.
As shown in Figure 8-3, the DMA request source can be an external DRQ signal, Timer 2,
UART receiver, UART transmitter, High-Speed UART receiver, or High-Speed UART
transmitter.

The Am186CC and Am186CU microcontrollers also support USB endpoints A, B, C, or D
as request sources. Each USB endpoint can be configured either for receive or transmit.

In addition to setting the DMA request source, the DSEL bit field also selects the
synchronization type (see “Setting Synchronization” on page 8-17).

CUCC
Am186™CC/CH/CU Microcontrollers User’s Manual 8-15

DMA Controller
Figure 8-3 DMA Request Sources

DMA Request from Timer 2

The GDxCON0 register can configure a DMA channel to accept the output of Timer 2 as
a DRQ signal to generate periodic data transfers. Note that this feature generates a DRQ
periodically—even if there is no data. To use this feature, software should program Timer 2
with the T2CON register for “continuous” mode—to reach the maximum count and start
counting again. Each time the timer reaches the maximum count, it generates a single
DRQ. The DMA controller latches the Timer 2 DRQ signal to guarantee that the DMA
channel does not miss the DRQ if the bus is not immediately available (e.g., if a higher
priority DMA has control of the bus). If a second Timer 2 DRQ is generated before the first
request is serviced, the second request is lost.

DMA Request from UARTs

Transfers between the DMA and the UARTs are accomplished by programming the
GDxCON0 register to perform transfers between a data buffer (located either in memory
or I/O space) and a serial port data register (SPTXD, SPRXD, HSPTXD, or HSPRXD).

Note: Using a DMA channel with a UART deactivates the corresponding external DMA
request signal.

For DMA to the UART or High-Speed UART, specify the following configuration details for
the DMA by writing the address of the register into the GDxDSTL and GDxDSTH registers:
the transmit data register (SPTXD or HSPTXD) address; either I/O-mapped or memory-
mapped; as a byte destination, or word destination if using extended writes. The destination
address (the address of the transmit data register) should remain constant throughout the
DMA operation.

For DMA from the UART or High-Speed UART, specify the following configuration details
for the DMA by writing the address of the register into the GDxSRCL and GDxSRCH
registers: the receive data register (SPRXD or HSPRXD) address; either I/O-mapped or
memory-mapped; as a byte source, or word source if using extended writes. The source
address (the address of the receive data register) should remain constant throughout the
DMA operation.

UART Receiver

UART Transmitter

High-Speed UART Receiver

High-Speed UART Transmitter

Memory or I/O

USB Endpoint A

USB Endpoint B

USB Endpoint C

USB Endpoint D

DRQ

External DRQ signal
Unsynchronized
Transfer

DMA

DRQ Source Select

Timer 2 (latched)

CU

CC
8-16 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
DMA Request from USB

Because USB can use either general-purpose DMA or SmartDMA channels, this is
discussed separately in “DMA and USB” on page 8-43.

8.5.6.6.5 Setting Synchronization
The DSEL bit field in the GDxCON0 register sets the DMA request source for that channel
(see “Selecting DMA Request Sources” on page 8-15). Unlike prior Am186 parts, this bit
also sets the synchronization. General-purpose DMA transfers can be unsynchronized,
source-synchronized, or destination-synchronized.

The source or destination device implies the synchronization type as shown in Table 8-7.

DMA synchronization affects the behavior of the DMA operation and system performance
as a whole. All DMA transfers observe the programmed ready and wait-state conditions for
any chip select active for that cycle.

DRQ must be deasserted before the end of the DMA transfer to prevent another DMA cycle
from occurring. The timing for the required deassertion depends on whether the transfer is
source-synchronized or destination-synchronized.

Unsynchronized Transfers

For unsynchronized DMA transfers, the DRQ signal is internally tied High. When initiated,
an unsynchronized DMA transfer begins immediately and consumes all bus cycles until the
terminal count value in the GDxTC register reaches 0. Unsynchronized DMA is generally
used for copying data between memory locations, between I/O locations, or between
memory and I/O locations. For example, unsynchronized DMA can initialize RAM during
start-up.

Source-Synchronized Transfers

Source-synchronized DMA transfers require either an internally generated DRQ (e.g., from
a UART receiver) or an external device that asserts the associated external DRQ signal for

Table 8-7 General-Purpose DMA Request Source and Synchronization

DMA Request Source Synchronization Type

Memory or I/O Unsynchronized

Timer 2 Source

UART Receiver Source

UART Transmitter Destination

High-Speed UART Receiver Source

High-Speed UART Transmitter Destination

USB Requset Sources

USB Endpoint A Receiver Source

USB Endpoint A Transmitter Destination

USB Endpoint B Receiver Source

USB Endpoint B Transmitter Destination

USB Endpoint C Receiver Source

USB Endpoint C Transmitter Destination

USB Endpoint D Receiver Source

USB Endpoint D Transmitter Destination

CUCC

CC CU
Am186™CC/CH/CU Microcontrollers User’s Manual 8-17

DMA Controller
a general-purpose DMA channel. In source synchronization, the device providing the data
asserts the DMA request.

Figure 8-4 shows a typical source-synchronized DMA transfer. When an external device is
asserting DRQ, the request must be deasserted at least four clock cycles before the end
of the transfer (at T1 of the deposit phase) to prevent another transfer from taking place. If
more transfers are not required, a source-synchronized transfer allows the source device
at least three clock cycles from the time it is acknowledged to deassert its DRQ line. Like
unsynchronized DMA transfers, source-synchronized DMA transfers have the capability of
consuming all bus cycles if the DRQ remains asserted for multiple transfers. An example
of this would be the emptying of a FIFO.

Figure 8-4 Source-Synchronized General-Purpose DMA Transfers

Destination-Synchronized Transfers

Destination-synchronized DMA transfers require either an internally generated DRQ (e.g.,
from a UART transmitter), or an external device that asserts the associated external DRQ
signal for a general-purpose channel. In destination synchronization, the device receiving
the data asserts the DMA request.

Figure 8-5 shows a typical destination-synchronized DMA transfer. The DMA controller
does not sample the DRQ line for a channel until four cycles after the end of the write phase
of a destination-synchronized DMA transfer. This delay allows the external device sufficient
time to remove its request if it does not want another transfer. The delay also allows other
devices access to the bus, including instruction or data fetches by the processor and other
DMA transfers (including transfers by lower priority DMA requests). If another device starts
a bus cycle during the DMA idle cycles, the entire bus cycle completes before giving the
bus back to the DMA. If no other bus activity is initiated, another DMA cycle begins.

Because the DMA controller relinquishes the bus after every destination-synchronized
transfer, the CPU can initiate a bus cycle. As a result, a complete bus cycle is often inserted

T1 T2 T3 T4 T1 T2 T3 T4

CLKOUT

DRQ (First case)

DRQ (Second case)

Fetch Cycle Fetch Cycle

1

2

Notes:
1. This source-synchronized transfer is not followed immediately by another DMA transfer,

because DRQ is deasserted at least four clock cycles before the end of the transfer.

2. This source-synchronized transfer is immediately followed by another DMA transfer, because
DRQ is not deasserted soon enough.
8-18 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
between destination-synchronized transfers. Table 8-8 shows the maximum DMA transfer
rates based on the different synchronization strategies.

Figure 8-5 Destination-Synchronized General-Purpose DMA Transfers

Deasserting DRQ

In externally synchronized transfers, DRQ1 or DRQ0 must be deasserted before the end
of the DMA transfer to prevent another DMA cycle from occurring. The timing for the required
deassertion depends on whether the transfer is source-synchronized or destination-
synchronized.

A DMA request is not acknowledged from the same source for four processor clock cycles
after the end of the deposit cycle. In a source-synchronized DMA transfer, the DRQ signal
must be deasserted at least four clocks before the end of the transfer. If more transfers are
not required, a source-synchronized transfer allows the source device at least three clock
cycles from the time it is acknowledged to deassert its DRQ line. For more information, see
“DMA Acknowledge” on page 8-10.

Table 8-8 Maximum DMA Transfer Rates

Synchronization Type

Maximum DMA
Transfer Rate (Mbytes/s)

50 MHz 40 MHz 25 MHz

Unsynchronized 12.5 10 6.25

Source-synchronized 12.5 10 6.25

Destination-synchronized
(CPU needs bus)

8.33 5 3.125

Destination-synchronized
(CPU does not need bus)

10.0 5 3.125

T1 T2 T3 T4 T1 T2 T3 T4

CLKOUT

DRQ
 (First case)

DRQ
 (Second case)

Fetch Cycle Deposit Cycle

1

2

TI TI

Notes:
1. This destination-synchronized transfer is not followed immediately by another DMA transfer,

because DRQ is deasserted during the four idle states.

2. This destination-synchronized transfer is immediately followed by another DMA transfer, because
DRQ is not deasserted soon enough.

TI TI T1
Am186™CC/CH/CU Microcontrollers User’s Manual 8-19

DMA Controller
A destination-synchronized transfer differs from a source-synchronized transfer in that the
four cycle delay allows the destination device to deassert its DRQ signal four clocks before
another request is latched. Without this delay, the destination device would not have time
to deassert its DRQ signal. Because of the four extra cycles, a destination-synchronized
DMA channel allows other bus masters to take the bus during the idle states.

8.5.6.6.6 Using Buffer Queues or Circular Buffers

Note: This discussion assumes the channel is using a memory buffer (i.e., that the source
or destination address is programmed to increment or decrement). If the address is
programmed to remain constant, no memory buffer is in use, and neither buffer queues nor
circular buffers are used. See “Incrementing or Decrementing Addresses” on page 8-15 for
more information.

The GDxCON1 register contains two fields that specify whether the source and/or
destination addresses for that DMA channel should wrap when the addresses reach a
programmed boundary. These fields are programmed independently; wrapping could be
enabled for one address and not for the other. When wrapping is disabled, the memory
buffer is treated as a linear array. This is typically called a buffer queue.

With a buffer queue, data is written/read to sequential byte or word addresses until a terminal
count is reached. The DMA should be programmed to terminate when the terminal count
is reached, or data may be written past the end of the buffer.

When wrapping is enabled, the memory buffer is treated as a circular buffer (sometimes
called a ring buffer). In this case, data is written/read to sequential byte or word addresses
until the programmed buffer length is reached, at which point the address is reset to its
initial value; data is never written outside the programmed buffer space. Circular buffers
can be programmed to be 1, 2, 4, 8, 16, 32, or 64 Kbytes in length, and must be aligned to
an address which is a multiple of the programmed size.

The use of a circular buffer reduces the overhead required in programming the DMA channel
and may result in more efficient use of the transmitting or receiving device. However, in the
case where a circular buffer is being used to receive data, software must ensure that valid
received data is removed from the buffer before it is overwritten by the DMA controller on
the next pass. Conversely, for transmit circular buffers, software must write valid transmit
data into the buffer before that buffer address is read by the DMA controller.

To avoid overwriting data in a circular buffer, compare the source address with the buffer
address. For example, the address contained in a DMA channel’s source address registers
is the address of the next byte of data to be transmitted. Data that is logically between this
address and the buffer address being written to by software (in a circular fashion) has not
yet been transmitted. If the source address registers contain the address xxxx0050 when
software is writing to address xxxx0150, then the addresses from xxxx0050 through
xxx0149 contain valid data for transmission. Addresses outside of this range, but within the
buffer, do not contain valid data. This may be data that has already been transmitted or
may be addresses that have never been written.

For string data or other data which is naturally represented as consecutive bytes or words
in memory, using circular buffers involves additional overhead because the data must be
moved between its storage location and the circular buffer. For these data types, a buffer
queue may be a more efficient solution.
8-20 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
Example of Using Buffer Queues and Circular Buffers with the UARTs

Note: This section discusses implementation tradeoffs for using the general-purpose DMA
channels. To have a concrete system to discuss, the integrated UART and High-Speed
UART are used as examples, but much of this information is applicable to using the general-
purpose DMA channels with other peripherals as well. In general, there are two distinct
ways that general-purpose DMA can be used: buffer queues and circular buffers. These
two techniques are discussed and contrasted below. In addition, these two methods can
be mixed (e.g., queues of messages for transmit and circular buffers for receive). A careful
analysis of the final system is required to determine the best method to use.

Many systems, especially those communicating with other equipment rather than with
human beings in interactive mode, transmit and receive messages in large blocks. These
messages can be forwarded to a host PC through the USB interface, or forwarded through
an ISDN line or other WAN setup using HDLC. With this sort of message protocol, it may
be advantageous under some circumstances to perform a DMA transfer directly to or from
a queue of buffers, rather than to or from a single circular buffer per direction.

Buffer queues are a viable way to transfer data to and from some devices with general-
purpose DMA. However, buffer queues are only useful for DMA with the UARTs under very
special circumstances.

The primary advantage to using DMA transfer straight from a queue of buffers is the
reduction of data motion. Transmission is relatively straightforward: the DMA channel is
programmed with the correct source address and transfer count for each buffer; and the
DMA channel is set up to stop transmitting and to interrupt when the end of the buffer is
reached. When the interrupt occurs, the buffer is freed, and the next buffer is set up to be
transferred out using DMA.

Reception is more difficult because it is not always known up front exactly how long the
incoming message is. Even if the message size is fixed, line errors can corrupt the perceived
length. For both reception and transmission, issues such as compression, transparency,
and CRC generation and checking mean that software must usually examine each character
individually. In this case, using a circular buffer is generally the best way to use DMA with
a UART (because each character is being read by software anyway, and the number of
characters to be transmitted is different than the number of characters in the original buffer),
although DMA is not necessarily the best way to transfer data to and from the UART.

The determination of whether to use DMA at all for this sort of protocol processing is
dependent on system loading and maximum UART baud rate. If CPU cycles are at a
premium (e.g., for data compression), it may be worthwhile to use DMA.

Many UART serial drivers use circular buffers for temporary storage of incoming and
outgoing characters. The primary drawback to using a circular buffer is that it doubles the
bus bandwidth required to handle each character received or transmitted. For example, if
a string is written out to a serial port, using a circular buffer requires four bus transactions
for each character (read it from the string, write it to the buffer, read it from the buffer, write
it to the transmit port), whereas without the buffer, two transactions would suffice (read the
character from the string, write it to the transmit port). Nevertheless, circular buffers are
popular because the alternative often requires more coding and is usually more error-prone
(e.g., a buffer containing a string could inadvertently be reused before the string is
completely transmitted).

For this reason, the Am186CC/CH/CU microcontrollers’ DMA has excellent circular buffer
support. With the general-purpose DMA channels, this is achieved by setting bits in the
GDxCON1 register to a nonzero value to select a buffer size between 1 and 64 Kbytes.
Am186™CC/CH/CU Microcontrollers User’s Manual 8-21

DMA Controller
Software must ensure that this buffer is aligned on a multiple of its size. This is easily done
for statically allocated buffers with a good linker/locator; for dynamically allocated buffers,
the software must waste the size of one buffer. This waste can usually be reduced or
eliminated by allocating and deallocating additional buffers; this is highly dependent on the
operating system and memory allocation library.

Transmitting using DMA and circular buffers is easy and does not require interrupt support.
Note that using DMA for transmission for the UART is not required for data integrity reasons,
so DMA should only be used for UART transmissions if one of the following applies:

■ CPU throughput can be improved by reducing the time spent in the UART interrupt
handler.

■ Transmission throughput can be improved by reducing the latency between transmitted
characters. Note that it is easy to measure intercharacter latency to determine the
maximum possible improvement available by improving UART transmission.

Table 8-9 gives typical register values for using circular buffers with the UARTs.

Table 8-9 Example Register Settings for UARTs and Circular Buffers

General-Purpose DMA
Register

Bit(s) in Register
Value for
Transmit DMA

Value for
Receive DMA

GDxCON0
(Control 0)

ST (Start/Stop)
Clear (is set by load of
GDxTC register)

Set after all other fields
and UART set correctly

AST (Auto Start) Set Clear

TC (Terminal Count) Set Typically clear

INT (Interrupt)
Clear for single-tasking;
set for multitasking

Set

P (Relative Priority)
Depends on rest of
system

Depends on rest of
system; higher than
transmit

TS (Transfer Size) 0 for 8 bit, 1 for 9 bit
0 for 8 bit, 1 for 9 bit or
extended status

DSEL (DMA Request Select)
(High-Speed) UART
Transmitter

(High-Speed) UART
Receiver

GDxCON
 (Control 1)

SM/IO (Source Address Space
Select)

Set (memory) Clear (I/O)

SAW (Source Address Wrap) Set to size of buffer Clear

SINC (Source Increment) 1 for 8 bit, 2 for 9 bit 0

DM/IO (Destination Address
Space Select)

Clear (I/O) Set (memory)

DAW (Destination Address Wrap) Clear Set to size of buffer

DINC (Destination Increment) 0
1 for 8 bit, 2 for 9 bit or
extended status

GDxSRCL
(Source Address Low)

DSA[15–0]
Buffer address
MOD 64K

(H)SPRXD
8-22 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
When the DMA channel is initialized as shown in Table 8-9, transmitting a string is performed
as follows:

1. Copy the string from the source to the buffer at the current write pointer position, being
careful to take buffer wrap into account, and being careful not to overwrite data already
in the buffer which is not yet transmitted. (Whether or not data has been transmitted can
be easily determined by reading the DMA channel’s source address register and
comparing it against the write pointer position.) Calculate a new write pointer position,
and save it in memory to use for subsequent writes.

2. Stop the DMA (reset the ST bit) to ensure that the transfer count is stable.

3. Add the length of the new string to the Transfer Count (GDxTC) register. A read/modify/
write cycle adjusts the GDxTC register, and the write to the register automatically restarts
the DMA (if the AST bit is set).

Interrupts are required for transmit under the following conditions:

■ If the XON/XOFF protocol is used, the DMA must be shut off to transmit flow control
characters, and also to stop transmitting when an XOFF is received. One way this
protocol could work is that when DMA is to be stopped, the AST and ST bits can be
reset; when DMA is to be restarted, both these bits can be set again. If this technique
is used, steps 2 and 3 above (stopping DMA and updating transfer count) should be
performed as an atomic operation (i.e., with interrupts disabled) to avoid conflicts with
the XON/XOFF interrupt handler.

■ If a multitasking system is used, an attempt to write too much data to the buffer should
write as much as possible, and then block the task performing the write until additional
space is available. In this case, the GDxTC register should not be programmed with the
actual count of characters in the buffer, but instead be programmed with the lesser of
the actual count and the amount of space to wait for before restarting the blocked task.
Also, the interrupt bit should be set. When the interrupt occurs, the transfer count should
immediately be reprogrammed to the actual remaining buffer count to avoid delay in
transmission, and the blocked task should be marked as ready to run.

Reception Using Circular Buffers

For the UART, DMA reception using a circular buffer is potentially more useful than
transmission because transferring received characters into a circular buffer can help
improve data integrity. (Characters are never lost due to interrupt latency.)

Like basic transmission, basic reception using a circular buffer is simple. Software maintains
a read pointer into the buffer and can dynamically determine the number of characters
available for reading at any time by reading the destination address, subtracting the read

GDxSRCH
(Source Address High)

DSA[19–16] Buffer address DIV 64K 0

GDxDSTL
(Destination Address Low)

DDA[15–0] (H)SPTXD
Buffer address
MOD 64K

GDxDSTH
(Destination Address High)

DDA[19–16] 0 Buffer address DIV 64K

GDxTC
(Transfer Count)

TC
Set to total string length
whenever writes
performed

Set to high-water mark

Table 8-9 Example Register Settings for UARTs and Circular Buffers (Continued)

General-Purpose DMA
Register

Bit(s) in Register
Value for
Transmit DMA

Value for
Receive DMA
Am186™CC/CH/CU Microcontrollers User’s Manual 8-23

DMA Controller
pointer from it, and dividing the result by the buffer size. The remainder of this division is
the number of bytes available for reading.

The difficulty again revolves around multitasking and flow control, with the added problem
of error handling.

Receive XON/XOFF Flow Control

XON/XOFF flow control with DMA is problematic because, in general, the received flow
control characters should not be stored in the buffer, and also because the characters
should typically be acted on immediately. This may make DMA impractical for implementing
XON/XOFF flow control with the UART. The High-Speed UART can be programmed to stop
using DMA and interrupt the CPU whenever a flow control character arrives, so that an
interrupt routine can act on the flow-control character and then restart the DMA operation.
Note that baud rate, system latency, and the depth of the FIFO must be considered when
determining if this is practical for a given implementation.

In addition to detecting and acting on flow-control characters in the data stream, the
receiving task must also detect when the circular buffer is getting full so that an XOFF can
be sent. This can be accomplished by programming the Transfer Count register with a value
that is the current room available in the buffer minus a constant high-water mark, and setting
the INT bit, but not the TC bit in the GDxCON0 register. This causes the DMA to interrupt
when there is room (buffer size minus high-water mark) in the buffer, and an XOFF can be
sent. The value chosen for the high-water mark should take into account far-end latency in
dealing with an XOFF, plus latency associated with sending the XOFF through the High-
Speed UART transmit FIFO, if it is enabled.

Receive Hardware Flow Control

Hardware flow control is simple if the connected device performs true hardware flow control
(i.e., stops transmitting on the next character boundary when RTR is dropped).

Some UARTs and systems perform pseudo-hardware flow control. In these UARTs, the
flow control signal can cause an interrupt, but may not stop characters already queued to
go out. In this case, the High-Speed UART’s receive FIFO may be sufficient to guarantee
that overruns do not occur.

If the UART is being used, or if the High-Speed UART’s receive FIFO is not large enough
to guarantee that the other side will stop quickly enough, then RTR should be performed
using a PIO, and an algorithm similar to the one described for receive XON/XOFF control
should be used, so that the far side is requested to stop sending before the DMA buffer is
actually full. The FIFO threshold is one half of the FIFO depth and is not programmable.

If the attached device is capable of real hardware flow control, then the TC bit in the
GDxCON0 register can be set, and the Transfer Count register can be programmed with
the amount of room left in the buffer. When DMA ceases, the hardware flow control signal
is automatically asserted.
8-24 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
Receive Multitasking

In a single-tasking system, received characters are held in the circular buffer until higher-
level code is ready for them. In a multitasking system, it may be desirable for receipt of
characters to cause an interrupt to signal that a task switch should take place. When DMA
is used with one of the UARTs on the Am186CC/CH/CU microcontrollers, the hardware is
typically programmed to cause interrupts under these two conditions:

■ After a programmed number of characters have been received.

To do this, the programmed transfer count is usually the lesser of this desired number
and the number required to implement proper flow control.

■ When no characters have been received for a certain period of time (signifying that the
other end has probably finished transmitting a message).

This is accomplished by interrupting on the UART IDLED bit in the (H)SPSTAT register,
which causes an interrupt when 40 bit times have gone by without detecting a start bit.

Receive Error Processing

Several kinds of errors and exceptional conditions can occur when receiving asynchronous
character data. Breaks, parity errors, and framing errors indicate an exceptional external
condition. Overrun errors indicate that data has been lost due to system latency. A character
match interrupt (High-Speed UART only) can indicate that an XON or XOFF has been
received.

The Am186CC/CH/CU microcontrollers offer great flexibility in dealing with these
exceptions. If the EXDRD bit in the UART’s Control 1 register is set, and the DMA is set up
to transfer a word for every character, exceptions can be stored in the circular buffer along
with the character that caused them. If the EXDRD bit is reset, exceptions that cause
interrupts cause DMA activity to stop until an interrupt task services the exception.

The decision of whether to set or clear the EXDRD bit depends on the intended usage. If
the target baud rate is high relative to system loading, setting the EXDRD bit can prevent
the loss of data due to interrupt latency. This is especially true when using the UART, or
when using the High-Speed UART without the FIFO. If break or address bit information is
to be stored with the character for later retrieval, setting the EXDRD bit is appropriate.
Setting this bit can complicate system software, especially if XON/XOFF flow control is
used, because the flow control characters are stored in the circular buffer. The system
software must find the character and perform the correct action immediately, and then ignore
the character when reading data out of the buffer later.

When using the FIFO on the High-Speed UART, these exceptions (break, parity error,
framing error, address bit, overrun error, and character match) are placed in the FIFO and
move with the associated data so that the software can match the exception with the correct
character. This means that a system programming error that keeps data from being pulled
out of the FIFO (e.g., misprogramming of the DMA) may keep interrupts from ever occurring.
For this reason, the High-Speed UART has an additional Overrun Error-Immediate (OERIM)
interrupt bit that is not placed in the FIFO. Software can monitor or interrupt on OERIM to
detect and correct this sort of system programming error.

Small or Misaligned Circular Buffers

If a circular buffer is smaller than 1K, is not aligned on a multiple of its size, or the size is
not a power of 2, the address wrap features of the DMA are not available. The DMA can
still be used to implement a circular buffer, but it requires more programming effort, and the
required interrupt could introduce unacceptable latency into the system. System software
must always use interrupts, set the TC bit, and carefully program the Transfer Count register
Am186™CC/CH/CU Microcontrollers User’s Manual 8-25

DMA Controller
so that the address never exceeds the boundary of the buffer. Software must manually wrap
the buffer address back to the start of the buffer whenever an interrupt signifies the end of
the buffer. This is not too burdensome for UART transmit buffers because there is no hard
latency requirement for asynchronous transmission, but this could be a problem for receive
buffers if the interrupt latency could cause characters to be missed.

8.5.7 SmartDMA Channels
The Am186CC/CH/CU microcontrollers each contain SmartDMA channels, compatible with
the DMA in the AMD Am79C90 C-LANCE (Local Area Network Controller for Ethernet).
This LANCE-compatible buffer descriptor ring interface provides a method for transmission
and reception of data across multiple memory buffers. The ring descriptor interface also
provides a method for reporting status on multiple received and transmitted packets while
ensuring that status information is always correctly linked with the associated data.

Unlike the general-purpose DMA channels, which can be used for memory-to-memory or
I/O-to-I/O transfers, the SmartDMA channels are highly specialized. These channels must
be used in pairs. Each pair consists of a transmit channel and a receive channel. The
transmit channels transfer data from memory to a transmitting device (such as an HDLC
transmitter). Receive channels transfer data from a receiving device (such as an HDLC
receiver) to memory.

Four of the eight SmartDMA channels (two pairs) in the Am186CC microcontroller are
dedicated for use with the on-board HDLC channels. The remaining four SmartDMA
channels (two pairs) can support either the third or fourth HDLC channel or USB endpoints
A, B, C, or D.

The four SmartDMA channels (two pairs), SDMA0 and SDMA1, in the Am186CH HDLC
microcontroller support the two on-board HDLC channels.

The four SmartDMA channels (two pairs), SDMA2 and SDMA3, in the Am186CU USB
microcontroller support USB endpoints A, B, C, or D.

This section describes these SmartDMA channels.

8.5.7.1 SmartDMA Channels Introduction

With a traditional DMA controller, such as the general-purpose DMA, the typical mode of
operation is to DMA transfer a buffer of information (either filling a receive buffer, or emptying
a transmit buffer) and program the DMA controller to interrupt the CPU when the end of
the buffer is reached.

However, if the data rate is high relative to system loading and interrupt latency, data could
be lost before the interrupt service routine reinitializes the DMA controller to point to the
next buffer. For some peripherals, such as UARTs, this problem is easily solved by the
ability of the general-purpose DMA controller to manage a circular buffer. If such a circular
buffer is managed correctly, DMA is never halted to wait on CPU interrupt activity.

A circular buffer does not work as well for packet-oriented communications such as HDLC
and USB because of the requirement to delineate packet boundaries. Also, in a typical
system, each packet can be routed to a different destination, so the data would have to be
copied out of the circular buffer and into another peripheral’s circular buffer.

SmartDMA channels solve these problems by maintaining a circular queue of buffer
descriptors—a descriptor ring—rather than a circular data buffer. The hardware itself
updates a buffer descriptor when a full buffer is transferred, then automatically fetches the
next descriptor and starts transferring data to the new buffer. Because the hardware

CC

CH

CU
8-26 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
performs this operation without software intervention, the latency is significantly lower than
if an interrupt task performed the same operation.

Software must still read and write the buffer descriptors, but the latency requirements are
greatly relaxed because multiple descriptors are queued at one time. The software can
take, on average, the time it takes to transmit or receive a buffer to update each descriptor,
and software can increase allowable latency even more by updating several descriptors at
the same time.

8.5.7.2 SmartDMA Channel Request Source and Synchronization

The SmartDMA channels support only specific, predetermined request sources. These
sources in turn determine the synchronization type for each channel. Synchronization type
for the SmartDMA channels is not programmable. The synchronization types are shown in
Table 8-10, Table 8-11, and Table 8-12.

The memory buffer addresses are taken from the buffer descriptor ring, as explained in
“SmartDMA Channel Memory Overview” on page 8-28.

In the Am186CC microcontroller, SmartDMA Channel 2 and SmartDMA Channel 3 provide
the DSEL bit in the SDxCON control register for selecting between the HDLC and USB
request source. The address of the peripheral does not need to be programmed into the
SmartDMA channel because these devices have an internal interface to the associated
SmartDMA channel.

In the Am186CU USB microcontroller, the DSEL bit must be programmed correctly for USB
support.

The SmartDMA channels support only byte transfers. The data is written or read from
sequential byte addresses in the memory buffers.

Table 8-10 Am186CC SmartDMA Channel Request Source and Synchronization

SmartDMA
Channel

Direction Source Destination Synchronization

0
Transmit Memory buffer HDLC A transmit FIFO Destination

Receive HDLC A receive FIFO Memory buffer Source

1
Transmit Memory buffer HDLC B transmit FIFO Destination

Receive HDLC B receive FIFO Memory buffer Source

2
Transmit Memory buffer

HDLC C transmit FIFO or
USB endpoint B transmit
FIFO

Destination

Receive
HDLC C receive FIFO or
USB endpoint A receive FIFO

Memory buffer Source

3
Transmit Memory buffer

HDLC D transmit FIFO or
USB endpoint D transmit
FIFO

Destination

Receive
HDLC D receive FIFO or
USB endpoint C receive FIFO

Memory buffer Source

CC

CU

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 8-27

DMA Controller
8.5.7.3 SmartDMA Channel Memory Overview

Figure 8-6 on page 8-29 and Figure 8-7 on page 8-30 illustrate how SmartDMA channels
use memory. Each SmartDMA channel (both transmit and receive) has two registers that
contain the base descriptor ring address and the number of entries in the descriptor ring.
(A descriptor ring is merely a block of memory that the CPU and software use to control
and describe data buffers.)

There are two descriptor rings for each SmartDMA channel: one for transmit and one for
receive. The SDxTRCAL and SDxRRCAL registers contain the three bits that encode the
number of entries in the ring, and 12 bits (bits 15–4) to determine the 12 low address bits
of the descriptor ring address, which is the start location in memory of the buffer descriptor
ring. The SDxTRAH and SDxRRAH registers contain the four high bits (19–16) of the
addresses. Because the base address of the ring must be paragraph aligned (aligned to a
16-byte physical memory boundary), address bits 3–0 are always zeros. The address is
specified as a 20-bit linear address, not as a segment:offset pair. For example, for the
segment C000h and offset 1000h, the linear address would be: (C000h x 16) + 1000h =
C1000h; therefore, the low register = 1000h and the high register = 0Ch.

The size of the transmit and receive descriptor rings (the ring count) is independently
programmable to 1, 2, 4, 8, 16, 32, 64, or 128 descriptors. Even when the ring size is set
to 1, that entry is still interpreted as a descriptor, not as the memory buffer itself.

Each entry in the descriptor ring is composed of a 20-bit linear address for a buffer, an
owner semaphore bit, a frame-start indicator bit, a frame-end indicator bit, a terminal count
interrupt bit, and a 15-bit buffer byte count. Other fields are also present but are dependent
on whether the descriptor is in a transmit or receive descriptor ring.

The address in each descriptor ring entry contains the address of the data buffer pointed
to by that entry. Note that the HDLC and USB peripheral controllers transmit data packets,
which contain a block of data between a start and end indicator. A packet (e.g., all the HDLC
data between two HDLC flag bytes) can be broken up into multiple buffers, but a buffer
cannot contain data for different packets.

Table 8-11 Am186CH SmartDMA Channel Request Source and Synchronization

SmartDMA
Channel

Direction Source Destination Synchronization

0
Transmit Memory buffer HDLC A transmit FIFO Destination

Receive HDLC A receive FIFO Memory buffer Source

1
Transmit Memory buffer HDLC B transmit FIFO Destination

Receive HDLC B receive FIFO Memory buffer Source

Table 8-12 Am186CU SmartDMA Channel Request Source and Synchronization

SmartDMA
Channel

Direction Source Destination Synchronization

2
Transmit Memory buffer

USB endpoint B transmit
FIFO

Destination

Receive USB endpoint A receive FIFO Memory buffer Source

3
Transmit Memory buffer

USB endpoint D transmit
FIFO

Destination

Receive
USB endpoint C receive
FIFO

Memory buffer Source

CH

CU
8-28 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
The owner semaphore (OWN) bit is a single-bit field in each buffer descriptor. This bit is
set by software when the buffer is valid—either it contains valid data for transmission or it
is available to be overwritten by the receiver. The SmartDMA controller never sets the OWN
bit.

Software must never clear the OWN bit while the SmartDMA controller is active—the
software should first stop the DMA operation by resetting the TXST or RXST bit in the
SDxCON register. (If the SmartDMA controller is already working on that buffer, clearing
the OWN bit has no effect; if the SmartDMA controller was going to get the buffer, it would
be in poll mode and wait until the buffer is available.) The SmartDMA controller clears the
OWN bit when it releases control of the buffer.

Some systems may need to have DMA transfer continue even if software has not kept up
with the DMA. This can be accomplished by setting the TXS0 bit in SDxCON for the transmit
DMA channel or the RXS0 bit in SDxCON for the receive DMA channel. Setting these bits
inhibits the associated SmartDMA channel from clearing the OWN bit after it is through
processing a buffer.

Note: Take care when setting these bits, because you may lose received data or transmit
stale data.

Figure 8-6 SmartDMA Channel Descriptor Ring Example

1

23

4

4-Entry Descriptor Ring

Memory

Own=0

Own=1Own=1

Own=0

Software is processing here

DMA is processing here

Buffer 1 (packet x)

Buffer 2 (packet x)

Buffer 3 (packet x)

Buffer 4 (packet y)
Am186™CC/CH/CU Microcontrollers User’s Manual 8-29

DMA Controller
Figure 8-7 SmartDMA Channel Memory Management

Figure 8-6 shows a descriptor ring with four entries. When OWN = 1, the SmartDMA
channel owns the descriptor entry and can take data out or put data in the buffer. When
OWN = 0, software owns the descriptor entry and the SmartDMA channel cannot access
the buffer. This means in a transmit buffer, data is valid when OWN = 1; and in a receive
buffer, data is valid when OWN = 0 (subject to any status error bit settings).

Descriptor ring entries are always accessed in order. In a transmit, the hardware always
follows the software; in a receive, software follows the hardware. If a SmartDMA channel
reaches a buffer whose OWN bit is not 1, the SmartDMA enters poll mode and waits for
software to set the OWN bit. It does not advance past a buffer whose OWN bit is not set.

Keeping this in mind, the example in Figure 8-6 indicates the following for a transmit or a
receive.

8.5.7.3.1 Transmit Descriptor Ring
If Figure 8-6 is a transmit descriptor ring, then software wrote the complete packet x (which
spans buffers 1, 2, and 3 pointed to by descriptors 1, 2, and 3). After writing the complete
packet, software set the OWN bit in each of the three descriptors. The OWN bits should be
set in order, from the last descriptor in the packet to the first (3, then 2, then 1), to guarantee
correct transmission of the packet. The channel has already transmitted the data from buffer
1 and is currently processing buffer 2. While packet x is being transmitted, software is writing
data to buffer 4 for transmission of the next packet, packet y.

SmartDMA Channel Transmit Ring Address
Registers (SDxTRCAL and SDxTRAH)

Transmit Descriptor Ring

Transmit Buffer 1 Address

Transmit Descriptor Ring Address

Number of entries (N) in
transmit buffer descriptor ring

SmartDMA Channel Transmit Ring Count
Registers (SDxTRCAL)

Transmit Buffer 1 Status/Config
Transmit Buffer 1 Byte Count
Transmit Buffer 1(Unused)
Transmit Buffer 2 Address
Transmit Buffer 2 Status/Config
Transmit Buffer 2 Byte Count
Transmit Buffer 2(Unused)

Transmit Buffer N Address
Transmit Buffer N Status/Config
Transmit Buffer N Byte Count
Transmit Buffer N (Unused)

.

.

.

Transmit
Data
Buffer

1

Transmit
Data
Buffer

2

Transmit
Data
Buffer

N

Transmit Data Buffer Queue

SmartDMA Channel Receive Ring Address
Registers (SDxRRCAL and SDxRRAH)

Receive Descriptor Ring
Receive Buffer 1 Address

Receive Descriptor Ring Address

Number of entries (N) in
receive buffer descriptor ring

SmartDMA Channel Receive Ring Count
Registers (SDxRRCAL)

Receive Buffer 1 Status/Config
Receive Buffer 1 Byte Count
Receive Buffer 1 Message Count
Receive Buffer 2 Address
Receive Buffer 2 Status/Config
Receive Buffer 2 Byte Count
Receive Buffer 2 Message Count

Receive Buffer N Address
Receive Buffer N Status/Config
Receive Buffer N Byte Count
Receive Buffer N Message Count

.

.

.

Receive
Data
Buffer

1

Receive
Data
Buffer

2

Receive
Data
Buffer

N

Receive Data Buffer Queue

T
R

A
N

S
M

IT
T

E
R

R
E

C
E

IV
E

R

8-30 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
8.5.7.3.2 Receive Descriptor Ring
If Figure 8-6 is a receive descriptor ring, then the OWN bit in the current buffer descriptor
was 1 when the receive channel began to receive packet x. The packet was not completely
received before reaching the terminal count for buffer 1, so the channel cleared the owner
semaphore for descriptor 1, releasing it for processing by software, and advanced to 2 for
continued reception of the packet. Descriptor 3 has the OWN bit set, indicating that it is
available for use by the receiver either for a continuation of packet x or for the next packet.
Software is currently processing the data in buffer 4 and will set the OWN bit in the descriptor
when it has completed.

8.5.7.4 SmartDMA Channel Usage

Note: Before using the SmartDMA channels, ensure multiplexed pins are configured to
reflect the use of DMA and not other functionality (see Table 8-1 on page 8-4).

To use any of the eight SmartDMA channels (four pairs), the following must be programmed.
Note that this must be done for both the transmitter and the receiver (because SmartDMA
channels must be used in pairs) as well as for each channel pair used. The transmit and
receive channels do not have to be enabled at the same time, but the SmartDMA channel
should be initialized before the request source device is enabled. This allows the controller
to fetch data about the initial receive and transmit buffers before receiving any DRQs. In
addition, because the SmartDMA channel works off of requests from the device, it is always
safe to enable the DMA before the device. Enabling the device before the DMA may result
in data loss or an initial error condition being reported.

8.5.7.4.1 Enabling the Transmit Channel
To enable a SmartDMA transmit channel, software must perform the following tasks:

1. Create the transmit buffer descriptor ring.

2. Program the interrupt channel and configure the SmartDMA channel for interrupts.

3. Add data buffers to the ring.

4. Enable the transmit channel.

Create the Transmit Buffer Descriptor Ring

1. Disable the transmit channel by clearing the TXST bit in the SDxCON register to 0.

2. Allocate the memory for the transmit buffer descriptor ring (see “SmartDMA Channel
Descriptor Format” on page 8-38 for the descriptor ring data structure).

3. Clear the OWN bit for each descriptor to 0 (owned by software).

4. Program the address and size of the transmit buffer descriptor ring into the SmartDMA
channel registers.

a. Program the TRA bits in the SDxTRCAL register to the 12 low-address bits
(bits 15–4) of the descriptor ring address, which is the start location in memory of the
buffer descriptor ring.

b. Program the TRA bits in the SDxTRAH register to the four high-address bits (19–16)
of the descriptor ring address. Because the base address of the ring must be paragraph
aligned (aligned to a 16-byte physical memory boundary), address bits 3–0 are always
zeroes.

c. Program the TRC bits in the SDxTRCAL register to the number of entries in the transmit
descriptor ring (the ring count). Valid values are 1, 2, 4, 8, 16, 32, 64, or 128 descriptors.
For more information about 3-bit encoding, see the Am186™CC/CH/CU
Am186™CC/CH/CU Microcontrollers User’s Manual 8-31

DMA Controller
Microcontrollers Register Set Manual, order #21916. Even when the ring size is set
to 1, that entry is still interpreted as a descriptor, not as the memory buffer itself.

5. Point to the first buffer descriptor by clearing the SDxCBD register to 0.

Program the Interrupt Conditions

The interrupt conditions are typically configured only once.

1. Write the interrupt handler address to the vector table. See Chapter 7, “Interrupts.”

2. To generate an interrupt after transmitting the last byte of the packet, set the TEPI bit in
the SDxCON register to 1.

3. To generate an interrupt after detecting an unavailable buffer during transmission, set
the TBUI bit in the SDxCON register to 1.

4. To generate an interrupt after transmitting the last byte of the current buffer, set the TTCI
bit in the SDxCON register to 1. (Note that the TTCE bit in Word 2 of the transmit buffer
descriptor ring must also be set to 1.)

5. Program the priority of this channel relative to other channels during simultaneous
transfers using the P bit in the SDxCON register (this is typically configured only once).
A 00b is a low priority; a 01b, medium; and a 10b, high.

Software clears the status bits in SDxSTAT after receiving an interrupt. Software can
use the SDxCBD register to monitor the transmit and receive buffers. Software can also
use the SDxCTAD register to determine the address in memory where the DMA transmit
process was interrupted.

Add Data Buffers to the Transmit Descriptor Ring

To place a data buffer in an entry in the transmit buffer descriptor ring:

1. Find the first buffer descriptor for which the OWN bit is clear (bit = 0). This must be done
in a circular manner relative to the current buffer descriptor index. In systems where the
TXS0 or RXS0 bits are set, thereby inhibiting clearing of the OWN bits, software must
determine when it is safe to modify a descriptor ring entry.

2. Program the data buffer address.

a. Program the LADR bits in Word 0 to the low-order 16 address bits of the data buffer
pointed to by the descriptor.

b. Program the HADR bits in Word 1 to the high-order eight address bits of the data
buffer pointed to by the descriptor. The highest four bits of the address must be set to
0000b. These address bits do not exist on the Am186CC/CH/CU microcontrollers’
20-bit address but are provided for LANCE compatibility.

3. Program the data buffer size by setting the BCNT bits in Word 2 to the length in bytes
of the data buffer pointed to by the descriptor.

4. Initialize the transmit buffer descriptor ring entries.

a. Set to 1 the TTCE bit in Word 2 to enable interrupt on terminal count; or clear to 0 to
disable terminal count interrupt. (Note that the TTCI bit in the SDxCON register must
also be set to 1.)

b. Set to 1 the STP bit in Word 1 to indicate that this is the first buffer of the packet, or
clear to 0 if the buffer contains a continuation of a packet from another buffer.

c. Set to 1 the ENP bit in Word 1 to indicate that this is the last buffer of the packet, or
clear to 0 if the packet does not fit in one buffer and is continued in another.
8-32 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
d. Set to 1 the OWN bit in Word 1 to indicate the descriptor entry is owned by the
SmartDMA channel.

e. To force a poll of the OWN bit of the current buffer descriptor, set to 1 the POLL bit in
the SDxCON register. This has no effect if the SmartDMA is not currently waiting for
a buffer to become available.

5. In the Am186CC microcontroller, when using SmartDMA channel 2 or 3, select one of
two alternate sources by clearing the DSEL bit in the SDxCON register to 0 to select
HDLC or to 1 to select USB.

In the Am186CH HDLC microcontroller, the DSEL bit in the SDxCON register must be
cleared to 0.

In the Am186CU USB microcontroller, the DSEL bit in the SDxCON register must be
set to 1.

Enable the Transmit Channel
Enable the transmit channel by setting the TXST bit in the SDxCON register to 1. At this
point, the SmartDMA transmit channel does not transmit any data because there are no
valid buffers in the descriptor ring. As transmit data becomes available, software should
modify entries in the ring to point to the data to be transmitted. Buffers are added to the
ring at the first ring location following the Current Transmit Buffer Descriptor value that has
an OWN bit set to 0.

8.5.7.4.2 Enabling the Receive Channel
To enable a SmartDMA receive channel, software must perform the following tasks:

1. Create the receive buffer descriptor ring.

2. Program the interrupt channel and configure the SmartDMA channel for interrupts.

3. Add data buffers to the ring.

4. Enable the receive channel.

5. Replace used data buffers.

Create the Receive Buffer Descriptor Ring
1. Disable the receive channel by clearing the RXST bit in the SDxCON register to 0.

2. Allocate the memory for the receive buffer descriptor ring (see “SmartDMA Channel
Descriptor Format” on page 8-38 for the descriptor ring data structure).

3. Set the OWN bit for each descriptor to 1 (owned by hardware).

4. Program the address and size of the receive buffer descriptor ring into the SmartDMA
channel registers.

a. Program the RRA bits in the SDxRRCAL register to the 12 low address bits
(bits 15–4) of the descriptor ring address, which is the start location in memory of the
buffer descriptor ring.

b. Program the RRA bits in the SDxRRAH register to the four high address bits (19–16)
of the descriptor ring address. Because the base address of the ring must be paragraph
aligned (aligned to a 16-byte physical memory boundary), address bits 3–0 are always
zeroes.

c. Program the RRC bits in the SDxRRCAL register to the number of entries in the receive
descriptor ring (the ring count). Valid values are 1, 2, 4, 8, 16, 32, 64, or 128 descriptors.
For information about 3-bit encoding, see the Am186™CC/CH/CU Microcontrollers

CC

CH

CU
Am186™CC/CH/CU Microcontrollers User’s Manual 8-33

DMA Controller
Register Set Manual, order #21916. Even when the ring size is set to 1, that entry is
still interpreted as a descriptor, not as the memory buffer itself.

5. Point to the first buffer descriptor by clearing the SDxCBD register to 0.

Program the Interrupt Conditions

The interrupt conditions are typically configured only once.

1. To generate an interrupt after receiving the last byte of the packet, set the REPI bit in
the SDxCON register to 1.

2. To generate an interrupt after detecting an unavailable buffer during reception, set the
RBUI bit in the SDxCON register to 1.

3. To generate an interrupt after receiving the last byte of the current buffer, set the RTCI
bit in the SDxCON register to 1. (Note that the RTCE bit in Word 2 of the transmit buffer
descriptor ring must also be set to 1.)

Add Data Buffers to the Receive Descriptor Ring

To place a data buffer in an entry in the receive buffer descriptor ring:

1. Find the first buffer descriptor for which the OWN bit is clear (bit = 0). This must be done
in a circular manner relative to the current buffer descriptor index. In systems where the
TXS0 or RXS0 bits are set, thereby inhibiting clearing of the OWN bits, software must
determine when it is safe to modify a descriptor ring entry.

2. Program the data buffer address.

a. Program the LADR bits in Word 0 to the low-order 16 address bits of the data buffer
pointed to by the descriptor.

b. Program the HADR bits in Word 1 to the high-order eight address bits of the data
buffer pointed to by the descriptor. The highest four bits of the address must be set to
0000b. These address bits do not exist on the Am186CC/CH/CU microcontrollers’
20-bit address but are provided for LANCE compatibility.

3. Program the data buffer size by setting the BCNT bits in Word 2 to the length in bytes
of the data buffer pointed to by the descriptor.

4. Initialize the receive buffer descriptor ring entries.

a. To enable interrupt on terminal count, set to 1 the RTCE bit in Word 2, or clear it to 0
to disable terminal count interrupt. (Note that the RTCI bit in the SDxCON register
must also be set to 1.)

b. Program the priority of this channel relative to other channels during simultaneous
transfers using the P bit in the SDxCON register. A 00b is a low priority; a 01b, medium;
and a 10b, high.

c. Set to 1 the OWN bit in Word 1 to indicate the descriptor entry is owned by the
SmartDMA channel.

d. To force a poll of the OWN bit of the current buffer descriptor, set to 1 the POLL bit in
the SDxCON register.

5. In the Am186CC microcontroller, when using SmartDMA channel 2 or 3, select one of
two alternate sources by clearing the DSEL bit in the SDxCON register to 0 to select
HDLC or to 1 to select USB.

In the Am186CH HDLC microcontroller, the DSEL bit in the SDxCON register must be
cleared to 0.

CC

CH
8-34 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
In the Am186CU USB microcontroller, the DSEL bit in the SDxCON register must be
set to 1.

Software clears the status bits in SDxSTAT after receiving an interrupt. Software can use
the SDxCBD register to monitor the transmit and receive buffers. Software can also use
the SDxCRAD register to determine the address in memory where the DMA receive process
was interrupted.

Enable the Receive Channel

Enable the receive channel by setting the RXST bit in the SDxCON register to 1.

At this point, the SmartDMA receive channel is enabled. As received data is processed,
software should modify entries in the ring to point to empty data buffers. Buffers are added
to the ring at the first ring location following the Current Buffer Descriptor value that has an
OWN bit cleared to 0.

Replace Used Data Buffers

1. Program the new data buffer address.

a. Program the LADR bits in Word 0 to the low-order 16 address bits of the data buffer
pointed to by the descriptor.

b. Program the HADR bits in Word 1 to the high-order eight address bits of the data
buffer pointed to by the descriptor. The highest four bits of the address must be set to
0000b. These address bits do not exist on the Am186CC/CH/CU microcontrollers’
20-bit address but are provided for LANCE compatibility.

2. Set to 1 the OWN bit in Word 1 to indicate the descriptor entry is owned by the SmartDMA
channel.

3. To force a poll of the OWN bit of the current buffer descriptor, set to 1 the POLL bit in
the SDxCON register. This bit has no effect if the SmartDMA channel is not currently
waiting for a buffer to become available.

8.5.7.4.3 Enable the Peripheral Device
Details for configuring and enabling the HDLC peripheral device being used can be found
in Chapter 15, “High-Level Data Link Control (HDLC).”

Details for configuring and enabling the USB peripheral device being used can be found in
Chapter 18, “Universal Serial Bus (USB).”

The DMA should always be enabled before the requesting device is enabled. The DMA
should always be disabled after the requesting device is disabled.

8.5.7.5 SmartDMA Channel Cycle

This section and the following sections describe the procedure the SmartDMA controller
follows for both a transmit and a receive.

8.5.7.5.1 SmartDMA Transmit Channel Cycle
The flow diagram for the SmartDMA transmit channel is shown graphically in Figure 8-8 on
page 8-37 and discussed below.

1. When the transmit channel is first enabled, the SmartDMA controller enters initialization
mode.

2. The transmit channel reads the current descriptor and checks to see if the owner
semaphore (OWN) bit is set to 1.

CU

CC CH

CC CU
Am186™CC/CH/CU Microcontrollers User’s Manual 8-35

DMA Controller
If the OWN bit is 0, the software owns the current descriptor. In this case, the SmartDMA
transmit channel periodically polls the descriptor until the OWN bit becomes 1. The
transmit channel does not advance past a descriptor for which the OWN bit is 0. For
information about forcing a poll, see “SmartDMA Channel Descriptor Polling” on
page 8-41.

3. If the OWN bit is 1 in the current descriptor, the transmit channel checks to see if the
start-of-packet bit (STP) bit is set to 1.

If the STP bit is 0, the transmit channel enters Search-For-Start-of-Packet mode. This
mode simply clears the OWN bit in the current descriptor and advances to the next
descriptor ring entry. The transmit channel then returns to Initialization mode, repeating
these steps until it finds an entry with both the OWN and STP bits set to 1.

4. If the OWN and STP bits are both set to 1, the transmit channel reads the length of the
buffer from the descriptor ring (BCNT bits in Word 2) and programs that value into an
internal terminal count register. The address of the buffer associated with this descriptor
is read from the descriptor (LADR and HADR bits) into the SDxCTAD source address
register. The transmit channel then enters normal-transmit mode.

5. In transmit mode, the channel transmits one byte of data from the memory buffer to the
destination device for every DRQ. After each transfer, the source address in SDxCTAD
is incremented and the internal transfer count is decremented.

6. When the internal terminal count is reached, the transmit channel checks the end-of-
packet (ENP) bit.

a. If the ENP bit is 0 in the current descriptor, the transmit channel attempts to acquire
the next buffer. The transmit channel releases the current buffer by clearing the OWN
bit (unless the TXS0 bit is set). It then advances to the next descriptor in the ring. If
the OWN bit is 0 (the software owns the descriptor), the transmit channel periodically
polls the descriptor until OWN becomes 1. If an error condition occurs (e.g., a FIFO
underflow) before the transmit channel acquires the next descriptor, the error causes
the requesting transmit source to shut down and the SmartDMA channel to be
reprogrammed. If the transmit channel successfully acquires the next descriptor, the
new buffer address and terminal count are loaded into the appropriate internal
registers.

b. When the terminal count is reached for a buffer for which the ENP bit is set, the transmit
channel enters Transmit-End mode. In this mode, the transmit channel signals the
end-of-packet to the device by asserting an internal signal during the transfer of the
last data byte. The SmartDMA transmit channel waits for the packet to be sent
successfully, then advances the index to the next buffer.

If a complete packet is transmitted, the channel releases the current buffer by clearing
the OWN bit before attempting to advance to the next buffer. If a packet is incomplete
when the channel has reached terminal count on the buffer, it releases control of the
buffer and advances to the next buffer in the ring. If the TXS0 bit is set, the channel
moves to the next buffer without clearing the OWN bit.

Whenever a packet needs to be retransmitted, the transmit channel must be disabled
and the Current Buffer Descriptor (SDxCBD) register must be programmed with the
index of the buffer descriptor containing the STP bit for that packet. The transmit
channel does not report any status in the buffer descriptor other than clearing the
OWN bit.

Note: Before disabling the transmit channel, you should stop the HDLC channel.
8-36 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
Figure 8-8 SmartDMA Transmit Channel Flow Diagram

8.5.7.5.2 SmartDMA Receive Channel Cycle
The flow diagram for the SmartDMA receive channel is shown graphically in Figure 8-9 on
page 8-38 and discussed below.

1. When the receive channel is first enabled, the SmartDMA controller enters Initialization
mode.

2. The receive channel fetches the data for the first descriptor in the receive descriptor ring
and checks to see if the owner semaphore (OWN) bit is set to 1.

If the OWN bit is 0, the software owns the current descriptor. In this case, the SmartDMA
receive channel periodically polls the descriptor until the OWN bit becomes 1. The
receive channel does not advance past a descriptor for which the OWN bit is 0. For
information about forcing a poll, see “SmartDMA Channel Descriptor Polling” on
page 8-41.

3. If the OWN bit is 1 in the current descriptor, the SmartDMA controller loads the address
of the buffer into an internal receive address register. The length of the buffer is also
read from the descriptor and programmed into an internal terminal count register. The
receive channel then enters Normal-Receive mode.

4. In Receive mode, the terminal count is decremented and the destination address is
incremented for each byte transferred. The receiver remains in Normal-Receive mode
until an end-of-packet is detected or the terminal count is reached.

Initialize channel

Transmit data

Get next bufferSignal end of

Search for
start-of-packet

OWN=1 OWN=0

OWN=1
STP=1

STP=0

ENP=0ENP=1

transmit

Search for
available buffer
OWN=1

OWN=1

(TC=0) (TC=0)

(TC>0)

Transmit byte
and decrement

count

Notes:
The TC bit is internal and not seen by users.

Owner semaphore bit set
and not start-of-packet

Owner semaphore bit not set

Owner semaphore bit set

Owner semaphore
bit set and
start-of-packet

Clear owner
semaphore bit
and advance to
next descriptor

Terminal count and
not end-of-packet

Owner
semaphore
bit set

Terminal
count and

end-of-packet

Wait for packet
to be sent
Am186™CC/CH/CU Microcontrollers User’s Manual 8-37

DMA Controller
5. If the terminal count reaches zero before the end-of-packet signal from the device is
asserted, the receiver closes the current buffer and enters Get-Next-Buffer mode. In this
mode, the receiver reads the next descriptor in the descriptor ring and determines if the
OWN bit is set. If the OWN bit is 0, the receiver remains in Get-Next-Buffer mode,
periodically polling the descriptor, until the OWN bit becomes set. When the OWN bit is
detected as set, the receiver loads the buffer address and terminal count from the new
descriptor and returns to normal-receive mode.

6. When the receiver detects the end-of-packet signal from the device, the receiver moves
to Receive-End mode. In Receive-End mode, the receiver reads the status information
from the device and writes it to the descriptor. The end-of-packet bit is set in the descriptor
and the OWN bit is cleared. If RXS0 is set, the EOP bit is set but the OWN bit not cleared.

7. The receiver advances the descriptor ring pointer and enters Initialize mode.

8.5.7.6 SmartDMA Channel Descriptor Format

Each entry in the descriptor ring consists of four 16-bit words. Table 8-13 shows the format
of the transmit descriptor ring; Table 8-14, the receive descriptor ring.

Figure 8-9 SmartDMA Receive Channel Flow Diagram

Initialize channel

Receive data

Get next buffer

Owner
semaphore

set

Signal end of

OWN=0

OWN=1

ENP=0ENP=1

receive

Search for
available buffer
OWN=1

OWN=1

Receive byte
and decrement

count

(TC=0) (TC=0)

(TC>0)

Notes:
The TC bit is internal and not seen by users.

Owner semaphore bit not set

Owner
semaphore
bit setOwner

semaphore
bit set

Terminal
count and

end-of-packet

Terminal
count and not
end-of-packet

Write status, clear
owner semaphore bit,
and advance to next
descriptor.
8-38 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
Table 8-13 SmartDMA Transmit Channel Descriptor Format

Bit Number Bit Name Description

Transmit Buffer Address (Word 0)

15–0 LADR1

Notes:
1. The address programmed in the LADR and HADR fields is a linear address, not a segment:offset address. For
example, if a transmit data buffer starts at segment address C000h and offset 1000h, it would be programmed as
follows:

Linear address= (segment address x 16) + offset address
= (C000h x 16) + 1000h = C1000h
LADR = 1000h
HADR = 0Ch

The LADR (Low Order) field contains the 16 low-order address bits of the data buffer
pointed to by this descriptor. The LADR field is written by the software and not changed
by the SmartDMA channel.

Transmit Buffer Status/Config (Word 1)

15 OWN

0 = Descriptor entry is owned by the software.
1 = Descriptor entry is owned by the SmartDMA channel.
The software sets the OWN bit after filling the buffer pointed to by this descriptor. The
SmartDMA channel clears the OWN bit (unless the TXS0 bit is set) after transmitting
the contents of the buffer. Neither the software nor the SmartDMA channel can alter
a descriptor entry after it has relinquished ownership.

14–10 Reserved

9 STP

The STP (Start of Packet) bit indicates that this is the first buffer to be used by the
SmartDMA channel for this packet. It is used to chain data buffers. The STP bit is set
by the software and is not changed by the SmartDMA channel. The STP bit must be
set in the first buffer of the packet, or the SmartDMA channel skips over this descriptor
and polls the next descriptor(s) until both the OWN and STP bits are set.

8 ENP

The ENP (End of Packet) bit indicates that this is the last buffer used by the SmartDMA
channel for this packet. It is used to chain data buffers. If both the STP and ENP bits
are set, the packet fits into one buffer and there is no data chaining. The ENP bit is
set by the software and is not changed by the SmartDMA channel.

7–0 HADR1

The HADR (High Order) field contains the eight high-order address bits of the data
buffer pointed to by this descriptor. The highest four bits of the address must be set
to 0000b. These address bits do not exist in the microcontroller’s 20-bit address but
are provided for LANCE compatibility. The HADR field is written by the software and
not changed by the SmartDMA channel.

Transmit Buffer Byte Count (Word 2)

15 TTCE
0 = Disable TTC interrupt.
1 = Enable TTC interrupt.
This bit is used to enable the Transmit Terminal Count interrupt.

14–0 BCNT

The BCNT (Buffer Byte Count) field contains the length in bytes of the buffer pointed
to by this descriptor. This number is expressed in 2’s complement format and indicates
the number of bytes from this buffer that are transmitted by the SmartDMA channel.
This field is written by the software and not changed by the SmartDMA channel. For
example, if you want to transfer 64 bytes, take the number 64 (40h), complement it
(7FBFh), and increment it by 1 (7FC0h). Place this number (7FC0h) in the BCNT field.

Transmit Buffer Word 3: This word is used for receive channels only; the transmit channels do not write any status
to this word.
Am186™CC/CH/CU Microcontrollers User’s Manual 8-39

DMA Controller
Table 8-14 SmartDMA Receive Channel Descriptor Format

Bit Number Bit Name Description

Receive Buffer Address (Word 0)

15–0 LADR1
The LADR (Low Order) field contains the 16 low order address bits of the data buffer
pointed to by this descriptor. The LADR field is written by the software and not
changed by the SmartDMA channel.

Receive Buffer Status/Config (Word 1)

15 OWN

0 = Descriptor entry is owned by the software.
1 = Descriptor entry is owned by the SmartDMA channel.
The SmartDMA channel clears the OWN bit (unless the RXS0 bit is set) after filling
the buffer pointed to by this descriptor. The software sets the OWN bit after emptying
the buffer. Neither the software nor the SmartDMA channel can alter a descriptor
entry after it has relinquished ownership.

14 ERR The ERR (Error Summary) bit is the logical OR of FRAM, OFLO, CRC and HBUF.

13 FRAM

The FRAM (Framing Error) bit indicates that the received frame did not contain a
multiple of eight bits. The CRC bit is not checked when the FRAM bit is set. The
FRAM bit is valid only when the ENP bit is set and the OFLO bit is not. This bit is not
used when the USB is the receive request. This bit is cleared by software.

12 OFLO
The OFLO (Overflow Error) bit indicates that the internal receive FIFO has detected
an overflow condition. The OFLO bit is valid only when the ENP bit is not set. This
bit is cleared by software.

11 CRC

The CRC (Cyclic Redundancy Check Error) bit indicates:
• When HDLC is the requesting source, the current frame has a CRC error.
• When USB is the requesting source, one of the following errors occurred:

• If the USB endpoint type is BULK, the possible errors are: CRC, bit stuff, more
than max packet value sent by software, data PID error, or data toggle error.

• If USB endpoint type is ISO, the possible errors are: CRC, bit stuff, more than
max packet value sent by software, or data PID error.

The CRC bit is valid only when the ENP bit is set and the OFLO bit is not. This bit is
cleared by software.

10 HBUF

The HBUF (Buffer Error) bit indicates that the current frame has one of the following
errors:
• Frame ended in an abort instead of a flag.
• Frame length was longer than the maximum length allowed. In this case, the MCNT

field is equal to the maximum length allowed.
• Frame length was shorter than the minimum allowed. Part of the data of the frame

was already discarded in the receiver. The MCNT field indicates the number of
bytes that were output by the FIFO, not the number of bytes in the frame.

This bit is not used when the USB is the receive request.
This bit is cleared by the software.

9 STP
The STP (Start of Packet) bit indicates that this is the first buffer used by the
SmartDMA channel for this packet. It is used to chain data buffers. The STP bit is set
by the SmartDMA channel.

8 ENP

The ENP (End of Packet) bit indicates that this is the last buffer used by the SmartDMA
channel for this packet. It is used to chain data buffers. If both the STP bit and the
ENP bit are set, the packet fits into one buffer and there is no data chaining. The ENP
bit is set by the SmartDMA channel.
8-40 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
8.5.7.7 SmartDMA Channel Descriptor Polling

When any of the SmartDMA channels on the Am186CC/CH/CU microcontrollers require a
new buffer and the owner semaphore (OWN) bit for the next descriptor in the descriptor
ring is not set, the channel does a periodic poll (read) of the descriptor to determine if
software has set the OWN bit in the intervening time. To assure that this polling has a
minimal effect on interrupt latency and system performance, the DMA uses a single counter
to trigger the poll. Each channel is given a unique timer value that is used to initiate the
poll; these values are evenly dispersed throughout the timer period. This behavior
guarantees that only a single SmartDMA channel attempts to poll its descriptor ring at any
given time. The automatic poll timer completes one cycle every 64K processor clocks. This
results in a potential poll cycle every 8K clocks.

The SmartDMA Channel Control (SDxCON) register provides bits that allow software to
request an immediate poll of one or both of the current descriptors (transmit channel and/
or receive channel). This poll does not affect the polling status of any other channel.

A poll is never performed if the SmartDMA channel does not currently need the next buffer.
This is true even if software sets the bit requesting an immediate poll.

7–0 HADR1

The HADR (High Order) field contains the eight high-order address bits of the data
buffer pointed to by this descriptor. The highest four bits of the address must be set
to 0000b. These address bits do not exist in the microcontroller’s 20-bit address space
but are provided for LANCE compatibility. The HADR field is written by the software
and not changed by the SmartDMA channel.

Receive Buffer Byte Count (Word 2)

15 RTCE
0 = Disable RTC interrupt.
1 = Enable RTC interrupt.
This bit is used to enable the Receive Terminal Count interrupt.

14–0 BCNT

The BCNT (Buffer Byte Count) field contains the length in bytes of the buffer pointed
to by this descriptor. This number is expressed in 2’s complement format and indicates
the number of bytes allocated for this buffer. This field is written by the software and
not changed by the SmartDMA channel. For example, if you want to transfer 64 bytes,
take the number 64 (40h), complement it (7FBFh), and increment it by 1 (7FC0h).
Place this number (7FC0h) in the BCNT field.

Receive Buffer Message Count (Word 3)

15 Reserved Read/Write as zero.

14–0 MCNT
The MCNT (Message Byte Count) field contains the length in bytes of the frame. The
MCNT field is valid only when the ERR bit is 0 and the ENP bit is 1. This field is written
by the SmartDMA channel and cleared by software.

Notes:
1. The address programmed in the LADR and HADR fields is a linear address, not a segment:offset address. For
example, if a receive data buffer starts at segment address C000h and offset 1000h, it would be programmed as
follows:

Linear address= (segment address x 16) + offset address
= (C000h x 16) + 1000h = C1000h
LADR = 1000h
HADR = 0Ch

Table 8-14 SmartDMA Receive Channel Descriptor Format (Continued)

Bit Number Bit Name Description
Am186™CC/CH/CU Microcontrollers User’s Manual 8-41

DMA Controller
8.5.7.8 SmartDMA Channel Interrupts

SmartDMA channels can generate interrupts based on three conditions. The interrupt
remains pending until software clears the associated status bit(s).

The following list shows the different interrupt types, and gives some useful information
about the characteristics of the interrupt.

■ TEPI and REPI (Transmit/Receive End of Packet) interrupts are asserted when the last
byte of a packet is transmitted or received. If many of the packets are short or appear
to be short (e.g., due to an excessively noisy communications line), then the frequency
of the interrupts may be higher than desired.

■ TTCI and RTCI (Transmit/Receive Terminal Count) interrupts are asserted when the last
byte of a buffer is transmitted or received. The TTCE/RTCE bit in word 2 of the descriptor
entry must also be set to use this interrupt.

Because generation of this interrupt is controllable on a buffer-by-buffer basis, it can be
set up so that an interrupt occurs every n buffers, where n is completely under software
control. This can be a useful way to reduce frequency of interrupts while ensuring that
there are always descriptors available for the hardware. However, relying solely on this
interrupt for a receive descriptor chain could mean that up to the last n–1 buffers in the
ring go unprocessed.

If RTCI is the primary interrupt for a receive descriptor ring, a timer interrupt can also
be used to detect leftover buffers after the other side has stopped sending. This can be
a one-shot timer that is reset on every RTC interrupt, so that the timer expires shortly
after the next RTC interrupt is expected. This timer interrupt generally should not be
required on transmit descriptor rings, because any system that wants to be interrupted
after there are no more buffers in the ring to send out can rely on the TBUI interrupt (see
the description below).

■ TBUI and RBUI (Transmit/Receive Buffer Unavailable) interrupts are asserted when an
attempt to load the next descriptor in the ring finds that the OWN bit is 0.

As discussed above, TBUI can be used to determine if all buffers have been sent. You
should not rely on RBUI interrupts to cause software to make more buffers available to
the hardware, or on TBUI interrupts to cause software to make additional buffers within
a single packet available to the hardware. The interrupt latency associated with either
of these tasks could cause FIFO overflows or underruns. RBUI can be used as a type
of watchdog interrupt—if RBUI interrupts are occurring, it means that, for some reason,
the system is not giving the receiver buffers fast enough.

8.5.7.9 SmartDMA Channel Use Without CPU Intervention

In each SmartDMA channel, the user has the option of not clearing the OWN bit after DMA
has finished accessing a buffer (with the TXS0 and RXS0 bits in the SDxCON register).
This option provides the effect of a circular buffer from which data is accessed without the
intervention of software.

In a typical scenario, an HDLC receive channel and a different HDLC transmit channel, or
an HDLC receive channel and a USB IN endpoint, share a circular buffer. This shared buffer
is implemented in software by making the transmit DMA channel read from the same
memory area to which the receive DMA channel is writing. A software PLL attempts to keep
the write pointer slightly ahead of the read pointer so that stale data is never read by the
transmitter, and so that the receiver never overwrites data not yet transmitted. In case of
an error, both the transmit and receive channel can be disabled and reprogrammed to start
at any particular buffer descriptor in the ring.
8-42 Am186™CC/CH/CU Microcontrollers User’s Manual

DMA Controller
The following facilities aid in SmartDMA channel circular buffer management:

■ When receiving transparent HDLC data, no buffer status is transferred to the SmartDMA
channel. The received data is simply a continuous stream of samples, and the
SmartDMA controller keeps cycling through buffers without ever storing an EOP.

■ The TXSO and RXSO bits in the SDxCON registers can be set to keep the DMA controller
from returning buffer descriptors to the software. If the OWN bit is never updated, the
DMA controller can run through the descriptor ring multiple times without software
intervention.

■ The SDxCTAD and SDxCRAD registers can be read to determine the current buffer
position, to enable a software PLL to be able to control the rate of buffer filling/emptying.

■ If an error occurs, the SDxCBD registers can restart the DMA at any arbitrary point in
the buffer.

In the simplest instance, a circular buffer can be formed by using a ring with a single
descriptor. The descriptor contains the starting address and length of the circular buffer,
and the STP and OWN bits must be set so that the DMA controller uses the buffer.

If code is to allow for adjustment of the buffer pointer (e.g., in case a USB isochronous
transfer has an error or is missing), then the ring should have two descriptors in it. Each
descriptor points to a portion of the physical buffer, and the DMA can be started at any
arbitrary point by adjusting the descriptors’ starting addresses and lengths, and setting the
SDxCBD registers to point to the correct descriptor.

8.5.8 DMA and USB
The integrated USB peripheral controller is the only Am186CC and Am186CU
microcontroller peripheral capable of using either general-purpose DMA or a SmartDMA
channel. Each of the four USB data endpoints is connected to a single SmartDMA channel,
and can be connected to any of the general-purpose DMA channels. DMA is a powerful
tool when used with the USB peripheral controller. In addition to providing increased
throughput and responsiveness to USB requests, it allows the use of larger packets, and
it enables the USB peripheral controller’s automatic rate control feature for isochronous
transfers based on the PCM highway frame clock or an external frame clock source.

For more information about using DMA with the USB peripheral controller, see Chapter 18,
“Universal Serial Bus (USB).”

8.5.9 Software-Related Considerations
Software must stop DMA operation before writing to the GDxCON1 register, or the results
are unpredictable. Stopping the SmartDMA channel has no effect while a request is pending
on the channel. Before stopping the channel, make sure the requesting peripheral (HDLC
channel or USB endpoint) is stopped.

8.5.10 Comparison to Other Devices
■ The general-purpose DMA channels are the same as on other Am186 controllers.

■ SmartDMA channels are compatible with the Am79C90 C-LANCE DMA.

CC CU
Am186™CC/CH/CU Microcontrollers User’s Manual 8-43

DMA Controller
8.6 INITIALIZATION
On both an internal and external reset, the following occurs:

■ All the general-purpose DMA and SmartDMA channel registers are cleared to 0.

■ Any DMA transfer in progress is aborted.

■ Multiplexed signal DRQ0 defaults to its PIO functionality.
8-44 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
9 P
ROGRAMMABLE I/O SIGNALS
9.1 OVERVIEW
The Am186CC/CH/CU microcontrollers provide 48 user-programmable input/output
signals (PIOs).

Many of these signals share a pin with at least one alternate function. If an application does
not need the alternate function, the associated PIO can be programmed through the PIO
registers.

If a pin is enabled to function as a PIO, the alternate function is disabled and does not affect
the pin. Conversely, the value of any pin configured as a PIO does not affect the alternate
function of the pin. When configured as a PIO, an appropriate default value for the signal
is sent to the associated device rather than the value on the pin.

A PIO can be configured to operate as an input or output, with or without internal pullup or
pulldown resistors (pullup or pulldown depends on the pin configuration and is not user-
configurable), or as an open-drain output. Additionally, eight PIOs can be configured as
external interrupt sources. For information on this interrupt functionality, see Chapter 7,
“Interrupts.”

Associated bits in the PIO Mode, PIO Direction, PIO Data, PIO Set, and PIO Clear registers
control each of the 48 PIOs. Because these registers are 16 bits wide, each PIO function
requires three registers (see Table 9-2). Two additional registers are provided for ease of
use.

9.2 BLOCK DIAGRAM
Figure 9-1 shows the PIO operation.
Am186™CC/CH/CU Microcontrollers User’s Manual 9-1

Programmable I/O Signals
Figure 9-1 PIO Operation Block Diagram

9.3 SYSTEM DESIGN
Table 9-1 lists the PIO signals that are multiplexed with other microcontroller functions.
Pinstraps are sampled only at external reset and do not affect the pin’s other functions, so
they are not shown in this table. Other multiplexed signals, when enabled, either disable or
alter any other functions that use the same pin. The table also shows which register bit
programs the pin to be the PIO or alternate function.

.

Alternate
Function
Data Out

Data
Out

PIO
Direction
Register

Write
Dir

D Q

PIO
Mode

Register
Write
Mode

D Q

PIO
OutputWrite

Data

D Q

PIO
Input

D Q

S

R

Dir
Read Dir

PIO Data
Register

Write
Set

Write
Clear Data

In

Read Mode

Read Set
Read Clear

Read Data

PIO
Bus

VSS or VCC
1

100K

Alternate
Function
Data In

Pad

Notes:
1. Depends on pullup or pulldown.

2. When the PIO is enabled, an appropriate default value is driven on the Alternate Function Data In.

Mode

Default
Value2

1

0

9-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Programmable I/O Signals
Table 9-1 PIO Multiplexed Signals

Signal Multiplexed Signal(s) Default Signal Register[Bit]

PIO0 TMRIN1 PIO0: input with pullup PIOMODE0[0]

PIO1 TMROUT1 PIO1: input with pulldown PIOMODE0[1]

PIO2 PCS5 PIO2: input with pullup PIOMODE0[2]

PIO3 PCS4 PIO3: input with pullup PIOMODE0[3]

PIO4 MCS0 PIO4: input with pullup PIOMODE0[4]

PIO5 MCS3 / RAS1 PIO5: input with pullup PIOMODE0[5]

PIO6 INT8 / PWD PIO6: input with pullup PIOMODE0[6]

PIO7 INT7 PIO7: input with pullup PIOMODE0[7]

PIO8 ARDY ARDY: input with pullup PIOMODE0[8]

PIO9 DRQ0 PIO9: input with pulldown PIOMODE0[9]

PIO10 SDEN PIO10: input with pulldown PIOMODE0[10]

PIO11 SCLK PIO11: input with pullup PIOMODE0[11]

PIO12 SDATA PIO12: input with pullup PIOMODE0[12]

PIO13 PCS0 PCS0: input with pullup PIOMODE0[13]

PIO14 PCS1 PCS1: input with pullup PIOMODE0[14]

PIO15 WR WR: input with pullup PIOMODE0[15]

PIO16 RXD_HU PIO16: input with pullup PIOMODE1[0]

PIO17
DCE_CTS_A

PCM_TSC_A
PIO17: input with pullup PIOMODE1[1]

PIO18 DCE_RTR_A PIO18: input with pullup PIOMODE1[2]

PIO19 INT6 PIO19: input with pullup PIOMODE1[3]

PIO20
TXD_U/ DCE_TXD_D /

PCM_TXD_D
PIO20: input with pullup PIOMODE1[4]

PIO21

UCLK

USBSOF

USBSCI

PIO21: input with pullup PIOMODE1[5]

PIO22
DCE_RCLK_C

PCM_CLK_C
PIO22: input with pulldown PIOMODE1[6]

PIO23
DCE_TCLK_C

PCM_FSC_C
PIO23: input with pulldown PIOMODE1[7]

PIO24

CTS_U

DCE_TCLK_D

PCM_FSC_D

PIO24: input with pullup PIOMODE1[8]

PIO25

RTR_U

DCE_RCLK_D

PCM_CLK_D

PIO25: input with pullup PIOMODE1[9]

PIO26

RXD_U

DCE_RXD_D

PCM_RXD_D

PIO26: input with pullup PIOMODE1[10]

PIO27 TMRIN0 PIO27: input with pullup PIOMODE1[11]

PIO28 TMROUT0 PIO28: input with pulldown PIOMODE1[12]

CC CH

CC CH

CC CH

CC

CC

CC CU

CC CU

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 9-3

Programmable I/O Signals
PIO29 DT/R DT/R: three-state output with pullup PIOMODE1[13]

PIO30 DEN / DS DEN: three-state output with pullup PIOMODE1[14]

PIO31 PCS7 PIO31: input with pullup PIOMODE1[15]

PIO32 PCS6 PIO32: input with pullup PIOMODE2[0]

PIO33 ALE ALE: three-state output with pulldown PIOMODE2[1]

PIO34 BHE BHE: input with pullup PIOMODE2[2]

PIO35 SRDY SRDY: input with pullup PIOMODE2[3]

PIO36
DCE_RXD_B

PCM_RXD_B
PIO36: input with pullup PIOMODE2[4]

PIO37
DCE_TXD_B

PCM_TXD_B
PIO37: input with pullup PIOMODE2[5]

PIO38
DCE_CTS_B

PCM_TSC_B
PIO38: input with pullup PIOMODE2[6]

PIO39 DCE_RTR_B PIO39: input with pullup PIOMODE2[7]

PIO40
DCE_RCLK_B

PCM_CLK_B
PIO40: input with pullup PIOMODE2[8]

PIO41
DCE_TCLK_B

PCM_FSC_B
PIO41: input with pullup PIOMODE2[9]

PIO42
DCE_RXD_C

PCM_RXD_C
PIO42: input with pulldown PIOMODE2[10]

PIO43
DCE_TXD_C

PCM_TXD_C
PIO43: input with pulldown PIOMODE2[11]

PIO44
DCE_CTS_C

PCM_TSC_C
PIO44: input with pullup PIOMODE2[12]

PIO45 DCE_RTR_C PIO45: input with pullup PIOMODE2[13]

PIO46

CTS_HU

DCE_CTS_D

PCM_TSC_D

PIO46: input with pullup PIOMODE2[14]

PIO47
RTR_HU

DCE_RTR_D
PIO47: input with pullup PIOMODE2[15]

Table 9-1 PIO Multiplexed Signals (Continued)

Signal Multiplexed Signal(s) Default Signal Register[Bit]

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH

CC CH

CC

CC

CC

CC

CC

CC

CC

CC

CC

CC
9-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Programmable I/O Signals
9.4 REGISTERS
The 16 registers listed in Table 9-2 program the PIO signals. Appendix A summarizes the
bits in all the registers. For a complete description of all the peripheral registers, see the
Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916.

9.5 OPERATION

9.5.1 Usage
Note: Before using the PIOs, ensure multiplexed pins are configured to reflect the use of
PIO and not other functionality (see Table 9-1 on page 9-3).

To define a pin to be used as a PIO, use the following process:

1. Set the applicable bits in the PIO Mode and PIO Direction registers. To avoid changing
system PIO functionality unintentionally, it is good programming practice to do a read-
modify-write when setting these bits.

2. Manipulate data with the PIO Data, PIO Set, and PIO Clear registers.

9.5.2 Defining the PIO Signal as Input or Output
Table 9-3 shows how the bit settings for the PIO Mode and PIO Direction registers affect
signal function. The internal pullup and pulldown resistors each have a value of
approximately 10 KΩ.

Table 9-2 PIO Register Summary

Offset
Register
Mnemonic

Register Name Description

3C0h PIOMODE0 PIO Mode 0 Set PIO15–PIO0 to PIO or alternate function, and as input
or output (see Table 9-3).3C2h PIODIR0 PIO Direction 0

3C4h PIODATA0 PIO Data 0
Stores read or write data driven on outputs PIO15–PIO0.
Reads of this register reflect the value of the pin.

3C6h PIOSET0 PIO Set 0 Sets PIO Data register contents for PIO15–PIO0.

3C8h PIOCLR0 PIO Clear 0 Clears PIO Data register contents for PIO15–PIO0.

3CAh PIOMODE1 PIO Mode 1 Set PIO31–PIO16 to PIO or alternate function, and as input
or output (see Table 9-3).3CCh PIODIR1 PIO Direction 1

3CEh PIODATA1 PIO Data 1
Stores read or write data driven on outputs PIO31–PIO16.
Reads of this register reflect the value of the pin.

3D0h PIOSET1 PIO Set 1 Sets PIO Data register contents for PIO31–PIO16.

3D2h PIOCLR1 PIO Clear 1 Clears PIO Data register contents for PIO31–PIO16.

3D4h PIOMODE2 PIO Mode 2 Set PIO47–PIO32 to PIO or alternate function, and as input
or output (see Table 9-3).3D6h PIODIR2 PIO Direction 2

3D8h PIODATA2 PIO Data 2
Stores read or write data driven on outputs PIO47–PIO32.
Reads of this register reflect the value of the pin.

3DAh PIOSET2 PIO Set 2 Sets PIO Data register contents for PIO47–PIO32.

3DCh PIOCLR2 PIO Clear 2 Clears PIO Data register contents for PIO47–PIO32.
Am186™CC/CH/CU Microcontrollers User’s Manual 9-5

Programmable I/O Signals
9.5.3 Driving Data on the PIO
If a PIO signal is enabled as an output, the value in the corresponding bit in the PIO Data
register is driven on the signal with no inversion.

Whether a PIO signal is enabled as an input or as an output, a synchronized value from
the PIO signal is reflected in the value of the corresponding bit in the PIO Data register,
with no inversion for PIO Data register reads.

9.5.4 Using PIOs as Open-Drain Outputs
The PIO Data registers permit the PIO signals to operate as open-drain outputs. This is
accomplished by keeping the appropriate PDATA bits constant in the PIO Data and PIO
Mode registers and writing the data value into its associated bit position in the PIO Direction
register. The output is either driving Low or is disabled, depending on the data.

9.5.5 Setting and Clearing Data
The Am186CC/CH/CU microcontrollers offer two additional registers, which can be used
to set and clear the PIO Data register. A write to the PIO Set or PIO Clear registers functions
as shown in Table 9-4; a read does not change the PIO Data register contents. A read of
the PIO Set or PIO Clear registers returns the last value written by software in the
corresponding PIO Data register (including changes made via the PIO Set and PIO Clear
registers). This enables software to read back the value that would be driven if a PIO is
changed from an input to an output.

Table 9-3 PIO Mode and PIO Direction Register Bit Settings

Mode
PIO

Mode
Register

PIO
Direction
Register

Pin Function

Alternate Operation 0 0
Alternate operation with pullup/pulldown (PIO
functionality disabled)

PIO

0 1 PIO input with pullup/pulldown1

Notes:
1. The following PIO signals can be configured as interrupt sources in the interrupt controller’s
Shared Mask (SHMASK) register: PIO5, PIO15, PIO27, PIO29, PIO30, PIO33, PIO34, and PIO35.
Typically, these signals should be configured as inputs when used as an interrupt source. However,
if any of these signals is configured as both a PIO output and as an interrupt source, the PIO output
signal generates interrupts.

1 0 PIO output with pullup/pulldown1

1 1 PIO input without pullup/pulldown1

Table 9-4 PIO Set and PIO Clear Registers’ Effect on PIO Data Register

PIO Set Register Function PIO Clear Register Function

Written to
PIO Set

Register Bit

Old
PIO Data

Register Bit

New
PIO Data

Register Bit

Written to
PIO Clear

Register Bit

Old
PIO Data

Register Bit

New
PIO Data

Register Bit

0 0 0 0 0 0

0 1 1 0 1 1

1 0 1 1 0 0

1 1 1 1 1 0
9-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Programmable I/O Signals
9.5.6 Hardware-Related Considerations
Choose your PIOs wisely. The following PIO signals are multiplexed with alternate signals
that may be used by emulators: PIO8, PIO15, PIO33, PIO34, and PIO35. Consider any
emulator requirements for the alternate signals before using these pins as PIOs. For more
information, see Chapter 4, “Emulator Support.”

9.5.7 Software-Related Considerations
■ The PIO Set and PIO Clear registers provide an efficient, nondestructive means to modify

specific data values for the PIOs. Previous Am186 devices required the user to perform
a read-mask-modify-write approach when modifying PIO data values (and preserving
the values of other bits in the register). With the PIO Set and PIO Clear registers, specific
bits can be set or cleared in a single write.

■ When configuring PIOs, modify only the bits relevant to your application by reading the
existing register value, masking the bits needed, and writing the register.

9.5.8 Comparison to Other Devices
■ The PIO registers are similar to previous Am186 controller implementations. The PIO

Mode, PIO Direction, and PIO Data registers behave similarly; the PIO Set and PIO
Clear registers have been added.

■ The Am186CC/CH/CU microcontrollers offer 48 PIOs rather than the 32 offered in other
Am186 implementations, and these PIOs have different pin assignments.

9.6 INITIALIZATION
On both an external and internal reset, the following occurs:

■ The PIOMODE0 register defaults to 0000h, the PIODIR0 register to 1EFFh, PIOMODE1
to 0000h, PIODIR1 to 9FFFh, PIOMODE2 to 0000h, and PIODIR2 to FFF1h. This
defaults the PIOs to various configurations as shown in Table 9-1 on page 9-3. (PIO8,
PIO13, PIO14, PIO15, PIO29, PIO30, PIO33, PIO34, and PIO35 default to their alternate
operation. The remaining PIOs default to the PIO function.) System initialization code
must reconfigure PIOs as required.

■ The PIOSETx and PIOCLRx registers default to 0000h.

■ The PIODATAx registers default to values dependent on the system configuration. For
more information, see the Am186™CC/CH/CU Microcontrollers Register Set Manual,
order #21916.
Am186™CC/CH/CU Microcontrollers User’s Manual 9-7

Programmable I/O Signals
9-8 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
10 P
ROGRAMMABLE TIMERS
10.1 OVERVIEW
There are three 16-bit programmable timers in the Am186CC/CH/CU microcontrollers.
Timers 0 and 1 are identical and may be used to generate periodic external signals or
waveforms or to count or time external events. Each of these two timers has an input and
an output pin. Timer 2 is an internal timer which can be used to prescale Timers 0 and 1
to provide longer time-out periods, or to generate DMA requests for the general-purpose
DMA channels (see Chapter 8, “DMA Controller”). All three timers can be programmed to
generate periodic interrupts.

The source clock for Timer 2 is one-fourth of the CPU clock frequency (every fourth CPU
clock tick). The source clock for Timers 0 and 1 can be the timer input pin, Timer 2, or one-
fourth of the CPU clock,.

The microcontroller also provides a pulse width demodulation (PWD) option for measuring
the Low state and High state durations of a toggling input signal.

10.2 BLOCK DIAGRAM
Figure 10-1 shows the block diagram for the programmable timers.

Figure 10-1 Programmable Timers Block Diagram

CPU, Memory, and Other Peripheral Devices

PCB Interface
Interrupt

DMA

TMROUT0

TMROUT1

Controller

Controller

INT7

Notes:
1. In PWD mode, the TMRIN0, TMRIN1 and INT7 pins can be used as PIOs. If INT7 is to be used as an external

interrupt in PWD mode, it must be programmed to use the shared interrupt channel (channel 14).

Timer 0

Timer 1

Timer 2

Timers

PWD bit

INT8/PWD

TMRIN0

TMRIN1

in SYSCON
register

CH12

CH13

0

0

0

1

1

1

CH0
Am186™CC/CH/CU Microcontrollers User’s Manual 10-1

Programmable Timers
10.3 SYSTEM DESIGN
Table 10-1 lists the programmable timer signals that are multiplexed with other
microcontroller functions. Pinstraps are sampled only at external reset and do not affect
the pin’s other functions, so they are not shown in this table. When TMRIN0 or TMRIN1 is
programmed as a PIO, the corresponding signal is held high (asserted) internally, except
in PWD mode where TMRIN0 is replaced with INT8 and TMRIN1 is replaced with the inverse
of INT8. Other multiplexed signals, when enabled, either disable or alter any other functions
that use the same pin.

.

10.4 REGISTERS
The registers listed in Table 10-2 program the timers. Appendix A summarizes the bits in
all the registers. For a complete description of all the peripheral registers, see the
Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916.

Table 10-1 Programmable Timer Multiplexed Signals

Signal Function
Multiplexed

Signal(s)
Default
Signal

PWD Pulse-width demodulator
INT8
PIO6

PIO6

TMRIN0
Timer inputs

PIO27 PIO27

TMRIN1 PIO0 PIO0

TMROUT0
Timer outputs

PIO28 PIO28

TMROUT1 PIO1 PIO1

Table 10-2 Programmable Timers Register Summary

Offset
Register
Mnemonic

Register Name Description

340h T0CON Timer 0 Mode/Control Controls the functionality of Timer 0.

342h T0CNT Timer 0 Count
The value of this register is incremented by 1
for each timer event until the compare value is
reached.

344h T0CMPA Timer 0 Maxcount Compare A This register holds a compare value for T0CNT.

346h T0CMPB Timer 0 Maxcount Compare B This register holds a compare value for T0CNT.

348h T1CON Timer 1 Mode/Control Controls the functionality of Timer 1.

34Ah T1CNT Timer 1 Count
The value of this register is incremented by 1
for each timer event until the compare value is
reached.

34Ch T1CMPA Timer 1 Maxcount Compare A This register holds a compare value for T1CNT.

34Eh T1CMPB Timer 1 Maxcount Compare B This register holds a compare value for T1CNT.

350h T2CON Timer 2 Mode/Control Controls the functionality of Timer 2.

352h T2CNT Timer 2 Count
This value of this register is incremented by 1
for each timer event until the compare value is
reached.

354h T2CMPA Timer 2 Maxcount Compare A This register holds a compare value for T2CNT.
10-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Programmable Timers
10.5 OPERATION

10.5.1 Usage
Note: If Timer 0 or Timer 1 is being used without the associated TMRIN pin, the pin must
be held high or programmed as a PIO, otherwise the timer will not increment. Before using
the programmable timers, ensure multiplexed pins are configured to reflect the use of the
timers and not other functionality (see Table 10-1).

1. Clear the current count by writing zero to the TxCNT register.

2. Specify the timer maximum count by writing to the Timer Maxcount Compare (TxCMPy)
registers for the timer being used.

3. Specify the actions taken when the timer count reaches maximum by setting bits in the
corresponding Timer Mode and Control (TxCON) register.

4. Enable the timer by setting both the EN and INH bits in the corresponding Timer Mode
and Control (TxCON) register.

The timer count registers can be read or written at any time, regardless of whether the
corresponding timer is running. The timers count from their initial value to the programmed
compare value and then reset on the same clock. The value in the timer count register
never equals the compare value.

If the external pins are used (Timer 0 and Timer 1), the PIO Mode and PIO Direction bits
for these pins must be configured for alternate operation. These pins are configured as
PIOs at external and internal reset. For more information, see Chapter 9, “Programmable
I/O Signals.”

10.5.2 Timer 2
When enabled, Timer 2 increments the T2CNT register value at every fourth processor
clock. After the timer increments, the microcontroller compares the T2CNT value with the
value of the T2CMPA register. When the two values are equal, the microcontroller takes
the following actions:

■ Resets T2CNT to zero and sets the MC (Max Count reached) bit in the T2CON register.

■ If the INT bit is set in T2CON, generates an interrupt request. Software must clear the
MC bit.

■ Sends a pulse to Timer 0 and Timer 1 which can be used to increment those timers.

■ Sends a DMA request to the general-purpose DMA—the DMA may act on or ignore this
request depending on how it is programmed.

■ If the CONT (continuous mode) bit is zero, clears the EN (enable) bit and the timer stops
counting. If CONT is one, the timer remains enabled and continues counting.

Since the comparison is done after the count is incremented, if T2CNT and T2CMPA are
initially set to the same value, the comparison of T2CNT to T2CMPA will not be equal until
4 • 0FFFFh processor clocks after the counter is enabled.

10.5.3 Timer 0 and Timer 1
Timers 0 and 1 provide identical functionality. Unlike Timer 2, Timers 0 and 1 each have
an input and output pin associated with the timer. They can also use Timer 2 as a prescaler
providing a 32-bit time-out count.
Am186™CC/CH/CU Microcontrollers User’s Manual 10-3

Programmable Timers
Three bits in the control register and the external TMRIN pin control the way Timer 0 and
Timer 1 count:

■ When the EXT (external clock) bit is set, the TMRIN signal provides the clock for the
associated timer. In this mode, the timer count increments once for each low to high
transition on the TMRIN pin. The external clock speed cannot be greater than one fourth
of the processor clock. The timer output can take up to six clock cycles to respond to
the clock or gate input because of internal synchronization and pipelining of the timer
circuitry.

■ When the RTG (retrigger) bit is set, a low to high transition on TMRIN resets the value
in the timer’s current count register. The timer counts during both the high and low phases
of the TMRIN signal.

■ When the P (prescaler) bit is set, Timer 2 provides the clock for the associated timer.
The timer increments once each time Timer 2 reaches its maximum count.

Table 10-3 summarizes the behavior of the timers.

Timers 0 and 1 provide two maximum count compare registers, TxCMPA and TxCMPB.
The setting of the ALT (alternate compare) bit determines whether one or both of these
compare registers are used. When ALT is zero, only TxCMPA is used. When ALT is one,
both compare registers are used.

When ALT is zero, the timer behaves as follows:

■ Each time the timer increments, it compares the value in TxCNT to the value in TxCMPA.

■ If the compare is not equal, the timer:

– Holds TMROUTx High.

■ If the compare is equal, the timer:

– Pulses TMROUTx Low for a single processor clock.

– Resets the TxCNT register to zero.

– Sets the MC (maxcount reached) bit. Software must clear the MC bit.

– If the INT bit is set in TxCON, the timer generates an interrupt request.

– If the CONT (continuous mode) bit is zero, the timer clears the EN (enable) bit and
the timer stops counting. If the CONT bit is one, the timer remains enabled and
continues counting.

Table 10-3 Timer 0 and Timer 1 Behavior

TxCON Bit Value TMRIN

EXT RTG P Low High Low -> High

0 0 0 Hold 1/4 processor clock No effect

0 0 1 Hold Timer 2 time-out No effect

0 1 0 1/4 processor clock 1/4 processor clock Resets count

0 1 1 Timer 2 time-out Timer 2 time-out Resets count

1 x x No effect No effect Increments count
10-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Programmable Timers
When ALT is set and the timer is using TxCMPA (initial value after reset), the timer
behaves as follows:

■ The RIU (Register-In-Use) bit is zero (this is a read-only bit).

■ Holds the TMROUTx signal High (inverse of RIU).

■ Each time the timer increments, it compares the value in TxCNT to the value in TxCMPA.

■ If the compare is equal, the timer:

– Resets the TxCNT register to zero.

– Sets the MC (maxcount reached) bit. Software must clear the MC bit.

– If the INT bit is set in TxCON, the timer generates an interrupt request.

– Sets the RIU bit and performs the next compare against TxCMPB.

When ALT is set and the timer is using TxCMPB, the timer behaves as follows:

■ The RIU (Register-In-Use) bit is one (this is a read-only bit).

■ Holds the TMROUTx signal Low (inverse of RIU).

■ Each time the timer increments, it compares the value in TxCNT to the value in TxCMPB.

■ If the compare is equal, the timer:

– Resets the TxCNT register to zero.

– Sets the MC (maxcount reached) bit.

– If the INT bit is set in TxCOT, the timer generates an interrupt request. Software must
clear the MC bit.

– Clears the RIU bit and TMROUTx transitions to high.

– If the CONT (Continuous Mode) bit is zero, the timer clears the EN (Enable bit) and
the timer is disabled. If the CONT bit is set, the timer remains enabled and performs
the next compare against TxCMPA.

Because the comparison is done after the count is incremented, if TxCNT and TxCMPA
are set to the same value, the comparison of TxCNT to TxCMPA will not be equal until the
current count reaches its maximum value, wraps around through zero and counts to the
TxCMPA value. Setting TxCMPB to zero provides the maximum time-out for the second
phase of the timer.

Setting the ALT bit and using the two compare registers allows Timer 0 and Timer 1 to
generate waveforms on the associated TMROUT pins.

10.5.4 Requesting Interrupts
The INT bits in the T0CON, T1CON, and T2CON registers control interrupt request
generation when a maximum count is reached. The request remains asserted for as long
as the MC bit in the TxCON register is set. Software must clear this bit.

If the maximum count and compare registers are both set to 0000h, the timer associated
with that compare register counts from 0000h to FFFFh before requesting an interrupt. With
a 40-MHz clock, a timer configured this way interrupts every 6.5536 ms.

When the ALT bit is set for Timer 0 or Timer 1, the MC bit is set both when the timer reaches
the TxCMPA value and when the timer reaches the TxCMPB value. Software can
differentiate these two conditions by examining the RIU bit. The RIU bit is 1 when the
Am186™CC/CH/CU Microcontrollers User’s Manual 10-5

Programmable Timers
TxCMPA value is reached (timer is now comparing against TxCMPB). The RIU bit is 0 when
the TxCMPB value is reached (timer is now comparing against TxCMPA).

10.5.5 Software Polling
Software can poll the MC bit in the T0CON, T1CON, and T2CON registers to monitor timer
status rather than using interrupts. This bit must be cleared by software.

10.5.6 Generating Waveforms
When programmed to use both compare values (ALT bit in TxCON is 1), Timer 0 and Timer
1 can generate waveforms on the associated TMROUT pin. The TxCMPA value determines
the duration of the High phase of the output waveform. The TxCMPB value determines the
duration of the Low phase of the output waveform. For more information, see the timer
examples available on the AMD website at ftp.amd.com.

10.5.7 Pulse Width Demodulation
For many applications, such as bar-code reading, it is necessary to measure the width of
a signal in both its High and Low phases. The Am186CC/CH/CU microcontrollers provide
a pulse width demodulation (PWD) option to fulfill this need. The PWD bit in the System
Configuration (SYSCON) register enables the PWD option. Note that the Am186CC/CH/
CU microcontrollers do not support analog-to-digital conversion.

Figure 10-1 on page 10-1 shows the routing of signals when pulse width demodulation is
either enabled or disabled. The waveform for PWD mode is input on the INT8/PWD pin.
This pin is of type Schmitt trigger in both normal interrupt and PWD modes. Note that this
pin is multiplexed with PIO6 and defaults to the PIO function at external and internal reset.

In PWD mode, software uses Timer 0 and Timer 1 to measure the High and Low pulse
width of the input signal. Interrupt 8 (Channel 13, type 1dh) and interrupt 7 (Channel 12,
type 1ch) notify software of the transitions of the measured input signal.

Timer 0 starts its count on the Low-to-High transition on the PWD input and counts the High
signal duration. Timer 1 starts its count on the High-to-Low transition on the PWD input
and counts the Low signal duration. The Low-to-High transition of the PWD input generates
an interrupt request using Channel 13 (type 1dh). The High-to-Low transition of the PWD
input generates an interrupt request using Channel 12 (type 1ch).

Figure 10-2 shows the behavior of the PWD function for a typical input waveform.

Figure 10-2 Pulse Width Demodulation Example

(1) (3) (1) (3)

(2) (2)(4) (4)

1. A Channel 13 (INT8) interrupt request is generated.

2. Timer 0 counts during the high phase of the input signal.

3. A Channel 12 (INT7) interrupt request is generated.

4. Timer 1 counts during the low phase of the input signal.
10-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Programmable Timers
As shown in Figure 10-1 on page 10-1, entering pulse width demodulation mode by setting
the PWD bit in the SYSCON register does not have any direct effect on the timer block
other than to reroute the TMRIN0 and TMRIN1 signals. The timers retain their full
functionality and programmability.

In the typical pulse width demodulation application, configure the T0CON and T1CON
registers with a write of C001h (EN + INH + CONT). The ISR for Channel 13 reads the
value in T1CNT to determine the length of the Low phase of the signal, and then resets the
T1CNT register to zero. The interrupt service routine (ISR) for Channel 12 reads the value
in T0CNT to determine the length of the High phase of the signal and then resets the T0CNT
register to zero. Set the TxCMPA compare value high enough to ensure that the signal
duration will not exceed the maximum count. The ISR should check the MC bit of the
associated timer to determine if the maximum count has been exceeded. If the MC bit is
set, software must then determine the appropriate response to this overflow situation. It
may be sufficient to add the TxCMPA register value to the TxCNT register value to generate
the correct signal duration.

10.5.7.1 Handling Short Signal Durations

In applications where the pulse width is short, it may be necessary to poll the interrupt
request bits in the interrupt request (REQST) register and jump to the ISR rather than
actually taking interrupts.

10.5.7.2 Handling Long Signal Durations

When the timers are configured for PWD (EN + INH + CONT), the maximum duration of
each phase of the input signal should not exceed 4 • TxCMPA processor clocks because
the timer increments every fourth processor clock in this configuration. To extend the
maximum measurable duration using PWD, software can enable timer interrupts, use Timer
2 as a prescaler, or both.

If the INT (interrupt) bit is set in either T0CON or T1CON, the associated timer generates
an interrupt request on Channel 0—type 08h for Timer 0 and type 09h for Timer 1. The ISR
for these interrupts should add the programmed maxcount (the value of the TxCMPA
register) to a memory location and clear the MC bit in the TxCON register each time the
interrupt is taken. The ISR for channel 13 (interrupt type 1dh) must add the value of the
Timer 1 memory location to the current T1CNT register to determine the duration of the
Low phase of the signal. The ISR for channel 12 (interrupt type 1ch) must add the value of
the Timer 0 memory location to the current T0CNT register to determine the duration of
the High phase of the signal. In both cases the calculated duration must be multiplied by
four to yield the total number of processor clocks.

If the P (prescaler) bit is set in either T0CON or T1CON, the associated timer increments
once for each Timer 2 time-out. This increases the maximum measurable duration to
4 • T2CMPA • TxCMPA. However, the precision of the measurement falls from within four
processor clocks of the actual value to within 4 • T2CMPA processor clocks of the actual
value. For this reason, the value of T2CMPA should be kept as small as possible. This
solution uses fewer processor cycles and has less of an effect on system performance than
the use of timer interrupts.

In applications where extremely long signals need to be measured, both the P bit and the
INT bit can be set either in T0CON or T1CON or both.
Am186™CC/CH/CU Microcontrollers User’s Manual 10-7

Programmable Timers
10.5.8 Software-Related Considerations
■ Timer 2 can generate a DMA request. For more information, see Chapter 8, “DMA

Controller.”

■ Timer 0 and Timer 1 each have two 16-bit count compare registers. These registers can
be used together to expand the time resolution for the timers. For more information, see
the Timer Mode and Control registers in the Am186™CC/CH/CU Microcontrollers
Register Set Manual, order #21916.

10.5.9 Comparison to Other Devices
The programmable timers are 100% compatible with the timers in the Am186ES and
Am186ED microcontrollers.

10.6 INITIALIZATION
On both an external and internal reset, the following occurs:

■ The values of all the timer registers are cleared to 0000h.

■ All the timer signals default to PIO operation (see Table 10-1 on page 10-2).

■ The PWD bit in the SYSCON register is cleared to 0.
10-8 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
11 W
ATCHDOG TIMER
11.1 OVERVIEW
The Am186CC/CH/CU microcontrollers provide a full-featured watchdog timer that can
generate nonmaskable interrupts (NMIs), internal resets, and system resets when the time-
out value is reached. The time-out value is programmable and ranges from 210 to 226
processor clocks. Throughout this chapter, an external reset refers to a reset of the
microcontroller as initiated by the RES signal, which resets the CPU and the internal
peripherals. Internal reset refers to a reset initiated by the watchdog timer. System reset
refers to a reset of the external peripherals connected to the controller as initiated by the
RESOUT signal, which is pulled Low during an external reset and can be pulled Low during
an internal reset.

The watchdog timer provides a method to regain control when a system has failed due to
a software error or to the failure of an external device to respond in the expected way.
Software errors can sometimes be resolved by recapturing control of the execution
sequence through a watchdog-timer-generated NMI. When an external device fails to
respond, or responds incorrectly, it may be necessary to reset the controller or the entire
system, including external devices. The watchdog timer provides the flexibility to support
both NMI and reset generation. The watchdog timer is enabled at reset.

11.2 BLOCK DIAGRAM
Figure 11-1 shows a block diagram of the watchdog timer.

Figure 11-1 Watchdog Timer Block Diagram

Watchdog Timer

(external) RES
RESOUT

Execution
Unit

(external) NMI

Internal NMI

Internal RES

Internal

RD

WR

DATA

Peripheral

Reset Control

Counter

Key Detect

Devices
Am186™CC/CH/CU Microcontrollers User’s Manual 11-1

Watchdog Timer
11.3 SYSTEM DESIGN
Table 11-1 lists the watchdog timer signals that are multiplexed with other microcontroller
functions. Pinstraps are sampled only at external reset and do not affect the pin’s other
functions, so they are not shown in this table. Other multiplexed signals, when enabled,
either disable or alter any other functions that use the same pin.

.

Systems that require a guaranteed recovery time from software or hardware errors should
use the watchdog timer.

Generation of the internal NMI signal on the first watchdog timer time-out can be useful in
systems where it may be possible to recover from glitches, corrupted data, or incorrect code
without resetting either the controller or the board. This is especially true where potential
data recovery is important. Such systems should have the NMI interrupt handler routine in
ROM to ensure that it has not been corrupted by runaway code. However, in most systems,
the interrupt table, which must be located at address 00000h, is located in RAM and so is
subject to corruption.

Generation of the RESOUT signal should be used in systems where a system hang may
be caused by incorrect behavior of an external device. The watchdog timer reset duration,
and therefore the duration of the RESOUT signal on a watchdog timer reset, is 216 processor
clocks. This allows sufficient time for external devices to reach their reset state.

The watchdog timer must function in all cases where either the software or external devices
have failed to respond appropriately. The watchdog timer has incorporated several features
to ensure that this is the case.

■ The watchdog timer is active after reset.

■ The watchdog timer’s default configuration after a power-on reset is to generate a reset
on the first time-out and to assert the RESOUT signal.

■ Software can disable the Watchdog Timer Control (WDTCON) register after reset and,
while it is disabled, it can be written any number of times. When software enables the
watchdog timer, the register becomes read-only except for two flag bits. This allows
bootup or monitor code to disable the watchdog timer until the system has been
configured.

■ Each single write to the watchdog timer must be preceded by writes of a keyed sequence.
Detection of the keyed sequence allows a single write to the WDTCON register.

■ The watchdog timer time-out counter can only be reset by the initial enabling write to
the WDTCON register or by writing a special key sequence to the WDTCON register.

These features guarantee that the watchdog timer is not affected by runaway code.

Software can determine whether an NMI or reset event was caused by an external source
or by the watchdog timer by reading the WDTCON register. The NMIFLAG bit is set when
the watchdog timer generates an NMI; the RSTFLAG bit is set when the watchdog timer
generates a reset. Software can clear, but not set, these bits.

Table 11-1 Watchdog Timer Multiplexed Signals

Signal Function
Multiplexed

Signal(s)
Default
Signal

RES Controller reset — RES

NMI Nonmaskable interrupt — NMI
11-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Watchdog Timer
11.4 REGISTERS
The register shown in Table 11-2, WDTCON, programs the watchdog timer. Figure 11-2
illustrates the rules for accessing the WDTCON register. Appendix A summarizes the bits
in all the registers. For a complete description of all the peripheral registers, see the
Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916.

Figure 11-2 Access to the WDTCON Register

11.5 OPERATION

11.5.1 Usage
1. Enable the watchdog timer by writing the keyed sequence of 3333h followed by CCCCh

to the WDTCON register address.

This sequence opens the WDTCON register for a single write. Any number of processor
cycles, including memory and I/O reads and writes, can be inserted between the two
halves of the key or between the key and the writing of data as long as they do not read
or write the WDTCON register. The write key sequence must be repeated for each single
write.

2. After enabling the watchdog timer, periodically reset it by writing the keyed sequence of
AAAAh followed by 5555h to the WDTCON register address.

As with the write key, any number of processor cycles, including memory and I/O reads
and writes, can be inserted between the two halves of the key as long as they do not
access the WDTCON register. The key itself resets the counter; no further writes are
necessary. Note that the clear-count key cannot be initiated while the write key is active.
This would result in the value of AAAAh being written to the WDTCON register.

Table 11-2 Watchdog Timer Register Summary

Offset
Register
Mnemonic

Register Name Description

3E0h WDTCON Watchdog Timer Control Controls the watchdog timer.

ENA = 1
Timer enabled

(after external or internal
reset); software can use

write key to write any
value

ENA = 0
Timer disabled;

software can use write
key to write any value

Notes:
Only one write is allowed to the WDTCON register after each write key sequence of 3333h followed by CCCCh.

ENA = 1
Timer enabled;

software can use write key
to clear RSTFLAG and

NMIFLAG bits only

Write key plus
RSTFLAG = 0 or

NMIFLAG = 0 only

Write key plus
any value with

ENA = 1Write key plus
any value with

ENA = 0

Write key plus
any value with

ENA = 1

Reset

Write key plus
any value with

ENA = 0

Reset
Am186™CC/CH/CU Microcontrollers User’s Manual 11-3

Watchdog Timer
11.5.2 Overview
Because the watchdog timer is enabled after reset, it is important for start-up code to
program the watchdog timer before the initial time-out period expires. The time-out period
after a watchdog timer reset is 226 clock cycles.

All writes to the WDTCON register must be preceded by the write key sequence. The write
key is a special two-write sequence to the WDTCON register address. The value of the key
is not written to the WDTCON register but is used by internal logic to open the register for
a single write. If a read-modify-write sequence is desired, the read must take place before
the key is written because a read of WDTCON resets the keyed sequence.

The system’s start-up code can either enable or disable the watchdog timer. When enabled,
the watchdog timer cannot be disabled until a reset occurs. If disabled, it can be enabled
later by software. The reset start-up code should check the WDTCON register to see if the
RSTFLAG bit is set. If set, then the last reset was due to a watchdog timer time-out. What
actions are taken is system dependent; however, possible actions include signaling another
device that there is a problem, performing a more extensive test of hardware systems, or
requesting reset of remote devices.

Debug monitor software (such as AMD’s E86MON™ software) can disable the watchdog
timer, allowing the user to interact with the monitor without having to refresh the watchdog
timer. The application code can then enable or disable the watchdog timer in its own start-
up routine.

In systems that program the watchdog timer to generate an NMI, the NMI service routine
should check the WDTCON register to see if the NMIFLAG bit is set. If this bit is set, it
indicates that an NMI due to a watchdog timer time-out occurred. Software should clear
this bit so that subsequent external NMIs are not confused with watchdog timer NMIs. What
actions are taken are system dependent; however, possible actions include examining the
state of the DMA controller to determine whether DMA usage is preventing instruction
execution, polling external devices for status, or re-execution of all or part of the system
start-up code.

Code that supports the watchdog timer should be divided into two parts. The main loop of
the application, or some section of code that is periodically executed but not interrupt driven,
should set a flag indicating that execution has passed through this code loop. A second
piece of code that is interrupt driven, typically a timer interrupt, should check the value of
the flag. If the flag is set, the interrupt service routine (ISR) should write the watchdog timer
clear-count key, resetting the time-out counter to zero. If the flag is not set, the ISR has
several options: wait for a watchdog timer time-out to let the reset or NMI code handle the
problem; attempt to determine what the problem is; or continue normal execution with the
expectation that the flag may be set at some later iteration. Because transfer of control to
an ISR does not require non-ISR code to be executing correctly, it is important that the ISR
code not reset the time-out counter unless the flag is set.

11.5.3 Hardware-Related Considerations
■ Pins that are latched on reset (pinstraps) are not resampled during a watchdog-timer

reset.

■ If the external reset (RES) signal is asserted while the watchdog timer is performing a
watchdog-timer reset, the external reset takes precedence over the watchdog-timer
reset. This means that the RESOUT signal asserts as with any external reset and the
WDTCON register does not have the RSTFLAG bit set. In addition, the part exits reset
based on the external reset timing (i.e., 4.5 clocks after the deassertion of RES rather
than 216 clocks after the watchdog timer time-out occurred).
11-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Watchdog Timer
11.5.4 Software-Related Considerations
■ Even if the watchdog-timer default configuration is appropriate for the application,

software should always perform an enabling write to the watchdog timer. This write
causes most of the fields of the WDTCON register to become read-only, preventing run-
away code from disabling or otherwise modifying the watchdog timer behavior.

■ If a watchdog-timer time-out occurs when the timer is programmed with WRST cleared,
an NMI is generated, the time-out counter is reset, and the NMIFLAG bit is set. If the
NMIFLAG bit is not cleared before a second watchdog timer time-out, a reset is generated
regardless of the setting of WRST.

■ The watchdog timer can generate a nonmaskable interrupt (NMI). This interrupt can be
taken at any time. Unlike the maskable interrupts, the controller is not inhibited from
taking a second NMI request while the NMI ISR is executing. Therefore, a watchdog
timer NMI can interrupt, or be interrupted by, an externally generated NMI.

11.5.5 Comparison to Other Devices
The watchdog timer is based on the watchdog timer in the Am186ES and Am186ED
microcontrollers, with the following enhancements:

■ Multiple writes are allowed to the WDTCON control register following reset as long as
these writes have the enable bit cleared. When a write is detected with the enable bit
set, the control register becomes read-only except for the NMI Flag (NMIFLAG) bit and
the Reset Flag (RSTFLAG) bit.

■ The time-out counter is automatically reset by a write that enables the watchdog timer.

■ A read to the WDTCON register does not clear the NMIFLAG or RSTFLAG bits. Software
must write a 0 value to each of these bits to clear them. Writing a 1 to these bit positions
has no effect.

■ The watchdog timer can generate an external signal when a watchdog-timer reset event
occurs.

11.6 INITIALIZATION
At reset, the following occurs:

■ After an external reset, the watchdog timer is enabled and programmed to generate a
reset including generation of the RESOUT signal on time-out, the RSTFLAG bit is
cleared, and the time-out value is 226 clock cycles.

■ After a watchdog-timer reset, the watchdog timer is enabled and programmed to
generate a reset on the time-out, the RSTFLAG bit is set, and the time-out value is 226
clock cycles. The EXRST bit, which determines whether RESOUT is asserted for
watchdog timer resets, retains its previously programmed value.

■ A watchdog-timer reset affects the microcontroller the same as an external reset, except
for the following:

– Pinstraps are not sampled.

– The RESCON register is not reset.

– The RSTFLAG bit is cleared by an external reset, and set in an internal reset.

– The EXRST bit is set by an external reset, and unchanged by an internal reset.
Am186™CC/CH/CU Microcontrollers User’s Manual 11-5

Watchdog Timer
11-6 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
12 S
O

ERIAL COMMUNICATIONS
VERVIEW
12.1 OVERVIEW
The Am186CC/CH/CU microcontrollers support both asynchronous and synchronous
serial communications. These features are described in the chapters indicated in the bullets
below. The remainder of this chapter shows some of the trade-offs of using the various
serial communications features available on the microcontroller and provides a brief
overview of serial communications.

■ Two asynchronous serial ports, the Universal Asynchronous Receiver/Transmitter
(UART) and High-Speed UART, provide full-duplex, bidirectional data transfer in RS-232
format using several industry-standard protocols: CTS/RTR and 9-Data-Bit (multidrop).
The UART supports data transfer speeds of up to 115.2 Kbaud; the High-Speed UART
supports speeds up to 460 Kbaud. See Chapter 13, “Asynchronous Serial Ports
(UARTs).”

■ One synchronous serial port provides half-duplex, bidirectional data transfer using the
Synchronous Serial Interface (SSI). The microcontroller can operate as the master for
multiple slave peripheral devices. The SSI supports data transfer speeds of up to
25 Mbit/s with a 50-MHz CPU clock. See Chapter 14, “Synchronous Serial Port (SSI).”

■ Four High-level Data Link Control (HDLC) channels on the Am186CC and Am186CH
microcontrollers provide 8-bit element (byte or character) or frame full-duplex
synchronous serial data transmission. The clock is provided by the Time Slot Assigner
(TSA) for that channel. For the most part, the TSA muxing logic controls the path data
takes from an HDLC to an external communication interface (or vice versa). External
interfaces supported are: raw Data Communications Equipment (DCE), Pulse Code
Modulation (PCM) Highway, and on the Am186CC microcontroller only, General Circuit
Interface (GCI). Each TSA channel can support a burst data rate to or from an HDLC
channel of up to 10 Mbit/s in both raw DCE and PCM highway modes, and up to 768
Kbit/s in GCI mode. See Chapter 15, “High-Level Data Link Control (HDLC),” Chapter 16,
“HDLC External Serial Interface Configuration (TSAs),” and Chapter 17, “General Circuit
Interface (GCI).”

■ The Am186CC and Am186CU microcontrollers both provide a Universal Serial Bus
(USB) peripheral controller, which supports full-speed (12 Mbit/s) USB bulk,
isochronous, interrupt, and control transfers as defined in the Universal Serial Bus
Specification, Revision 1.0. The microcontroller acts as a USB peripheral device. The
USB is a half-duplex, master/slave, polled bus. In other words, the microcontroller only
transmits on the USB in response to a request from the USB host, usually a personal
computer. There can be only one transmitter on the USB at a time. See Chapter 18,
“Universal Serial Bus (USB).”

CHCC

CUCC
Am186™CC/CH/CU Microcontrollers User’s Manual 12-1

Serial Communications Overview
12.2 SYSTEM DESIGN

12.2.1 Multiplexed Signals
The serial interfaces in the Am186CC/CH/CU microcontrollers are multiplexed as shown
in Table 12-1. Because of the multiplexing, there are some design trade-offs, as shown in
the table. The figures that follow the table show how the microcontroller’s serial
communications features could be used in typical applications.

Table 12-1 Multiplexed Signal Trade-Offs for Serial Interfaces

Function Used Functions Lost
Inter-
face

Name Pin
Inter-
face

Name
Inter-
face

Name
Inter-
face

Name
Inter-
face

Name

Synchronous Communications Interfaces

DCE
Channel
A

DCE_RXD_A 118

PCM
Channel
A

PCM_RXD_A — —

GCI
Channel
A

GCI_DD_A

PIO

—

DCE_TXD_A 119 PCM_TXD_A — — GCI_DU_A —

DCE_RCLK_A 117 PCM_CLK_A — — GCI_DCL_A —

DCE_TCLK_A 116 PCM_FSC_A — — GCI_FSC_A —

DCE_CTS_A 123 PCM_TSC_A — — — PIO17

DCE_RTR_A 122 — — — — PIO18

DCE
Channel
B

DCE_RXD_B 138

PCM
Channel
B

PCM_RXD_B — — — —

PIO

PIO36

DCE_TXD_B 139 PCM_TXD_B — — — — PIO37

DCE_RCLK_B 135 PCM_CLK_B — — — — PIO40

DCE_TCLK_B 134 PCM_FSC_B — — — — PIO41

DCE_CTS_B 137 PCM_TSC_B — — — — PIO38

DCE_RTR_B 136 — — — — — PIO39

DCE
Channel
C

DCE_RXD_C 153

PCM
Channel
C

PCM_RXD_C — —
GCI to
PCM
Con-
version

—

PIO

PIO42

DCE_TXD_C 154 PCM_TXD_C — — — PIO43

DCE_RCLK_C 150 PCM_CLK_C — — PCM_CLK_C PIO22

DCE_TCLK_C 149 PCM_FSC_C — — PCM_FSC_C PIO23

DCE_CTS_C 152 PCM_TSC_C — — — PIO44

DCE_RTR_C 151 — — — — PIO45

DCE
Channel
D

DCE_RXD_D 158

PCM
Channel
D

PCM_RXD_D

Low-
Speed
UART

RXD_U
High-
Speed
UART

(Flow
Control)

PIO

PIO26

DCE_TXD_D 159 PCM_TXD_D TXD_U PIO20

DCE_RCLK_D 156 PCM_CLK_D RTR_U PIO25

DCE_TCLK_D 157 PCM_FSC_D CTS_U PIO24

DCE_CTS_D 24 PCM_TSC_D — CTS_HU PIO46

DCE_RTR_D 23 — — RTR_HU PIO47

PCM
Channel
A

PCM_RXD_A 118
DCE
Channel
A

DCE_RXD_A — —
GCI
Channel
A

GCI_DD_A

PIO

—

PCM_TXD_A 119 DCE_TXD_A — — GCI_DU_A —

PCM_CLK_A 117 DCE_RCLK_A — — GCI_DCL_A —

PCM_FSC_A 116 DCE_TCLK_A — — GCI_FSC_A —

PCM_TSC_A 123 DCE_CTS_A — — — PIO17

PCM
Channel
B

PCM_RXD_B 138
DCE
Channel
B

DCE_RXD_B — — — —

PIO

PIO36

PCM_TXD_B 139 DCE_TXD_B — — — — PIO37

PCM_CLK_B 135 DCE_RCLK_B — — — — PIO40

PCM_FSC_B 134 DCE_TCLK_B — — — — PIO41

PCM_TSC_B 137 DCE_CTS_B — — — — PIO38

PCM
Channel
C

PCM_RXD_C 153
DCE
Channel
C

DCE_RXD_C — — GCI to
PCM
Con-
version

—

PIO

PIO42

PCM_TXD_C 154 DCE_TXD_C — — — PIO43

PCM_CLK_C 150 DCE_RCLK_C — — PCM_CLK_C PIO22

PCM_FSC_C 149 DCE_TCLK_C — — PCM_FSC_C PIO23

PCM_TSC_C 152 DCE_CTS_C — — — PIO44

CC CH CC CH CC

CC CH CC CH

CC CC
CC

CC CC

CC CH CC CH CC

CC CH CC CH

CC CC
CC
12-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Serial Communications Overview
12.2.2 Sample Applications for the Am186CC Communications Controller
Figure 12-1 on page 12-4 shows an HDLC control application that uses all four HDLC
channels of the Am186CC microcontroller configured as nonmultiplexed raw DCE external
interfaces, in addition to the High-Speed UART port for debugging.

Figure 12-2 on page 12-4 shows a POTS linecard application that uses all four HDLC
channels of the Am186CC microcontroller multiplexed to external interface A for linecard
control. In addition, this application uses the UART interfaced to external interface D for
debugging, and the SSI port to control the linecard voice integrated circuits. Unused external
interfaces B and C are used as PIOs.

Figure 12-3 on page 12-5 shows an ISDN application for the Am186CC microcontroller that
uses three HDLC channels multiplexed off external interface A, the High-Speed UART port
for a serial AT modem connection to the host PC (or a USB connection to the PC can be
used instead), the UART port on external interface D for debugging, and the SSI port to
control the POTS interface integrated circuits. (Flow control on the High-Speed UART is
also multiplexed to external interface D.)

Figure 12-4 on page 12-5 shows an ISDN application that uses the GCI-to-PCM Highway
conversion feature of the Am186CC microcontroller. This application uses three HDLC
channels multiplexed off external interface A, the High-Speed UART port for a serial AT
modem connection to the host PC, and the debug UART port on external interface D (flow
control on the High-Speed UART is also multiplexed to external interface D). External
interface C is used for the converted GCI-to-PCM highway frame sync and clock required
by PCM Highway codecs. External interface B is unused.

PCM
Channel
D

PCM_RXD_D 158
DCE
Channel
D

DCE_RXD_D

Low-
Speed
UART

RXD_U

High-
Speed
UART

—

PIO

PIO26

PCM_TXD_D 159 DCE_TXD_D TXD_U — PIO20

PCM_CLK_D 156 DCE_RCLK_D RTR_U — PIO25

PCM_FSC_D 157 DCE_TCLK_D CTS_U — PIO24

PCM_TSC_D 24 DCE_CTS_D — CTS_HU PIO46

Low-
Speed
UART

RXD_U 158 DCE
Channel
D

DCE_RXD_D PCM
Channel
D

PCM_RXD_D — —

PIO

PIO26

TXD_U 159 DCE_TXD_D PCM_TXD_D — — PIO20

RTR_U 156 DCE_RCLK_D PCM_CLK_D — — PIO25

CTS_U 157 DCE_TCLK_D PCM_FSC_D — — PIO24

High-
Speed
UART

RXD_HU 25 DCE
Channel
D

— PCM
Channel
D

— — —

PIO

PIO16

TXD_HU 26 — — — — —

RTR_HU 23 DCE_RTR_D — — — PIO47

CTS_HU 24 DCE_CTS_D PCM_TSC_D — — PIO46

GCI
Channel
A

GCI_DD_A 118 DCE
Channel
A

DCE_RXD_A PCM
Channel
A

PCM_RXD_A — —

PIO

—

GCI_DU_A 119 DCE_TXD_A PCM_TXD_A — — —

GCI_DCL_A 117 DCE_RCLK_A PCM_CLK_A — — —

GCI_FSC_A 116 DCE_TCLK_A PCM_FSC_A — — —

GCI to
PCM
Con-
version

PCM_CLK_C 150
DCE
Channel
C

DCE_RCLK_C
PCM
Channel
C

PCM_CLK_C — —

PIO

PIO22

PCM_FSC_C 149 DCE_TCLK_C PCM_FSC_C — — PIO23

Table 12-1 Multiplexed Signal Trade-Offs for Serial Interfaces (Continued)

Function Used Functions Lost
Inter-
face

Name Pin
Inter-
face

Name
Inter-
face

Name
Inter-
face

Name
Inter-
face

Name

CC CC

CC CC

CC CC

CC CC CH CC CH

CC
CC CC

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 12-3

Serial Communications Overview
Figure 12-1 HDLC Control Application

Figure 12-2 POTS Linecard

UARTs
High-
Speed
UART

UART

External
Interface

HDLC Channels

Channel D Channel C Channel B Channel A

Debug or
console
UART

Raw DCE
External
interface

D

Raw DCE
External
interface

C

Raw DCE
External
interface

B

Raw DCE
External
interface

A

CC

UARTs
High-
Speed
UART

UART

External
Interface

HDLC Channels

Channel D Channel C Channel B Channel A

External interface D is
used for debug UART

External interfaces
B and C are used as

PIOS

External
interface A for
linecard control

TSA Channels

Channel D Channel C Channel B Channel A

SSI

SSI to linecard
voice ICs

CC
12-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Serial Communications Overview
Figure 12-3 ISDN Application

Figure 12-4 ISDN Application with GCI-to-PCM Highway Conversion

Optional USB
connection to

host PC (instead of
High-Speed UART

connection)

UARTs
High-
Speed
UART

UART

HDLC Channels

Channel D Channel C Channel B Channel A

External interface D is
used for debug UART

and flow control for High-
Speed UART

External interfaces
B and C are used as

PIOS

External
interface

A

TSA Channels

Channel D Channel C Channel B Channel A

SSI

SSI to
POTS ICs

USB

Connection
to host PC

GCI

External
Interface

CC

UARTs
High-
Speed
UART

UART

External
Interface

HDLC Channels

Channel D Channel C Channel B Channel A

External Interface D is
used for debug UART

and flow control for High-
Speed UART

TSA Channels

Channel D Channel C Channel B Channel A

Connection to
host PC

GCI
CLK

FSC

CLK FSC

PCM
Highway

codec

External Interface C
is used for converted
GCI-to-PCM Highway
frame sync and clock

CLK FSC

GCI
Transceiver

External Interface A

DD DU

CLK FSC

DD DU

Tx

Rx

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 12-5

Serial Communications Overview
12.3 SERIAL COMMUNICATIONS INTRODUCTION
In serial communications, one data bit at a time is transmitted through a single wire or
communication channel. Because a processor data bus uses parallel communications
(more than one data bit is transmitted at the same time through more than one wire), the
communications channel must convert data to serial at the transmitter and then back to
parallel at the receiver. In addition, the timing of long streams of bits must be the same for
the transmitter and the receiver, or errors result.

12.3.1 Asynchronous and Synchronous Communications
In asynchronous serial communications, the receiver and transmitter have independent
clocks. Synchronization problems are avoided by not sending long, uninterrupted streams
of bits. Instead, data bits are transmitted one character at a time. Each character can be
from four to nine data bits, and is preceded by a start bit and followed by a stop bit. The
start bit, character, and stop bit together are called a frame. Asynchronous communication
does not require continuous data so timing must only be maintained within each character;
the receiver can resynchronize between frames. In addition, frames can be sequenced to
form packets of data.

In synchronous serial communications, timing is determined by transmitting a clock signal
along with the data. The channel transmits blocks of bits or characters without a start or a
stop bit; the clock ensures the transmitter and receiver are synchronized. While this
addresses the timing problem, the receiver must also be able to determine the beginning
and end of a block of data. To achieve this, each block of data has some start and end bits.
Other control information may be included. The data plus the control information is called
a frame. The start-bit and end-bit patterns vary based on the protocol, and are sometimes
called preamble and postamble bits, or flags.

Asynchronous communications is simpler to use but has a higher overhead than
synchronous communications, and as such is better suited for small blocks of data that
transmit in bursts (e.g., a keyboard or terminal). Synchronous communications is better
suited for continuous large data blocks and higher speeds (e.g., HDLC frames), as many
bytes of data are sent without overhead.

12.3.2 Hardware Flow Control
Both synchronous and asynchronous communications can have problems when a
transmitter sends the data faster than the receiver is ready for it. Typically, a receiver
allocates a data buffer with a certain length. After the data is processed, the receiver clears
the buffer so it can receive more data. However, the receiver buffer can overflow if new data
is received before the last received data is read. Hardware flow control is a method to
eliminate the possibility of overrun errors. The Am186CC/CH/CU microcontrollers support
the clear-to-send/ready-to-receive (CTS/RTR) protocol on the UART and High-Speed
UART.

The Am186CC and Am186CH microcontrollers also support the clear-to-send/ready-to-
receive (CTS/RTR) protocol on the HDLC ports.

The CTS/RTR protocol is a symmetrical interface between two serial ports, and provides
flow control when both ports are sending and receiving data, as shown in Figure 12-5.

CHCC
12-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Serial Communications Overview
Figure 12-5 CTS/RTR Protocol

12.3.3 FIFOs
Another way to reduce data overflow is to use a hardware FIFO (First In First Out data
buffer). A hardware FIFO queues up the bytes until the receiver is ready for them. A FIFO
is classified by its width and depth. The width specifies the number of bits in a word; the
depth, the number of those words that can be queued. So, a 9x16 FIFO can queue 16 9-bit
words before overflowing. FIFOs can also be useful when data arrives during an interrupt.

In the Am186CC microcontroller, FIFOs are available for the High-Speed UART, HDLC,
and USB ports.

In the Am186CH HDLC microcontroller, FIFOs are available for the High-Speed UART and
HDLC ports.

In the Am186CU USB microcontroller, FIFOs are available for the High-Speed UART and
USB ports.

12.3.4 Polled, Interrupt, and DMA Modes
Serial communications can occur in polled, interrupt, or DMA modes. Polled mode disables
interrupts and the DMA controller. The software loops on a status register, reading in all
wait situations. In interrupt mode, interrupts are enabled. Software does other tasks while
waiting for the interrupt. In DMA mode, hardware performs the entire transfer, with no
software intervention except for errors. For information about interrupts, see Chapter 7,
“Interrupts.” For information about DMA, see Chapter 8, “DMA Controller.”

In the Am186CC/CH/CU microcontrollers, the serial communications peripherals support
the three modes as follows:

■ The UART and High-Speed UART support polled, interrupt, and DMA modes.

■ The SSI only supports polled mode.

■ In the Am186CC and Am186CH microcontrollers, the HDLC channels support polled,
interrupt, and DMA modes.

■ In the Am186CC microcontroller, GCI supports polled and interrupt modes but not DMA
mode.

■ In the Am186CC and Am186CU microcontrollers, USB supports polled, interrupt, and
DMA modes.

Transmitter

CTS

RTR CTS

RTR

CTS = Input signal to the transmitter; clear to send input

Port 1 Port 2
Transmitter

Receiver

Receiver

RTR = Output signal from the receiver; ready to receive output

CC

CH

CU

CHCC

CC

CUCC
Am186™CC/CH/CU Microcontrollers User’s Manual 12-7

Serial Communications Overview
12.3.5 Simplex, Half-Duplex, and Full-Duplex Systems
In serial communications, a simplex system can transmit data in only one direction; a half-
duplex system can send data in either direction, but not both at the same time; a full-duplex
system can send data in both directions simultaneously.

In the Am186CC/CH/CU microcontrollers, the SSI supports half-duplex transfers, and the
UART and High-Speed UART support full-duplex transfers.

In the Am186CC and Am186CH microcontrollers, the HDLC channels support full-duplex
transfers.

In the Am186CC and Am186CU microcontrollers, USB supports half-duplex transfers.

CHCC

CUCC
12-8 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
13 A
S

SYNCHRONOUS
ERIAL PORTS (UARTS)
13.1 OVERVIEW
The Am186CC/CH/CU microcontrollers each provide two independent asynchronous serial
ports: a Universal Asynchronous Receiver/Transmitter (UART) and a High-Speed UART.
The UARTs support the following features:

■ Up to 115.2 Kbaud rate (UART) or up to 460 Kbaud rate (High-Speed UART)

■ Automatic baudrate detection with enhancements to compensate for distortion of start
bit (High-Speed UART only)

■ 32-byte receive and 16-byte transmit FIFOs with threshold at half full (High-Speed UART
only)

■ Receive-character-matching for up to six characters including address-bit matching
(High-Speed UART only)

■ 7-, 8-, or 9-bit data transfers

■ Address bit generation and detection in 7- and 8-data-bit frames

■ Extended read and write modes that allow word-wide DMA transfers

■ Multidrop protocol (9-data-bit) support

■ Use of processor clock or external clock signal for generation of baud clock

■ Full-duplex operation

■ One or two stop bits

■ Even, odd, or no parity

■ Break generation and detection

■ Programmable to drive either High or Low on TXD line during break

■ Automatic hardware flow control using the clear-to-send/ready-to-receive (CTS/RTR)
protocol

■ DMA to and/or from the serial ports using the general-purpose DMA channels

■ Double-buffered transmit and receive

■ Individually maskable interrupt requests for the following conditions:

– Receive FIFO threshold reached (High-Speed UART only)
– Transmit FIFO threshold reached (High-Speed UART only)
– Receive FIFO overflow (High-Speed UART only)
– Receive data character match (High-Speed UART only)
– Transmit FIFO empty (High-Speed UART only)
– Break detected
– Received character with address bit set
– Receive data available
– Transmitter able to accept new data
– Framing error detected
Am186™CC/CH/CU Microcontrollers User’s Manual 13-1

Asynchronous Serial Ports (UARTs)
– Receive overflow error detected
– Parity error detected
– Transmitter empty
– Receive line idle

The High-Speed UART interface has been designed so that code written to run on the
UART runs on the High-Speed UART with no modification other than adjusting the register
offsets. The High-Speed UART interface maintains all bits and bit positions in the UART
interface. The High-Speed Serial Port Status (HSPTAT) register contains additional status
bits, but these bits read as zeros unless the associated function is enabled. Code written
for the UART that writes zeros to reserved bits should run identically on the High-Speed
UART.

13.2 BLOCK DIAGRAM
Figure 13-1 shows the UART and High-Speed UART block diagram. Features specific to
the High-Speed UART are marked “High-Speed UART Only”. UART signal names begin
with “SP”; High-Speed UART signal names begin with “HSP”. Signals for both start with
“(H)SP.”

Figure 13-1 UARTs Block Diagram

Character
Match
(High-
Speed

UART Only)

Write DATA15–DATA0
Read DATA15–DATA0

BLOCK_SELECT
AD4–AD1

WR
RD

(H)SP_TXDRQ

(H)SP_RXDRQ

Interrupt Request

Pad Signals

CO_TXD_(H)U

CI_CTS_(H)U_L

CI_UCLK
External Clock

CI_RXD_(H)U

CO_RTR_(H)U_L

Baud Clock

Derived
RX Clock

Receiver

TX Clock Enable

Interrupt

Transmit CONTROL

Transmit DATA

Transmit STATUS

BAUD CONTROL

BAUD DIVISOR

Autobaud Registers

(High-Speed UART Only)

New Baud Value
(High-Speed UART Only)

Receive CONTROL

Receive DATA

Receive STATUS

Char Match Regs
(High-Speed UART Only)

Status Register
Interrupt Mask Register

Configuration Bits

(H)SP_REG

HSP_TXFIFO
(High-Speed
UART Only)

HSP_RXFIFO
(High-Speed
UART Only)

Autobaud
(High-
Speed

UART Only)

Transmitter

Generator

Request

Transmit
Data

Clear-To-
Send

Receive
Data

Ready-
To-
Receive

Generator
13-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Asynchronous Serial Ports (UARTs)
13.3 SYSTEM DESIGN
Table 13-1 lists the UART signals that are multiplexed with other microcontroller functions.
Pinstraps are sampled only at external reset and do not affect the pin’s other functions, so
they are not shown in this table. Other multiplexed signals, when enabled, either disable or
alter any other functions that use the same pin.

.

13.4 REGISTERS
The registers listed in Table 13-2 program the UARTs: 8 for the UART and 15 for the High-
Speed UART. Appendix A summarizes the bits in all the registers. For a complete description
of all the peripheral registers, see the Am186™CC/CH/CU Microcontrollers Register Set
Manual, order #21916.

In addition to these registers, the ITF4 bit field in the System Configuration (SYSCON)
register of the Am186CC microcontroller configures external interface 4 for the HDLC or
the UARTs.

In the Am186CH and Am186CU microcontrollers, the ITF4 bit field should be set to 10b.

Table 13-1 UARTs Multiplexed Signals

Signal Function
Multiplexed

Signal(s)
Default
Signal

UART

RXD_U Receive data UART
DCE_RXD_D
PCM_RXD_D

PIO26
PIO26

TXD_U Transmit data UART
DCE_TXD_D
PCM_TXD_D

PIO20
PIO20

CTS_U Clear-to-send UART
DCE_TCLK_D
PCM_FSC_D

PIO24
PIO24

RTR_U Read-to-receive UART
DCE_RCLK_D
PCM_CLK_D

PIO25
PIO25

High-Speed UART

RXD_HU Receive data High-Speed UART PIO16 PIO16

TXD_HU Transmit data High-Speed UART — TXD_HU

CTS_HU Clear-to-send High-Speed UART
DCE_CTS_D
PCM_TSC_D

PIO46
PIO46

RTR_HU Read-to-receive High-Speed UART
DCE_RTR_D

PIO47
PIO47

CC

CH CU
Am186™CC/CH/CU Microcontrollers User’s Manual 13-3

Asynchronous Serial Ports (UARTs)
13.5 OPERATION

13.5.1 Usage
Note: Before using the UARTs, ensure multiplexed pins are configured to reflect the use
of the UARTs and not other functionality (see Table 13-1 on page 13-3).

To use the UART and the High-Speed UART, software must program the bits described in
the following procedures. The procedures include transmit, receive, and autobaud mode
(High-Speed UART only). The High-Speed UART has the same basic registers as the UART
(plus some additional ones). These registers are named the same except for an H in front
of the High-Speed UART register name. Throughout this chapter, an “(H)” in front of the

Table 13-2 UARTs Register Summary

Offset
Register
Mnemonic

Register Name Description

High-Speed UART

260h HSPCON0 High-Speed Serial Port Control 0 Configures and enables serial port.

262h HSPCON1 High-Speed Serial Port Control 1 Configures serial port.

264h HSPSTAT High-Speed Serial Port Status
Provides information about the current status
of the serial port.

266h HSPIMSK High-Speed Serial Port Interrupt Mask
Enables interrupts based on condition of status
bits.

268h HSPTXD High-Speed Serial Port Transmit Data Provides data to transmitter.

26Ah HSPRXD High-Speed Serial Port Receive Data Contains data read over serial line.

26Ch HSPRXDP
High-Speed Serial Port Receive Data
Peek

Reads data in Receive Data register without
changing condition of serial port.

26Eh HSPBDV
High-Speed Serial Port Baud Rate
Divisor

Specifies a clock divisor for generation of the
serial clock.

270h HSPM0
High-Speed Serial Port Character
Match 0

Each register can be programmed with two
characters for use with automatic character
matching.

272h HSPM1
High-Speed Serial Port Character
Match 1

274h HSPM2
High-Speed Serial Port Character
Match 2

276h HSPAB0 High-Speed Serial Autobaud 0

Each register contains values used as baud
divisors during autobaud.

278h HSPAB1 High-Speed Serial Autobaud 1

27Ah HSPAB2 High-Speed Serial Autobaud 2

27Ch HSPAB3 High-Speed Serial Autobaud 3

UART

280h SPCON0 Serial Port Control 0

Behaves the same as the High-Speed UART
registers but for the UART port.

282h SPCON1 Serial Port Control 1

284h SPSTAT Serial Port Status

286h SPIMSK Serial Port Interrupt Mask

288h SPTXD Serial Port Transmit Data

28Ah SPRXD Serial Port Receive Data

28Ch SPRXDP Serial Port Receive Data Peek

28Eh SPBDV Serial Port Baud Rate Divisor
13-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Asynchronous Serial Ports (UARTs)
register name indicates that both the UART and the High-Speed UART registers are being
described.

13.5.1.1 Transmit

This section describes the procedure for programming a transmit. To program a receive,
see page 13-6. To use autobaud mode, see page 13-7. Transfers can be done in Polled,
Interrupt, or DMA modes.

13.5.1.1.1 Initializing the Transmitter
Initialize the transmitter with the following steps:

1. Disable the UART by clearing the TMODE bit of the (H)SPCON0 register to 0.

Software can change interrupt masks without disabling the TMODE bit.

2. Set the baud rate with the (H)SPBDV register.

For information about detecting the baud rate automatically, see “Autobaud Mode (High-
Speed UART Only)” on page 13-7.

3. Set the applicable configuration options in the (H)SPCON1 register: break value,
extended write, external/internal clock, and FIFOs (High-Speed UART only). If software
enables FIFOs with the TFEN bit, it should also set the TFLUSH bit at the same time
(or before) to flush the FIFO.

4. Set the interrupts to be taken with the (H)SPIMSK register. Bits in this register are
second-level interrupt enables based on status bits in the (H)SPSTAT register. Set first-
level interrupt enables in the (H)SPCON0 register (see step 5). Note that corresponding
bits must be set in both registers for the interrupt to be taken. If software disables an
interrupt in (H)SPIMSK, it can still read the status from the (H)SPSTAT register.

5. Set the applicable configuration options in the (H)SPCON0 register—interrupts, breaks,
CTS/RTR hardware flow control, parity (odd, even, or none), address bit enable, number
of data bits in serial frame (7 or 8), and stop bit length (one or two)—and enable the
transmit by setting the TMODE bit to 1. All of these bits can be set simultaneously, but
the TMODE bit cannot be set before any of the other bits described in steps 2–5.

13.5.1.1.2 Transmitting Data
When the transmitter is initialized, to send data:

1. Verify that the THRE bit in the (H)SPSTAT register is set to 1 to ensure the transmit
register can be written without loss of data.

2. If FIFOs are being used (High-Speed UART only), instead of polling the THRE bit, verify
that the FIFO is not yet full (TTHRSH bit in the HSPSTAT register is set to 1).

3. To send an address bit with a particular frame when extended writes are disabled
(EXDWR in (H)SPCON1 is 0):

a. Verify that TEMT = 1 to ensure any other transmissions have completed (the
transmitter and the transmit shift register are both empty).

b. Set the transmit AB bit in the (H)SPCON0 register to 1 if this address bit should be
sent as the MSB of TDATA for this frame.

When extended writes are enabled, write the value of the address bit with the data. In
this situation, the value of TEMT does not matter.

4. Write data to the (H)SPTXD register (this sets the THRE bit to 0).
Am186™CC/CH/CU Microcontrollers User’s Manual 13-5

Asynchronous Serial Ports (UARTs)
When extended writes and address bits are enabled, 9-bit data should be written to the
(H)SPTXD register. The first word should include the AB bit value (set the transmit AB
(AB) bit in the (H)SPTXD register to 1 followed by the address bits in the TDATA field).
Then the following words should contain AB = 0 and the data for the designated address
point.

Hardware stops writing to the (H)SPTXD register when TXDRQ goes to 0; when
TXDRQ = 1, hardware continues writing the data. In the case of DMA, the hardware
handles the data flow from the DMA unit to the SPTXD register automatically using an
internal DMA signal.

5. Wait for the TEMT bit in the (H)SPSTAT register to go to 1 to indicate the on-line transfer
has completed.

13.5.1.2 Receive

The procedure to program a receive is described below. To program a transmit, see
page 13-5. To use autobaud, see page 13-7. Transfers can be done in Polled, Interrupt, or
DMA modes.

13.5.1.2.1 Initializing the Receiver
The following procedure initializes the receiver. Before reconfiguring any options (including
the baud rate), disable any receives. To do this, check that RDR=0 and IDLED=1 in the
(H)SPSTAT register to ensure no data is in the receiver, and then clear the RMODE bit to 0.
Interrupt masks can be changed without disabling the receiver (clearing RMODE to 0).

13.5.1.2.2 Setting the Baud Rate with the (H)SPBDV Register
1. If character matching is desired (High-Speed UART only), load the High Speed Serial

Port Character Match (HSPM0, HSPM1, and HSPM2) registers with the characters to
be matched. Each match register contains two character fields. Note that 00h is a valid
value so if you do not want the 00h character to be matched, all six character fields
should be initialized, even if it is with the same value.

2. Set the applicable configuration options in the (H)SPCON1 register: break value,
extended read, external/internal clock, and, on the High-Speed UART only, FIFOs and
character matching. If FIFOs are enabled with the RFEN bit, the RFLUSH bit should
also be set at the same time (or before) to flush the FIFO. If comparing characters in
frames with address bits, the three MAB bits should be configured. Each MAB bit setting
(1 or 0) is used as the address bit for both characters in the corresponding match register.
As with the character match registers, all three bits should be set.

3. Set the interrupts to be taken with the (H)SPIMSK register. Bits in this register enable
interrupts based on interrupts set in the (H)SPCON0 register. Note that corresponding
bits must be set in both registers for the interrupt to be taken. If an interrupt is disabled
in (H)SPIMSK, the status can still be read.

4. Write all the bits in the (H)SPSTAT register to 0 to clear any status.

5. Set the applicable configuration options in the (H)SPCON0 register—interrupts, breaks,
CTS/RTR hardware flow control, parity (odd, even, or none), address bit enable, number
of data bits in serial frame (7 or 8), and stop bit length (one or two)—and enable the
receive by setting the RMODE bit in the (H)SPCON0 register to 1. All of these bits can
be set simultaneously but RMODE cannot be set before any of the other bits described
in steps 1–5.
13-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Asynchronous Serial Ports (UARTs)
13.5.1.2.3 Receiving Data
When the receiver is initialized, to receive data:

1. Read the (H)SPSTAT register:

a. Verify that the RDR bit is set to 1 to ensure the RDATA field contains valid data.

b. Read the other status bits to check the status on the last byte received and clear any
status bits that were set.

2. Read data from the (H)SPRXD register (this clears the RDR bit to 0). The (H)SPRXDP
register is also available to peek at the data. This register is a duplicate of the receive
register; however, reading it does not clear the RDR bit.

13.5.1.3 Autobaud Mode (High-Speed UART Only)

The procedure to program autobaud mode is described here. To program a transmit, see
page 13-5; to program a receive, see page 13-6.

1. Verify that the TMODE and RMODE bits in the HSPCON0 register are cleared to ensure
there are no transfers in progress.

2. Set the baud rate with the HSPBDV register. The register value cannot be 0; a value
must be written into this register before enabling a transmit or receive.

3. Set the autobaud enable (ABAUD) bit in the HSPCON1 register to 1.

4. Optionally, to address errors in computing autobaud, program the High Speed Serial
Port Autobaud (HSPAB0, HSPAB1, HSPAB2, and HSPAB3) registers with thresholds
and divisors. This method compensates for distortion of start bit width resulting from
external effects.

5. Clear all the bits in the HSPSTAT register to 0.

6. Set the applicable configuration options in the HSPCON0 register—interrupts, breaks,
CTS/RTR hardware flow control, parity (odd, even, or none), address bit enable, number
of data bits in serial frame (7 or 8), and stop bit length (one or two)—and enable the
receive by setting the RMODE bit in the HSPCON0 register to 1. These bits can be set
simultaneously, but RMODE cannot be set before any of the other bits described in steps
2–6. If no information is known about the data to be received, set the options to 8 bits,
no parity, and no address bit. The TMODE bit must be 0; a transmit cannot be occurring
while the receiver is computing autobaud.

7. Wait for the ABAUD bit in the HSPCON1 register to go to 0 to indicate that the autobaud
operation is complete. The computed baud divisor is automatically copied into the
HSPBDV register, and the autobaud (ABAUD) bit in the HSPCON1 register is cleared.

8. Read the new baud divisor value from the HSPBDV register and check that it is a valid
divisor value or is acceptable.

9. Wait for the RDR bit in the HSPSTAT register to be set to 1 to ensure the RDATA field
contains valid data.

10.Read data from the HSPRXD register (this clears the RDR bit to 0). In autobaud mode,
the receiver is expecting a 1 in the least significant bit of the data (i.e., a valid autobaud
character such as an ascii a). Software must check that this value is valid.

This procedure sets the autobaud rate for both the transmitter and the receiver. The receiver
can continue to receive data unless there is a need to reconfigure the options (see “Receive”
on page 13-6). The transmitter can now be enabled by setting the TMODE bit to 1.
Am186™CC/CH/CU Microcontrollers User’s Manual 13-7

Asynchronous Serial Ports (UARTs)
13.5.2 Data
In asynchronous serial port communication, data is transmitted in frames. Each frame
begins with a start bit (Low) and ends with one or two stop bits (High). After the start bit is
transmitted, the data bits are transmitted serially, least significant bit first. Data can be 7 or
8 bits, plus an optional address bit. For more information, see “Address Bits” on page 13-9.

The data bits may be followed by an optional parity bit. A parity bit ensures there is an even
or odd number of bits in the transmission. The UARTs support even, odd, or no parity. Even
parity forces an even number of 1s in the data field by changing the parity bit as needed;
odd parity forces an odd number of 1s. Parity checking allows the detection of single bit
errors in each frame.

The UARTs also support transmission of either one or two stop bits. A second stop bit
increases the spacing between back-to-back serial frames and can be useful in reducing
frame errors due to clock frequency inconsistencies between devices. All these options are
configured by bits in the (H)SPCON0 register. The TXD line is always held High between
frames.

In asynchronous serial communication, an idle line can be differentiated from an active
receive line by the absence of start bits in the data stream. In other words, a transmission
of a data stream of FFh in N-8-1 mode (no parity, eight data bits, one stop bit) results in a
Low bit, the start bit, every tenth bit time. When the line is truly idle, there are no Low bits.
The UARTs set the IDLED bit in the (H)SPSTAT register when 40 bit times have elapsed
without a Low bit and there is unread data in the receiver.

Figure 13-2 shows the frame configuration and the bit stream sequence for the UARTs.
Figure 13-3 shows the timing for a transmission or a receive.

Figure 13-2 UARTs Frame

Figure 13-3 UARTs Timing

13.5.2.1 Data Overflow

The UART registers contain two bits to handle receiver overrun errors: OER and OERIM.
An overrun error occurs when the serial port overwrites valid, unread data in the receive
data register or receive FIFO, resulting in a loss of data.

Stop
 Bit7 Data Bits

Optional
8th

Data Bit

Optional
Address Bit

Optional
Parity

Bit

Optional
2nd

Stop Bit

Start
 Bit

Serial Clock

TXD or RXD

idle 0 1 0 1 1 0 0 idle

Asynchronous transmission of 03Ah as 8 bits of data (LSB first), even parity, one stop bit

1 stopparitystart

asynchronous serial frame

serial data
13-8 Am186™CC/CH/CU Microcontrollers User’s Manual

Asynchronous Serial Ports (UARTs)
The OER bit in the (H)SPSTAT status register is set to 1 when the receiver has a data
overrun error. When extended reads are enabled, the OER bit in the (H)SPRXD receive
data register is set to 1, and then a 1 is written to the OER bit in the status register.

When FIFOs are enabled, the OER bit in the receive data register is passed through the
FIFO with the last character of overrun data (i.e., the first data character after the overrun
loss). The OERIM bit was added to provide an immediate interrupt. This bit bypasses the
FIFO; OERIM is set immediately after the overflow occurs.

Both the OER and OERIM bits must be cleared by software.

13.5.2.2 Address Bits

When set, an address bit indicates that the present frame is a special frame. On the
microcontroller, address bit generation and detection are supported in 7- or 8-data-bit
frames. When the address bit is set, the other 7 or 8 bits of data in the frame are interpreted
as a code; which type of code depends on the configuration. All transmissions that follow
this address frame are directed as specified until another frame is received with the address
bit enabled and with a different code.

One possible use for the code following the address bit (resulting in its name) is for the
address of a slave peripheral device on a multidrop (also called multipoint) serial line, where
one master device is talking to multiple slave devices. Although named an address bit, this
bit actually behaves as an extended bit that may set an interrupt; the data bits that follow
the bit do not need to be used as an address. Another possible use is for encoded discrete
commands (e.g., sending a hang-up command to a modem). What the code is used for,
and how, is determined by software.

To use the address bit in the microcontroller, the ABEN and D7 bits in the (H)SPCON0
register must be configured. In addition, the transmit AB bit must be set for a transmit; the
received AB bit is set by hardware for a receive.

When the ABEN bit is set to 1, address bits are enabled. If the D7 bit is 0, serial frames
contain a low start bit, eight data bits, an optional address bit, then one or two High stop
bits (transmitted least significant bit first). If the D7 bit is set to 1, serial frames contain a
low start bit, seven data bits, an optional address bit, and one or two stop bits.

13.5.2.2.1 Transmitting with Address Bit Set
When ABEN is set in a transmit, the transmit AB field of the (H)SPCON0 register is sent
as the MSB bit after the 7 or 8 data bits in TDATA.

When extended writes are enabled (EXDWR = 1), the transmit AB bit in the (H)SPTXD
register is used instead. Because this register also contains the data to be transmitted, this
allows a single write to replace the two writes needed when extended writes are not enabled.

When extended writes are enabled, the (H)SPTXD register supports word-wide DMA
transfers.

When extended writes are not enabled, the value of the transmit AB field is sampled during
the transmission of the final data bit and is used to determine the value of the TXD signal
for one bit time following the last data bit and before the transmission of the stop bit. The
transmit AB field is cleared by the UARTs after reading its value. Because the transmit AB
bit is not double buffered, software that intends to send a frame with the address bit set
must wait until the transmitter is empty (TEMT=1) before setting the transmit AB bit and
writing the data for the next frame into the transmit data register.
Am186™CC/CH/CU Microcontrollers User’s Manual 13-9

Asynchronous Serial Ports (UARTs)
13.5.2.2.2 Receiving with Address Bit Set
In a receive, when ABEN is set in the HSPCON0 register, the most significant bit of received
data can be read in the AB bit in the (H)SPSTAT register. The received AB bit can optionally
generate an interrupt (if the AB bit is set in the HSPIMSK register and the RSIE bit is set
in the HSPCON0 register). The received AB field must be cleared by software after reception
of a frame for which the address bit was set.

When using extended reads (the EXDRD bit is set in the (H)SPCON1 register), the AB bit
in the (H)SPRXD register is used instead. This allows reads from a single register, rather
than requiring an additional read of the (H)SPSTAT register. In addition, the AB bit in the
(H)SPRXD register is updated automatically; however, software must clear the AB bit in
the (H)SPSTAT register.

13.5.2.3 Receive Status and Data

The EXDWR and EXDRD bits in the (H)SPCON1 register enable the programmer to use
the upper bytes of the Transmit Data ((H)SPTXD) and Receive Data ((H)SPRXD) registers
for transmitted data (the transmit and receive address bits and receive data status).

Receive status bits are set in the High-Speed Serial Port Status (HSPSTAT) register when
the associated data byte is available to be read from the receive data register. When FIFOs
are enabled, this occurs when the byte reaches the top of the FIFO. The read-only Receive
Data Ready (RDR) bit in the (High-Speed) Serial Port Status (H)SPSTAT register reports
when received data is available. This bit is cleared by hardware when there is no valid data
waiting to be read from the (H)SPRXD register. If FIFOs are enabled, the FIFO is advanced
and the next byte reaches the top of the FIFO when the previous data is read.

Under some conditions, such as when the DMA interface is being used, it may be useful
for software to be able to examine the received character without affecting the status register
or removing the data from the FIFO. The UARTs support this through the use of an alternate
address for the receive data register (in the (H)SPRXDP register). This address allows
software to peek at the value of the receive data register.

13.5.2.4 Extended Reads and Writes

Both serial ports on the microcontroller support extended reads of the receive data register
and extended writes of the transmit data register.

When extended reads are enabled, by setting the EXDRD bit in the (H)SPCON1 register
to 1, the serial port receive register supports 16-bit reads. The low byte of the register
contains the normal receive data while the high byte contains status associated with the
current frame, including the value of the address bit. See the Am186™CC/CH/CU
Microcontrollers Register Set Manual, order #21916, for a full description. Unlike the serial
port status register, the high byte of the receive data register in extended reads reflects
only the current frame. The accumulated status can be read from the status register normally
and bits set in the status register must be cleared by software.

When extended writes are enabled, by setting the EXDWR bit in the (H)SPCON1 register
to 1, the serial port transmit register supports 16-bit writes. Unlike extended reads which
have a broad application, extended writes are useful only for applications that are using the
address bit. When extended writes are enabled, the value of the address bit is written
directly to the transmit register. This eliminates the need to write the address bit value to
the (H)SPCON0 register.

Both extended reads and extended writes support word-wide DMA transfers. This allows
full automation of the transmission of data streams containing address bits. If DMA is
enabled with extended reads, status for each frame is stored along with the data for that
13-10 Am186™CC/CH/CU Microcontrollers User’s Manual

Asynchronous Serial Ports (UARTs)
frame. At the end of the receipt of a sequence of frames, software can examine the value
of the (H)SPSTAT register to determine if any significant status bits have been set. If the
accumulated status does not reflect action required by software, the status bytes can be
ignored, otherwise software can traverse the buffer searching for the status of interest and
its associated data byte.

The microcontroller’s general-purpose DMA channels support compression and
decompression of data streams in part to support the extended read and write features of
the serial ports. Status can be removed from a data stream through data compression using
the DMA. For more information, see Chapter 8, “DMA Controller.”

13.5.3 FIFOs (High-Speed UART Only)
The High-Speed UART provides a 32-byte FIFO for receive data and a 16-byte FIFO for
transmit data. The use of the FIFOs can be enabled or disabled by software. The FIFOs
can be operated in Polled or Interrupt mode, or they can be serviced using the general-
purpose DMA channels. The High-Speed UART status register provides the RTHRSH and
TTHRSH bits, which reflect the state of the receive and transmit FIFOs, respectively. When
the RTHRSH bit is set, the receive FIFO has reached its threshold value (i.e., the receive
FIFO is at least half full). When the THRSH bit is set, the transmit FIFO has reached its
threshold value (i.e., the transmit FIFO is at least half empty). The HSPIMSK register
contains bits that enable or disable interrupt generation based on the RTHRSH and
TTHRSH bits. In this case, interrupt generation on the RDR (Receive Data Ready) and
THRE (Transmit Holding Register Empty) bits should be disabled.

FIFOs are initialized to the empty condition on reset. For subsequent transfers, the transmit
FIFO and the receive FIFO should be flushed by software by setting the TFLUSH and
RFLUSH bits in the HSPCON1 register.

All transmit data is written to a single address, which is addressable as the transmit data
register (HSPTXD) in both FIFO and non-FIFO modes. When the FIFO is not full, the High-
Speed UART status register has the THRE bit set, indicating that data can be written to the
FIFO without overwriting previously written data.

Receive data is read from a single address, which is addressable as the High-Speed UART
Receive Data (HSPRXD) register in both FIFO and non-FIFO modes. When the FIFO is
not empty, valid data can be read from HSPRXD; this is indicated by the Receive Data
Ready (RDR) bit in the HSPSTAT status register. When the last bit of data has been removed
from the FIFO, the RDR bit reads 0.

The status associated with each of the FIFO entries can be determined by reading the
Serial Port Status (HSPSTAT) register before the associated data is read from the FIFO.
When a byte is read from the FIFO, the next received character and its status move to the
top of the FIFO and can be read from the receive data and status registers. The status must
be read before the data is read. Alternatively, extended reads can be enabled. Extended
reads allow status to be read with data as it moves to the top of the FIFO. Reading the
status using extended reads differs from what is shown in the serial port status register in
that it reflects the current frame only. The serial port status register functions normally during
extended reads and continues to reflect accumulated status and to generate interrupts
based on that status as configured.

13.5.3.1 Transmit FIFO

The transmit FIFO provides for up to 16 bytes of transmit data plus the value of the
associated address bit, if applicable.
Am186™CC/CH/CU Microcontrollers User’s Manual 13-11

Asynchronous Serial Ports (UARTs)
When both the FIFO and a transmit have been enabled (with the TFEN and TMODE bits),
hardware immediately checks the Transmit FIFO Threshold Reached (TTHRSH) bit in the
status register. The transmit FIFO threshold value is set to half-empty (FIFO contains eight
bytes of data) and is not programmable. The High-Speed UART can be programmed to
generate a maskable interrupt when the transmit FIFO reaches the threshold value.
Software must clear the TTHRSH bit, but hardware can set it again immediately if the FIFO
contains less than eight entries.

FIFO underflow occurs when the transmit FIFO becomes completely empty. The High-
Speed UART can be programmed with the TEMT bit to generate an interrupt on FIFO
underflow.

13.5.3.2 Receive FIFO

The receive FIFO provides for up to 32 bytes of receive data along with status associated
for each byte, including special-character matching, framing and parity error flags, and the
value of the address bit, if applicable.

When both the receiver and the receive FIFO have been enabled, through the RMODE bit
for the receiver and the RFEN bit for the receive FIFO, the serial port hardware immediately
checks for a receive FIFO threshold reached condition. The receive FIFO threshold value
is not programmable and is set at half full or 16 bytes of data present in the FIFO. The High-
Speed UART can be programmed to generate a maskable interrupt when the receive FIFO
reaches the threshold value. Software must clear the RTHRSH bit, but hardware sets it
again immediately if the FIFO contains 17 or more entries.

As data moves to the top of the FIFO, the associated status is placed in the Serial Port
Status (HSPSTAT) register. Status bits are set by the hardware and must be cleared by
software. The serial port can be configured to generate an interrupt based on serial port
status. Each status bit is individually maskable. If an interrupting status condition is detected
in the serial port, DMA requests from the receiver are disabled. This allows the interrupt
service routine to read the data from the receiver (or to peek at the data through the
HSPRXDP register) and take appropriate action. Enabling extended reads allows the status
to be read in a word-wide read from the Serial Port Receive Data (HSPRXD) register. The
status data in the upper byte of an extended read reflects only the current frame. However,
the HSPSTAT register continues to be updated normally and set bits must be cleared by
software.

The IDLED bit in the HSPSTAT register indicates instances where the threshold is never
reached because less than 16 bytes of data were sent. The IDLED bit is set (and can be
used to generate an interrupt with the HSPIMSK register) when the receive data line has
been idle for 40 bit times and receive data is available. This bit must be cleared by software.

FIFO overflow occurs when the receive FIFO is completely full and another character is
received, resulting in the loss of data. In a FIFO overflow condition, the last location of the
FIFO is overwritten with the last byte received. The High-Speed UART can be programmed
to generate a maskable interrupt on FIFO overflow with the OERIM bit.

13.5.3.3 Using the FIFOs in Polled, Interrupt, or DMA Mode

The High-Speed UART FIFOs can be used in Polled, Interrupt, or DMA modes.

Interrupt and DMA modes are described in “Interrupt Sources” on page 13-19 and “Interface
to General-Purpose DMA Channels” on page 13-21. When in Polled mode, the High-Speed
UART behavior is similar to the non-FIFO mode.

In Polled mode, software reads the received data by reading the HSPRXD register. The
HSPSTAT register is updated with the status of the next frame after each read of the receive
13-12 Am186™CC/CH/CU Microcontrollers User’s Manual

Asynchronous Serial Ports (UARTs)
data register. The new status is ORed with the previous status, possibly accumulating status
over multiple frames. For this reason, the status register must be read before the receive
data register to ensure that the status being read is for the current frame. Set status bits
must be cleared by software. When extended reads are enabled, the high byte of the
HSPRXD register contains the status associated with the current frame; however, status
continues to accumulate in the HSPSTAT register. The RDR bit is set when data is available
in the receive FIFO (the value of this bit can be read from the HSPSTAT register or from
the high-byte of an extended read). When the RDR bit is set, valid data is present in the FIFO.

If receive status interrupts are enabled, an interrupt can be generated at the time an error
is detected. The interrupt service routine must read data out of the FIFO until the data which
generated the interrupt reaches the top of the FIFO. At this point, the status register reports
the error condition.

Data to be transmitted is written to the Transmit Data register as in non-FIFO mode.
However, the transmit status reflects the disposition of the FIFO. When the FIFO is not full,
the Transmit Holding Register Empty (THRE) bit is set, indicating that the transmitter can
accept more data. When the FIFO is completely full, the THRE bit is 0. When the transmit
FIFO and the transmit shift register are completely empty, the Transmitter Empty (TEMT)
bit is set. At this point, the transmitter or FIFO can be disabled without loss of data.

13.5.4 CTS/RTR Hardware Flow Control
The microcontroller supports CTS/RTR hardware flow control. Each UART port is provided
with two data signals (TXD_U and RXD_U for the UART, and TXD_HU and RXD_HU for
the High-Speed UART) and two flow control signals (CTS_U and RTR_U for the UART, and
CTS_HU and RTR_HU for the High-Speed UART). Hardware flow control is enabled when
the FC bit in the (H)SPCON0 register is set to 1.

In the CTS/RTR protocol, the receiver asserts clear-to-send (CTS) whenever there is room
in the receiver for more data. The transmitting device should sample CTS before beginning
transmission of each frame. CTS is deasserted when the start bit is detected for the last
frame that can be read without data loss. When FIFOs are disabled, CTS is deasserted
after the start bit for each frame is detected and remains deasserted until the data is read
from the receive data register. When the receive FIFO is enabled, CTS is deasserted after
the start bit is received for the last frame that will fit in the FIFO.

The transmitter samples ready-to-receive (RTR) before transmitting the start bit of each
frame. The RTR signal is not sampled during frame transmission. This allows the receiving
device to deassert RTR any time before the end of the stop bit. The transmitter does not
begin transmitting the start bit for the next frame while RTR is deasserted.

The use of hardware flow control can eliminate the possibility of overrun errors—data loss
due to reception of new data before the last received data has been read. However, there
can be an adverse effect on data throughput. For example, in the case where there is no
receive FIFO, transmission of a second data frame cannot begin until the previous frame's
data has been read. Without hardware flow control, transmission of the next frame may
begin immediately, providing the receiver with one frame time to read the previous frame's
data without data loss. Use of FIFOs or DMA reduces the impact of hardware flow control
on data throughput.

In multidrop systems, typically using the address bit feature of the microcontroller's serial
ports, hardware flow control should not be enabled, or must be restricted to a single pair
of active UARTs.
Am186™CC/CH/CU Microcontrollers User’s Manual 13-13

Asynchronous Serial Ports (UARTs)
Figure 13-4 illustrates the behavior of the RTR_U signal. Figure 13-5 illustrates the behavior
of the RTR_U signal with the FIFO. Note that the RTR_U signal is deasserted as soon as
the serial port begins receiving a character and is reasserted when the data is read from
the receive data register.

Figure 13-4 RTR_U Signal Behavior

Figure 13-5 RTR_HU Signal Behavior with Receive FIFOs

13.5.5 Clock Sources and Baud Rate
The UARTs have two possible clock sources, the processor clock or the UCLK input signal.
The possible clock configurations are shown graphically in Figure 13-6. The XTRN bit in
the (H)SPCON1 register selects the clock source.

The baud clock is generated by dividing the clock source by the value of the Baud Rate
Divisor ((H)SPBDV) register. In addition, the High-Speed UART supports automatic baud
rate detection. The UARTs select the clock from either the CPU clock or the UCLK signal,
independent of any other settings.

In the Am186CC and Am186CU microcontrollers, the USBSOF signal must not be enabled
at the same time as UCLK.

RXD_U

RTR_U

RDR Set RDR Set

Received Data Read

RDR Cleared

RXD_HU

RTR_HU

FIFO

byte 32

receiving byte 32
in FIFO

receiving byte 31

receiving byte 30 FIFO read

FIFO full

start bit for byte 32

CUCC
13-14 Am186™CC/CH/CU Microcontrollers User’s Manual

Asynchronous Serial Ports (UARTs)
Figure 13-6 UARTs Clock

13.5.5.1 Programming the Baud Rate

The formula for determining the baud divisor register value is:

BAUDDIV = (clock frequency / (16 • baud rate))

The maximum baud rate is 1/16th of the CPU clock. The processor clock frequency is the
maximum clock frequency supported on the UCLK input. Table 13-3 shows the baud
divisors for various baud rates and clock speeds. Note that the baud divisor value (BDV) is
shown in both decimal and hexadecimal.

Table 13-3 Baud Rate Table for UARTs

Serial Port Clock Frequency (Processor Frequency or UCLK Frequency)

24 MHz 25 MHz 40 MHz 44.2 MHz 48 MHz 50 MHz

Baud Rate Divisor % Error Divisor % Error Divisor % Error Divisor % Error Divisor % Error Divisor % Error

300 5000d
1388h

0 5208d
1458h

0 8333d
208Dh

0 9208d
23F8h

0 10000d
2710h

0 10417d
28B1h

0

600 2500d
09C4h

0 2604d
0A2Ch

0 4167d
1047h

0 4604d
11FCh

0 5000d
1388h

0 5208d
1458h

0

1200 1250d
04E2h

0 1302d
0516h

0 2083d
0823h

0 2302d
08FEh

0 2500d
09C4h

0 2604d
0A2Ch

0

2400 625d
0271h

0 651d
028Bh

0 1042d
0412h

0 1151d
047Fh

0 1250d
04E2h

0 1302d
0516h

0

9600 156d
9Ch

0.2 163d
A3h

-0.1 260d
0104h

0.2 288d
0120h

-0.1 313d
0139h

-0.2 326d
0146h

-0.1

19200 78d
4Eh

0.2 81d
51h

0.5 130d
82h

0.2 144d
90h

-0.1 156d
9Ch

0.2 163d
A3h

-0.1

38400 39d
27h

0.2 41d
29h

-0.8 65d
41h

0.2 72d
48h

-0.1 78d
4Eh

0.2 81d
51h

0.5

57600 26d
1Ah

0.2 27d
1Bh

0.5 43d
2Bh

0.9 48d
30h

-0.1 52d
34h

0.2 54d
36h

0.5

115200 13d
0Dh

0.2 14d
0Eh

-3.2 22d
16h

-1.4 24d
18h

-0.1 26d
1Ah

0.2 27d
1Bh

0.5

230400 7d
07h

-7.5 7d
07h

-3.2 11d
0Bh

-1.4 12d
0Ch

-0.1 13d
0Dh

0.2 14d
0Eh

-3.2

460800 3d
03h

7.8 3d
03h

11.5 5d
05h

7.8 6d
06h

-0.1 7d
07h

-7.5 7d
07h

-3.2

baud
divisor

CPU Clock

UCLK

Divide

Autobaud clock (High-Speed UART only) (HS)UART Clock Select

clock for
oversampling

Stage 1 Oversample
Baud clock
Am186™CC/CH/CU Microcontrollers User’s Manual 13-15

Asynchronous Serial Ports (UARTs)
13.5.5.2 Receiver Bit Sampling

Whenever the receiver is enabled and is not in-frame (i.e., no data frame is currently being
received), it remains in a Search-for-start-bit mode. In this mode, the receiver looks for a
High to Low transition of the RXD input. This sampling is done based on the divided Baud
Clock. When a transition is detected, the receiver waits one-half bit-time, until the expected
midpoint of the start bit, then resamples the RXD input. If RXD is sampled Low, a valid start
bit has been detected and the receiver enters In-Frame mode. If RXD is sampled High, it
is assumed that the initial transition was a glitch and the receiver remains in Search-For-
Start-Bit mode. While in In-Frame mode, the receiver samples each bit one time at the
expected midpoint for that bit.

When the High-Speed UART is configured in Autobaud mode, the High-Speed UART uses
the undivided autobaud clock during the search for the High-to-Low transition while in
Search-For-Start-Bit mode. When the transition is detected, the receiver enters Start-Bit-
Calibration mode. In this mode, the undivided autobaud clock is used to time the duration
from the detection of the initial falling edge to the next rising edge of RXD. The number of
autobaud clocks is divided by 16 and written to the baud divisor register. If the autobaud
registers (HSPAB3–HSPAB0) are active, the value written to the baud divisor register may
be provided by one of these registers. In either case, the receiver enters normal In-Frame
mode, as with frames that do not use autobaud, and the new value of the baud divisor is
used to generate the baud clock for the next and subsequent bits.

13.5.5.3 Detecting the Baud Rate Automatically (High-Speed UART Only)

The High-Speed UART supports automatic baud rate detection (autobaud) by setting the
ABAUD bit in the HSPCON1 register to 1. When in autobaud mode, the detection of a
transmission from High to Low on the receive data signal causes the baud rate timer to
begin counting. A transition from Low to High stops the baud rate timer and causes the
serial port to exit autobaud mode. The baud rate timer runs at the processor clock or at the
external serial port clock rate if enabled (via the XTRN bit in the HSPCON1 register). The
closest possible baud-rate divisor is determined (rounded) and automatically programmed
into the Baud Rate Divisor (HSPBDV) register. The data is reported in the Receive Data
(HSPRXD) register and can be read by software.

For automatic baud rate detection to function correctly, the first data sent must be a Low
bit (the start bit) followed by a High bit (the least significant bit of the data). This allows the
use of the Hayes AT interface, which requires the initial character to be an ascii character a.
Although a framing error may result, software should check the value of the initial character
to verify that it matches the expected character.

There is no automatic determination of parity use or sense, word length, or number of stop
bits.

Figure 13-7 shows the possible error ranges that exist over 167 implied baud divisors. The
worst-case % error occurs when the baud rate expected requires a real number baud divisor
that lies halfway between two integer baud divisors and is rounded up. Assuming 0.3%
error is an acceptable error per bit, autobaud mode that selects a divisor above 166 should
always yield acceptable results. For baud rates that require a baud divisor of less than 166,
the end user must determine whether the High-Speed UART autobaud capability is
appropriate for the application. Figure 13-8 illustrates autobaud detection under various
frequencies.
13-16 Am186™CC/CH/CU Microcontrollers User’s Manual

Asynchronous Serial Ports (UARTs)
Figure 13-7 Worst Case % Error Per Bit vs. Baud Divisor Without Autobaud Enhancement

Figure 13-8 Detectable Baud Ranges for Various Frequencies

The microcontroller also offers an enhancement to autobaud detection. Start bit width
distortion can result in calculation errors. In instances where there is some system
knowledge, baud divisor and threshold values can be programmed to allow for a 25–30%
distortion in the width of the start bit.This method greatly increases the probability that the
correct valid baud rate divisor is selected for higher baud rates, which are at highest risk.

The microcontroller method makes use of the fact that, in most cases, valid baud divisor
values used in a particular application are separated by several integers. Four High-Speed
Serial Port Autobaud registers are provided for this enhancement: HSPAB0, HSPAB1,
HSPAB2 and HSPAB3. Each register contains a divisor value and a threshold value. The
HSPAB3 register must contain the largest programmed divisor value and threshold value,
then HSPAB2, etc. When using fewer than four valid divisor values, software must clear the
unused HSPABx registers or leave them at their default values (00h).

When the registers have been programmed, the High-Speed UART compares the autobaud
calculated baud rate divisor to the threshold values and selects one of the programmed
valid baud rate divisors to use in subsequent data transfers. A calculated value less than

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 166 167

Worst case % error per bit = 1 – BAUD DIV
BAUD DIV + .5

W
o

rs
t

C
as

e
%

 E
rr

o
r

P
er

 B
it

Baud Divisor

33%

.3% .29%4.3%

Error Range

Worst Case % Error

504520 25 30 35 40

B
au

d
 R

at
es

 (
K

b
au

d
)

 Frequency (MHz)

2

4

6

8

10

12

14

16

18 Questionable

(Baud Divisors < 166)
 Autobaud Detection

Baud Divisor = 166

 Guaranteed

(Baud Divisors > 166)
 Autobaud Detection
Am186™CC/CH/CU Microcontrollers User’s Manual 13-17

Asynchronous Serial Ports (UARTs)
or equal to threshold 1 and greater than threshold 0 selects the divisor 1 value, and so on.
A value greater than threshold 3 uses the calculated divisor value. If the registers are not
programmed (are in reset state), the High-Speed UART uses the autobaud calculated baud
divisor value. Figure 13-9 illustrates this concept.

Table 13-4 shows two examples of using the autobaud registers to enhance autobaud
detection.

Figure 13-9 Autobaud Enhancement

In autobaud mode, the receiver determines a value for the baud divisor register based on
the sampled duration of the start bit. The start bit duration in clocks is converted to a value
to be written to the baud divisor register by dividing by 16, as shown in “Programming the
Baud Rate” on page 13-15.

The configuration in example A does not support a baud rate of 57600 since this baud rate
is not represented in the table and requires a baud divisor less than that programmed in
HSPAB3. In general, any baud divisor below the maximum divisor programmed in the

Table 13-4 Examples of Autobaud Enhancement

Range

Example Register ABDIV ABTHRSH Baud Rate
of Clocks in

Start Bit
Baud Divisors

A) @24MHz

HSPAB3 9Ch A0h 9600 810h–A0Fh 81h–A0h

HSPAB2 4Eh 80h 19200 350h–80Fh 35h–80h

HSPAB1 27h 35h 38400 190h–34Fh 19h–34h

HSPAB0 0Dh 18h 115200 010h–18Fh 01h–18h

B) @48MHz

HSPAB3 34h 32h 57600 310h–32Fh 31h–32h

HSPAB2 1Ah 30h 115200 190h–30Fh 19h–30h

HSPAB1 0Dh 18h 230400 010h–18Fh 01h–18h

HSPAB0 00h 00h

ABDIV0

ABTHRSH0

ABTHRSH1

ABTHRSH2

ABTHRSH3

ABDIV1

ABDIV2

ABDIV3

smallest number programmed

largest number programmed

Calc. Divisor
13-18 Am186™CC/CH/CU Microcontrollers User’s Manual

Asynchronous Serial Ports (UARTs)
HSPABx registers, which is not programmed in the ABDIV field for one of the HSPABx
registers, is unattainable for that system.

In example B, the HSPAB0 register is not being used. The value of the ABDIV field for
HSPAB3 is greater than the ABTHRSH field for that register. Although this is not the case
for most systems, it is possible for the replacement divisor to fall outside of the range of
sampled baud rates that generate that divisor.

13.5.6 Interrupt Sources
All UART and High-Speed UART interrupt sources require two interrupt enable bits to be
set before that source is enabled to generate interrupts.

The first level consists of three main interrupt enable bits in the (H)SPCON0 control register.
The Receive Interrupt Enable (RXIE) bit enables interrupts that indicate receive data is
available (the RDR bit in the status register is 1). The Receive Status Interrupt Enable
(RSIE) bit enables interrupts on the condition or status of the received data. The Transmit
Interrupt Enable (TXIE) bit enables interrupts based on the status of the transmit data
(whether the TEMT bit in the status register is 0 or 1).

The (H)SPIMSK register contains the second-level interrupt bits. Even if these bits are set
to 1, interrupts are disabled if the corresponding first-level enable bit is not also set to 1.

Table 13-5 shows the interrupt sources for the UARTs. All first-level enable bits default to
Off (0). The defaults for the second-level bits vary and are listed.

Note that when a receive status bit has generated an interrupt condition and extended reads
are disabled, receive DMA requests are inhibited.

Table 13-5 UARTs Interrupt Sources

Interrupt Enable1

Notes:
1. When the FIFOs are in use, High-Speed UART RDR and THRE should be disabled from generating interrupts.
When using the FIFOs, High-Speed UART RTHRSH is the logical replacement for RDR, and TTHRSH is the logical
replacement for THRE.

(H)SPCON0
1st-Level Enable

Bit (Default)

(H)SPIMSK
2nd-Level Enable

Bit (Default)

Receive data ready RXIE (Off) RDR (On)

Receive FIFO threshold reached RXIE (Off) RTHRSH (Off)

Overrun error on receive FIFO RSIE (Off) OERIM (Off)

Transmit holding register empty TXIE (Off) THRE (On)

Transmit FIFO threshold reached TXIE (Off) TTHRSH (Off)

Transmitter empty, transmit FIFO empty on High-Speed UART TXIE (Off) TEMT (Off)

Parity error RSIE (Off) PER (On)

Overrun error RSIE (Off) OER (On)

Framing error RSIE (Off) FER (On)

Break detected RSIE (Off) BRK (On)

Address bit set on receive RSIE (Off) AB (Off)

Character match on receive RSIE (Off) MATCH (Off)

Receive line idle detected RXIE (Off) IDLED (Off)

Receive line idle RSIE (Off) IDLE (Off)
Am186™CC/CH/CU Microcontrollers User’s Manual 13-19

Asynchronous Serial Ports (UARTs)
13.5.7 Break Detection and Generation
The UARTs support detection of break characters. A break is defined as a constant Low
signal on the receive data line for one frame time or greater. This is reported as a zero
character with the framing error (FER) and break (BRK) status bits set in the (H)SPSTAT
register. (A framing error is the detection of a Low signal during the stop bit time.)

When a break is being transmitted, it only affects the output on the TXD signal; it does not
affect the timing of the transmit section of the serial port. In other words, the transmitter
can be used to time the break by setting the BRK bit when the transmitter is empty
(TEMT=1), writing the transmit register with data, then waiting until the TEMT bit is set
again before resetting the BRK bit.

Note: The transmitter can only be used to time the break if hardware flow control is disabled.
If flow control is enabled, setting the BRK bit will still force the TXD line Low, but the receiving
device may deassert the CTS input, inhibiting the clocking out of the character in the transmit
data register.

The microcontroller also supports timing of idle frames (TXD signal High) through use of a
software configurable bit (BRKVAL in the HSPCON1 register), which controls whether to
hold the TXD line High or Low when a break is being transmitted.

Receive status information is reported at the end of the frame time. Figure 13-10 provides
an example data stream (assuming no parity, 8 data bits, one stop bit).

Figure 13-10 Break Character Example

In this stream, the leading 1’s are assumed to be an idle indication on the line. The first
Low bit is interpreted as the start bit of a frame, resulting in the first frame consisting of the
stream “0 0100 0000 0”, including start and stop bits. This is reported as a 02h character
with a framing error. The stop bit for the first frame also acts as the start bit for the next
frame, which is “0 0000 0000 0”. This is reported as a 00h character with a framing error
and a break character (the BRK bit is set to 1). Low bits following a break are ignored until
the line returns to the High state. Therefore, the next frame would be “0 0000 0000 1”, which
is a 00h character with no error status.

11111 0 0100 0000 0 0000 0000 0 001111 0 0000 0000 1 111111

line start
bit

data bits stop
andidle

frame 1

start
bit

data bits stop
bit

frame 2

line
idle

(sets break)

sign.

frame 3
13-20 Am186™CC/CH/CU Microcontrollers User’s Manual

Asynchronous Serial Ports (UARTs)
13.5.8 Receive Special-Character Matching (High-Speed UART Only)
The High-Speed UART provides a method of generating interrupts on special characters.
Up to six special characters can be matched. Special-character matching is enabled by the
MEN bit in the HSPCON1 register.

The special characters are written by software into three 16-bit character match registers
(HSPM0, HSPM1, and HSPM2). When character matching is enabled with the MEN bit,
the incoming character is compared against all six special characters. Applications using
fewer than six special characters should program the extra compare registers with
duplicates of valid special characters, as the default 0 is considered a valid character.

If address bits are used, three bits (MAB0, MAB1, and MAB2) in the HSPCON1 register
must also be used, one for each special-character register. When the MAB bit and the
address enable (ABEN) bit are both set, a received character must have the address bit
set in order to match characters in the corresponding character match register. Both the
character and the address bit must match in order for a special character to be detected.
If address bit detection and generation is not enabled, the value of the address-match bit
is ignored during the comparison.

For 7-bit character matching, the High bit of each byte in the character match registers
should be cleared to zero. If address matching is enabled for 7-bit characters, the three
match-address bits in the control register are used to determine the match, not the High
bit of each byte in the character match register.

When a special character is detected, the Address Match Detected (MATCH) bit is set in
the status register. A maskable interrupt can be generated on this condition, using the
HSPIMSK register.

Special-character matching has several possible applications, including the following:

■ Use special character matching to implement software flow control using the XON/XOFF
protocol.

■ In a multidrop system, use special character matching to determine if a device’s address
has been broadcast.

■ Once the address has been enabled in a multidrop system and a data stream is being
received, use special-character matching to detect the flag that signals the end of a data
packet.

13.5.9 Interface to General-Purpose DMA Channels
The general-purpose DMA channels can access either UART’s receivers and transmitters.
The receiver generates a DMA request when the Receive Data Ready (RDR) bit is set. The
transmitter generates a DMA request when the Transmit Holding register (THRE) bit is set.
This behavior is independent of the use of the High-Speed UART FIFOs and the FIFO
thresholds.

When a receive status condition that is configured to generate an interrupt request is
detected, DMA requests from the receiver are disabled. This leaves the data with the
interrupting condition in the (H)SPRXD register for easy examination by software in the
interrupt service routine. When the receive FIFO is enabled on the High-Speed UART, the
interrupt request is generated, and the DMA requests are suspended when the data reaches
the top of the FIFO. DMA requests are resumed when the interrupting condition is cleared
by software.

When extended reads are enabled, DMA requests from the receiver are not disabled when
an interrupting status condition is detected. In this situation, the status is maintained with
Am186™CC/CH/CU Microcontrollers User’s Manual 13-21

Asynchronous Serial Ports (UARTs)
data in memory so that the association of status and data is not lost. This behavior is not
affected by enabling or disabling the receive FIFO on the High-Speed UART.

Unlike the other status interrupts that move through the receive FIFO with their associated
data, the OERIM bit provides immediate notification of an overrun error condition. Software
can determine where the overrun occurred since the OER status bit travels through the
FIFO with the associated data. The OERIM error bypasses the FIFO and does an immediate
interrupt.

When extended writes are enabled, the value of the address bit is written to the high byte
of the (H)SPTXD register. When extended writes are not enabled, the value of the address
bit is taken from the value of the transmit Address Bit (AB) field in the serial port control
register at the time that the data is written to the transmit holding register. This bit is cleared
after each transfer of the data out of the holding register into either the transmit shift register
or the High-Speed UART FIFO.

When extended reads are enabled, the value of the address bit is read from the high byte
of the (H)SPRXD register, and also sets the AB bit in the status register. When extended
reads are not enabled, the value of the received address bit is placed in the received Address
Bit (AB) field of the (H)SPSTAT status register and must be cleared by software. This means
that applications needing to send or receive a string of characters with the address bit
cleared can use DMA to transfer the data to or from the serial port. Applications that require
the address bit set, or a mixture of the bit set and cleared, may use the DMA but must take
an interrupt each time the address bit is set. This is true regardless of the use of the FIFO.

For information about the use of the CTS/RTR protocol with DMA, see “CTS/RTR Hardware
Flow Control” on page 13-13.

For more information about using the UARTs and DMA, see Chapter 8, “DMA Controller.”

13.5.10 Hardware-Related Considerations
The signals for the UART and flow-control for the High-Speed UART are multiplexed with
HDLC Channel D. For more information, see Table 13-1 on page 13-3.

13.5.11 Software-Related Considerations
■ Always program the configuration registers before setting the TMODE or RMODE bit to 1.

■ The most efficient data transfer operation (least software intervention, highest average
data transfer rate, and least opportunity for FIFO overrun) is when using FIFOs, DMA,
and CTS/RTR flow control.

■ In a multidrop system, hardware flow control must be enabled for only a single pair of
devices at any one time.

■ Always flush FIFOs before new data transfers.

■ The UARTs are multiplexed with HDLC. The Interface 4 Select (ITF4) bits in the System
Configuration (SYSCON) register must be configured for the UART interface.
13-22 Am186™CC/CH/CU Microcontrollers User’s Manual

Asynchronous Serial Ports (UARTs)
13.5.12 Comparison to Other Devices
The UARTs are similar to those of the other Am186 family microcontrollers and are most
closely related to those of the Am186ES and Am186ED microcontrollers. However, the
functionality provided by the serial port modes of those devices have been replaced by
individual enables that allow for more flexibility on the UARTs and the configuration of the
DMA interface has been modified. In addition, both the UART and the High-Speed UART
of the microcontroller provide significant enhancements over previous UARTs, including
extended reads and writes, support for address bits on 7-data bit frames, and two stop bits.
The High-Speed UART’s enhancements additionally include autobaud detection, receive
and transmit FIFOs, and special character matching.

13.6 INITIALIZATION
On both external and internal reset, the following occurs:

■ All register bits are cleared to 0 except for the following second-level interrupt enable
bits in the (H)SPIMSK registers: BRK, RDR, THRE, FER, OER and PER. This provides
compatibility with the Am186ES and Am186ED microcontroller serial ports.

■ All UART and High-Speed UART signals, except for TXD_HU, default to that signal’s
PIO function. See Table 13-1 on page 13-3.

■ The ITF4 bit field in the SYSCON register is cleared, which defaults external interface
D to HDLC with flow control.
Am186™CC/CH/CU Microcontrollers User’s Manual 13-23

Asynchronous Serial Ports (UARTs)
13-24 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
14 S
S

YNCHRONOUS
ERIAL PORT (SSI)
14.1 OVERVIEW
The Am186CC/CH/CU microcontrollers each include one synchronous serial port, which
uses the SSI to provide a half-duplex, bidirectional communications interface between the
microcontroller and other system components (i.e., integrated circuits). This interface is
typically used by the microcontroller to monitor the status of other system devices or to
configure these devices under software control. In a communications application, these
devices could be system components such as transceivers or audio coder-decoders
(codecs). The SSI supports data transfer speeds of up to 25 Mbit/s.

The SSI provides the following features:

■ Three I/O signals: SCLK, SDATA, and SDEN, multiplexed with PIOs

■ Programmable data order: Normal (least-significant bit first) or Reverse (most-
significant-bit first)

■ Programmable SSI clock divisor: Divides the CPU clock from 2 to 256 in power of 2
increments

■ Programmable polarity of the SCLK and SDEN signals

■ Bidirectional transmit/receive shift register

14.2 BLOCK DIAGRAM
Figure 14-1 shows the block diagram for the SSI.
Am186™CC/CH/CU Microcontrollers User’s Manual 14-1

Synchronous Serial Port (SSI)
Figure 14-1 SSI Block Diagram

14.3 SYSTEM DESIGN
Table 14-1 lists the SSI signals that are multiplexed with other microcontroller functions.
Pinstraps are sampled only at external reset and do not affect the pin’s other functions, so
they are not shown in this table. Other multiplexed signals, when enabled, either disable or
alter any other functions that use the same pin. Figure 14-2 illustrates a sample SSI
application for the Am186CC/CH/CU microcontrollers.

.

Table 14-1 SSI Multiplexed Signals

Signal Function
Multiplexed

Signal(s)
Default
Signal

SDEN Serial data enable PIO10 PIO10

SCLK Serial clock PIO11 PIO11

SDATA Serial data PIO12 PIO12

Block Select

Register Offset

Read

Read Data

Read Data Enable

Write Data

Write Data Enable

Internal Register Control

5 Registers/

Control State
Machine

Bidirectional
Shift Register

Synchronous
Clock Register

PAD

PAD

PADS

Block

Decode
Transmit Data

Receive Data

Shift Control

Clock Control

Internal

SDATA

DRV_SDATA

SCLK (feedback from PADS)

Internal

Internal SDEN SDEN

Read Data
16 x 5

Register
Selects

Status
State

4

16

Control

16 8

8

SCLK

SDATA

SDATA

SCLK
14-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Synchronous Serial Port (SSI)
Figure 14-2 Synchronous Serial Interface System Application Example

14.4 REGISTERS
The registers listed in Table 14-2 program the SSI. Appendix A summarizes the bits in all
the registers. For a complete description of all the peripheral registers, see the Am186™CC/
CH/CU Microcontrollers Register Set Manual, order #21916.

Table 14-2 SSI Register Summary

Offset
Register
Mnemonic

Register Name Description

2F0h SSSTAT SSI Mode/Status
Defines SSI modes of operation and reports
the port status.

2F2h SSCON SSI Control
Enables SSI and programs the data order,
clock divisor, and polarity.

2F4h SSTXD1 SSI Transmit 1 Contain the data to be transmitted. A write to
either register initiates a transmit transaction if
either of the DE bits in SSCON is set to 1.2F6h SSTXD0 SSI Transmit 0

2F8h SSRXD SSI Receive

Contains the data received over the SSI. A
read from this register initiates a receive
transaction if either of the DE bits in SSCON
is set to 1.

Synchronous Serial Interface Peripheral
(Multiplexed Data In/Out Pin)

Synchronous Serial Interface Peripheral
(Dedicated Data In/Out Pins)

Am186CC/CH/CU
Microcontroller

ENABLE

CLK

DATA

ENABLE

CLK

DATA_IN

DATA_OUT

SDEN

SCLK

SDATA

PIO
Am186™CC/CH/CU Microcontrollers User’s Manual 14-3

Synchronous Serial Port (SSI)
14.5 OPERATION

14.5.1 Usage
Note: Before using the SSI port, ensure multiplexed pins are configured to reflect the use
of SSI and not other functionality (see Table 14-1 on page 14-2).

1. Set the ENHCTL bit in the SSSTAT register to 1 so that all bits in the SSCON register
are operational (unless Am186EM-backwards compatibility is required).

2. If using the SDEN signal, initialize the SSI port with the SSCON register: clock polarity
(CLKP bit), device polarity (DENP bit), transmit bit order—LSB or MSB first (MSBF bit),
and the CPU clock divisor (CLKEXP bit field).

If not using SDEN (but using a PIO output as an external enable), use the PIO Set and
PIO Clear registers to provide the external signal while using the DE1 bit of the SSCON
register to provide internal enable. Be sure the corresponding mask bit in the SHMASK
register is set to disable the interrupt.

3. Enable transmit or receive by setting the DE0 or DE1 bit in the SSCON register to 1.

4. Write data with the SSTXD1/SSTXD0 registers or read data with the SSRXD register
(this sets the Port Busy (PB) bit in the SSSTAT register to 1).

5. Wait for the DR/DT bit in the SSSTAT register to go to 0 to indicate the transmit or receive
has completed.

6. Disable the transmit or receive by clearing the DE0 or DE1 bit in the SSCON register to 0.

14.5.2 Master/Slave Configuration
Unlike the asynchronous serial ports described in Chapter 13, “Asynchronous Serial Ports
(UARTs),” the SSI port operates in a master/slave configuration, where the microcontroller
operates as the master port. All other devices that communicate with the microcontroller
through this interface are slave devices. The master initiates a transaction by transmitting
a single byte. This byte tells the slave device whether the transaction is a read or a write
and contains the device address. The microcontroller always drives the interface clock when
an active communication transaction is present on the interface. Slave devices cannot drive
this clock. Because PIOs can be used as external device enables, the microcontroller can
support a number of peripheral devices.

14.5.3 Signal Interface
The SSI port consists of three I/O signals: data (SDATA), clock (SCLK), and enable (SDEN).
The three SSI signals are multiplexed with three programmable I/O signals (PIO12–PIO10).
These pins are PIOs by default, and can be individually reconfigured as SSI pins with the
PIO Mode and PIO Direction registers.

14.5.3.1 SCLK

The SCLK output synchronizes transmit and receive operations between the master
(microcontroller) and slave (peripheral). Based on the selected polarity of the SCLK signal
in the SSCON register, SCLK is at a constant High (default) or Low (when inverted polarity
is selected) level when a transmit or receive operation is not active on the interface. SCLK
derives from the internal CPU clock divided by 2, 4, 8, 16, 32, 64, 128, or 256. Software
specifies the divisor with the CLKEXP bit field of the SSCON register. When a transfer is
started, the microcontroller toggles this clock for the entire transaction. Each individual
transaction transfers eight data bits.

The clock edge on which data is transmitted and received is programmable with the CLKP
bit in the SSCON register. In the default condition, data is transmitted on the SDATA pin on
14-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Synchronous Serial Port (SSI)
the falling edge of the SCLK signal and is received (latched into the microcontroller) on the
rising edge of the SCLK signal. In the Inverted Clock mode, data is transmitted on the
SDATA pin on the rising edge of the SCLK signal and is received (latched into the
microcontroller) on the falling edge of the SCLK signal.

When no transmit or receive transaction is active on the SSI, the SDATA signal is three-
stated (although it has a weak keeper to hold the last value driven on the SDATA signal).
When data is transmitted on the SSI from the microcontroller to another device, the SDATA
signal is driven and is stable after the falling edge (rising edge if in the Inverted Clock mode)
of the SCLK signal, providing the appropriate setup and hold time for the receiving device
if that device latches this data on the rising edge (falling edge in the Inverted Clock mode)
of SCLK.

14.5.3.2 SDATA

When the microcontroller receives data from another device on the SSI, it latches the level
driven onto the SDATA signal by the transmitting device on the rising edge (falling edge if
in the inverted clock mode) of the SCLK signal. The transmitting device must meet the
required setup and hold times relative to this SCLK rising edge (falling edge if in the inverted
clock mode).

Software writes data to be transmitted on the SSI by the microcontroller to either of the two
SSI transmit registers (SSTXD0 or SSTXD1). The transmit registers are 16-bit registers
but only the lower eight bits can be written and the upper eight bits are ignored. When a
new value is written to one of the transmit registers, and software has previously enabled
SSI and the external device (see the description of the SDEN signal below), the SSI shifts
out the data written to the transmit register on SDATA.

To receive data from an external device, the microcontroller must initiate the receive
transaction by toggling the SCLK signal and sampling the SDATA input. A receive
transaction is initiated if the external device has been enabled (see the description of the
SDEN signal below) and software reads the SSI Receive Data (SSRXD) register. The
SSRXD register is a 16-bit register but only the lower eight bits contain valid data. If the
external device is enabled, reading the SSRXD register causes the SCLK signal to be
toggled, generating eight Low-to-High transitions (High-to-Low transitions if in the Inverted
Clock mode), and the level on the SDATA signal is latched eight times and stored in the
receive register bits. Note that the initial data read (activating the read cycle) should be
discarded.

The SSI data order is configurable with the MSBF bit in the SSCON register. Two modes
are available: Normal (LSB first) and Reverse (MSB first). A single configuration bit selects
the mode and the selected mode is common for transmit and receive operations.

In Normal mode, the least significant bit (LSB) of the transmit data byte is shifted out first.
For a receive operation, the SSI stores the first data bit received in the LSB of the receive
register and stores the last data bit received in the most significant bit (MSB) of the receive
register.

In Reverse mode, the most significant bit (MSB) of the transmit data byte is shifted out first.
For a receive operation, the SSI stores the first data bit received in the MSB of the receive
register and stores the last data bit received in the LSB of the receive register.

14.5.3.3 SDEN

The SDEN signal enables an external device for communication on the SSI bus. The
microcontroller asserts this signal, under software control, before it initiates the transmit or
receive operation to or from a device on the SSI. The DE0 bit controls the state of this
Am186™CC/CH/CU Microcontrollers User’s Manual 14-5

Synchronous Serial Port (SSI)
signal. Setting DE0 asserts the SDEN signal. Asserting SDEN enables the external device
to which this signal is connected for communication on the SSI. Writing the transmit register
or reading the receive register initiates a data transfer on the SSI.

Software can configure the SDEN signal to be active High or Low with the DENP bit in the
SSCON register.

For a receive operation, reading the SSRXD register when the synchronous serial data
enable bits DE0 and DE1 of the SSCON register are cleared returns the data in the register
to the CPU without generating a receive transaction on the SSI.

It is possible to support multiple devices connected to the SSI bus simultaneously. In one
scenario, it may be possible to connect all the devices to the SDEN signal and develop a
software protocol to manage individual device communication.

Alternatively, PIO signals can serve as external device enables in addition to the provided
SDEN signal. In this scenario, to communicate to one of the devices using a PIO as an SSI
enable signal, software must configure the pin as a PIO output, force the PIO to be asserted,
and then set the synchronous serial data enable bit (DE1) in the SSCON register. Setting
this bit and asserting the PIO enables the external device to which this PIO signal is
connected for communication on the SSI and writing the SSTXDx register or reading the
register initiates a data transfer. For a receive operation, reading the SSRXD register when
the DE1 and the DE0 bits are cleared returns the data in the receive register to the CPU
without causing a receive transaction to be generated on the SSI. Note that the DE0 and
DE1 bits can be set simultaneously to achieve proper receive/transmit operation.

14.5.3.4 SSI Transactions

In general, the SSI hardware provides software with a polled I/O mechanism to control its
operation. In addition to the transmit register, the receive register, and the control register,
one status register is provided. The SSI Mode/Status (SSSTAT) register provides software
with “busy”, “receive/transmit end”, and “error” status. These bits are called PB (busy), DR/
DT (receive/transmit end), and RE/TE (error). A write to either SSTXD1 or SSTXD0, or a
read to SSRXD while PB=1, sets the RE/TE bit and does not generate additional data
transfers.

For SSI transmit and receive transaction examples, see Figure 14-3–Figure 14-5.
14-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Synchronous Serial Port (SSI)
Figure 14-3 SSI Multiple Transmit with SDEN as External Device Enable

Figure 14-4 SSI Multiple Transmit with PIO as External Device Enable

SDEN

SCLK

SDATA

Set
DE0
bit

Write
transmit
register

PB=0
DR/DT=0

PB=1
DR/DT=0

PB=1

PB=0
DR/DT=1

Write
transmit
register

PB=1

PB=1
DR/DT=0

Write
transmit
register

PB=1

PB=0
DR/DT=1

PB=1
DR/DT=0

PB=0
DR/DT=1

Clear
DE0
bit

PB=0
DR/DT=0

LSB (Normal shift order) MSB

Notes:
SDEN is configured to be active High in the scenario shown above.

Any PIOs used as SSI enables should be inactive while SDEN is active.

The SSI data order is configured to be in Normal mode (LSB first).

The SSI clock is configured to be in Normal mode.

GPIO

SCLK

Set
PIO

bit

Write
transmit
register

PB=0
DR/DT=0

PB=1
DR/DT=0

PB=1

PB=0
DR/DT=1

Write
transmit
register

PB=1

PB=1
DR/DT=0

Write
transmit
register

PB=1

PB=0
DR/DT=1

PB=1
DR/DT=0

PB=0
DR/DT=1

Clear
PIO

bit

SDATA

DATA

Set
DE1
bit

Clear
DE1
bit

PB=0
DR/DT=0

DATA

MSB(Reverse shift order)LSB

Notes:
The SDEN signal should be inactive (DE0=0) while the PIO has enabled the receiving device.

The SSI data order is configured to be in Reverse mode (MSB first).

The SSI clock is configured to be in Inverted Clock mode.
Am186™CC/CH/CU Microcontrollers User’s Manual 14-7

Synchronous Serial Port (SSI)
Figure 14-5 SSI Single-Transmit, Multiple-Receive with SDEN as External Device Enable

14.5.4 Software-Related Considerations
The SSI interface allows for a variety of software and hardware protocols:

■ Signaling a read/write: In general, software uses the first write to the SSI to transmit
an address or count to the peripheral. This value can include a read/write flag in the
case where the device supports both reads and writes.

■ Using SSTXD1 as an address register: The SSTXD1 register can be an address
register that holds the value of the last address accessed, and the SSTXD0 register can
be the data transmit register. In this case, the current value in the SSTXD1 register can
be used by software to generate the next address or to determine if the last transaction
was a read or a write.

■ Using SSTXD1 and SSTXD0 as transmit registers for two peripheral devices: In
some systems, it may clarify the code and aid in debugging to view the two data transmit
registers as unique to different peripheral devices. This allows the last value transmitted
to each device to be examined by debug code.

14.5.5 Comparison to Other Devices
The SSI is mostly backward-compatible with software written for the Am186EM SSI.
Additional features have been added to the SSI implementation. In its default mode, the
SSI on the Am186CC/CH/CU microcontrollers is backward-compatible with the Am186EM
with the following exceptions:

■ The SSI status and configuration register locations in the address map are different.

SDEN

SCLK

Set
DE0
bit

Write
transmit
register

PB=0
DR/DT=0

PB=1
DR/DT=0

PB=1

PB=0
DR/DT=1

Read
receive
register

PB=1

PB=1
DR/DT=0

Read receive

PB=1

PB=0
DR/DT=1

PB=1
DR/DT=0

PB=0
DR/DT=1

Clear
DE0
bit

PB=0
DR/DT=0

SDATA

(dummy
 read)

Read receive
register (returns
data from last
transaction to CPU
without generating
another SSI transfer)

register (returns
data from last
transaction to CPU
and generates another
SSI transfer)

MSB(Reverse shift order)LSB

Notes:
SDEN is configured to be active Low in the scenario shown above.

Any PIOs used as SSI enables should be inactive while SDEN is active.

The SSI data order is configured to be in Reverse mode (MSB first).

The SSI clock is configured to be in Normal mode.
14-8 Am186™CC/CH/CU Microcontrollers User’s Manual

Synchronous Serial Port (SSI)
■ Only one dedicated SSI enable pin is available. PIOs can be used for additional device
enables if they are required.

■ Software written for the Am186EM SSI that writes to the SSI status register does not
work on the Am186CC/CH/CU microcontrollers.

■ Only the /2 and /4 clock modes are available unless software sets the ENHCTL bit in
the SSSTAT register.

Features added to the SSI are:

■ Programmable data order: Normal (least-significant bit first) or Reverse (most-
significant-bit first)

■ Programmable clock divisor: Divide the clock from 2 to 256 in power of 2 increments

■ Programmable polarity: SCLK and SDEN

14.6 INITIALIZATION
On both external and internal reset, the following occurs:

■ SSSTAT is set to 0000h, which clears status and disables Enhanced Control mode.

■ SSCON is set to 0400h, which sets SCLK to active Low, SDEN to active High, the LSB
transmitted and received first, the clock divisor to 2, and disables SSI operation.

■ The SSTXD0, SSTDX1, and SSRXD registers are set to 0000h, which clears all data.

■ The multiplexed serial pins default to PIO functionality (see Table 14-1 on page 14-2).
Am186™CC/CH/CU Microcontrollers User’s Manual 14-9

Synchronous Serial Port (SSI)
14-10 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
15 H
C

IGH-LEVEL DATA LINK
ONTROL (HDLC)
Note: Only the Am186CC and Am186CH microcontrollers support HDLC.

15.1 OVERVIEW
In the Open Systems Interconnection (OSI) model, layer two is the data link layer. This layer
provides control between physical nodes: link initialization, flow control, and error control.
One protocol that performs this function is High-level Data Link Control (HDLC). In HDLC,
all transmissions are in frames. The ISO/IEC 3309 standard specifies this frame structure.

The Am186CC and Am186CH microcontrollers provide HDLC channels, which are used
to transmit and receive frames based on HDLC formats. As a layer 2 function, these
channels only transmit or receive the data; upper layers in the OSI model actually look at
the data.

An HDLC frame uses flags to determine the start and end of a frame.These flags provide
frame synchronization. One flag may be used as both an end flag for one frame and the
start flag for the next frame. Although the Am186CC and Am186CH microcontrollers do
not transmit such shared flags, they can receive and properly handle a shared flag.

As illustrated in Figure 15-1, an HDLC frame typically consists of a start flag, followed by
an address field, a control field, an information field, a frame checking sequencing (FCS)
field, and, finally, a closing flag. Frames maintain data transparency—a flag, mark, or abort
embedded in the data is not recognized—by bit stuffing and bit unstuffing. Bit stuffing (also
called zero-bit insertion) occurs when transmitting data; the transmitter inserts a 0 after five
consecutive 1s. Bit unstuffing (also called zero-bit deletion) occurs when receiving data;
between opening and closing flags, the receiver deletes any 0 received after five
consecutive 1s.

Figure 15-1 HDLC Frame

In the transmit direction (data is leaving the microcontroller), you can program the HDLC
controller to add the required frame checking sequencing field (CRC error detection bytes)
at the end of the frame, bit stuff the data as needed, and surround it with flags. (Cyclic
Redundancy Check (CRC) is a method for checking errors in transmitted data.)

In the receive direction (data is coming into the microcontroller), the HDLC controller
searches for flags to determine the start and stop of the frame, removes any bit stuffing,
and checks the CRC error detection bytes. The HDLC controller can also check the address
of the incoming frame and reject it if it has an incorrect address.

CHCC

Address

Start-of-Frame

Flag Control Information FCS Flag

Delimiter Frame Header
Information

Field
Frame Check

Sequence
End-of-Frame

Delimiter

8 bits 16 bits 8/16 bits 0–N bits 8 bits16 bits
Am186™CC/CH/CU Microcontrollers User’s Manual 15-1

High-Level Data Link Control (HDLC)
The microcontroller uses FIFOs in both directions (16-byte transmit and 32-byte receive)
to isolate the data requests from the system bus. The controller supports SmartDMA and
programmed I/O for filling or emptying the FIFOs.

Each HDLC channel can connect to an external serial interface directly (nonmultiplexed
mode) or can pass through a time slot assigner (multiplexed mode). An HDLC channel can
connect to a raw Data Communications Equipment (DCE) interface in nonmultiplexed mode,
to a Pulse Code Modulation (PCM) highway interface in multiplexed mode, or to a General
Circuit Interface (GCI) in multiplexed mode. Each HDLC channel has the same feature set
but separate connections to its associated time slot assigner. For more information about
how the HDLC channels can be connected externally, see Chapter 16, “HDLC External
Serial Interface Configuration (TSAs)”.

The HDLC channels support full-duplex data transfer at a rate of up to 10 Mbit/s in raw DCE
and PCM Highway modes, and up to 768 Kbit/s in GCI mode (system performance may
limit total throughput). The microcontroller contains internal PCB registers for configuring
the modes of operation, controlling the HDLC channels, monitoring and reporting status,
and moving data. Each HDLC channel consists of a transmitter, a receiver, and the interface
(programmed I/O or SmartDMA).

The Am186CC microcontroller provides four HDLC channels, A through D, which support
raw DCE, PCM highway, and GCI external interfaces.

The Am186CH HDLC microcontroller provides two HDLC channels, A and B, which support
raw DCE and PCM highway external interfaces.

15.2 BLOCK DIAGRAM
Figure 15-2 shows the block diagram for a single HDLC channel, including connections
with the TSA and GCI.

CC

CH
15-2 Am186™CC/CH/CU Microcontrollers User’s Manual

H
ig

h
-L

evel D
ata L

in
k C

o
n

tro
l (H

D
L

C
)

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual
15-3

F
ig

u
re

 1
5

-2
H

D
L

C
, T

S
A

, a
n
d

 G
C

I B
lo

c
k
 D

ia
g

ra
m

rs

P
A

D
 In

te
rf

ac
e

Clock
Mux

 Mux

sters

Receive CLK (A, B, C, D)

Transmit CLK (A, B, C, D)

Receive DATA (A, B, C, D)

Transmit DATA (A, B, C, D)

Receive CLK_A

Transmit CLK_A

Receive DATA_A

Transmit DATA_A

us

A

ontrol

C
on

tr
ol

/

C
ha

nn
el

S
ta

tu
s

M
on

ito
r

C
on

tr
ol

da
ta

 Bus
ontrol

CC
transmit clock
transmit data

PCB

Registers Loopback

Receiver

Transmitter

PCB Bus

32 x 8 FIFO

16 x 8 FIFO

Control/Status

Interface

Control/Status

Registe

Monitor

Time Slot

TIC Bus

Time
Mux

Data

Regi

SmartDMA

Internal RTR

TIC Bus Control
Internal CTS

C
on

tr
ol

Control
I/O

OutOut

receive data
receive clock

Control

I/O

rxd

rxc

txc

txd

IN

IN

I/O

I/O

I/O

SmartDMA Bus PCB B

TS

GCI

HDLC

C

tim
e

S
lo

t C
on

tr
ol Channel

Controller

Controller

Controller
TIC
C

I/O

CC

High-Level Data Link Control (HDLC)
15.3 SYSTEM DESIGN
Table 15-1 lists the HDLC/TSA/GCI signals that are multiplexed with other microcontroller
functions. Pinstraps are sampled only at external reset and do not affect the pin’s other
functions, so they are not shown in this table. Other multiplexed signals, when enabled,
either disable or alter any other functions that use the same pin.

Table 15-1 HDLC/TSA/GCI Multiplexed Signals

Multiplexed Signals

Function
Default
SignalCh

External Interface
PIOs

DCE PCM GCI UART

A

DCE_RXD_A PCM_RXD_A GCI_DD_A — — DCE and PCM data input/
GCI downstream pin DCE_RXD_A

DCE_TXD_A PCM_TXD_A GCI_DU_A — — DCE and PCM data output/
GCI upstream pin DCE_TXD_A

DCE_RCLK_A PCM_CLK_A GCI_DCL_A — —
DCE receive clock/PCM
receive and transmit clock/GCI
receive and transmit clock

DCE_RCLK_A

DCE_TCLK_A PCM_FSC_A GCI_FSC_A — —
DCE transmit clock/PCM frame
sync clock/GCI frame sync
clock

DCE_TCLK_A

DCE_CTS_A PCM_TSC_A — — PIO17 DCE clear to send/PCM
external buffer enable PIO17

DCE_RTR_A — — — PIO18 DCE ready to receive PIO18

B

DCE_RXD_B PCM_RXD_B — — PIO36 DCE and PCM data input pin PIO36

DCE_TXD_B PCM_TXD_B — — PIO37 DCE and PCM data output pin PIO37

DCE_RCLK_B PCM_CLK_B — — PIO40 DCE receive clock/PCM
receive and transmit clock PIO40

DCE_TCLK_B PCM_FSC_B — — PIO41 DCE transmit clock/PCM frame
sync clock PIO41

DCE_CTS_B PCM_TSC_B — — PIO38 DCE clear to send/PCM
external buffer enable PIO38

DCE_RTR_B — — — PIO39 DCE ready to receive PIO39

C

DCE_RXD_C PCM_RXD_C — — PIO42 DCE and PCM data input pin PIO42

DCE_TXD_C PCM_TXD_C — — PIO43 DCE and PCM data output pin PIO43

DCE_RCLK_C PCM_CLK_C PCM_CLK_C — PIO22

DCE receive clock/PCM
receive and transmit clock
input/GCI-to-PCM conversion
clock output

PIO22

DCE_TCLK_C PCM_FSC_C PCM_FSC_C — PIO23
DCE transmit clock/PCM frame
sync clock input/GCI-to-PCM
conversion frame sync output

PIO23

DCE_CTS_C PCM_TSC_C — — PIO44 DCE clear to send/PCM
external buffer enable PIO44

DCE_RTR_C — — — PIO45 DCE ready to receive PIO45

CC

CC
15-4 Am186™CC/CH/CU Microcontrollers User’s Manual

High-Level Data Link Control (HDLC)
15.4 REGISTERS
Table 15-2 lists the 25 unique registers that control a single HDLC channel. The x shown
in the register name can be A, B, C, or D, depending on the channel selected. The table
shows the offset for Channel A; for Channel B, add 40h to the offset shown. Both the
Am186CC and Am186CH microcontrollers support Channels A and B.

The Am186CC microcontroller also supports Channel C and D. Add 80h to the offset shown
for Channel C, and add C0h for Channel D.

In addition to the registers shown in Table 15-2, the System Configuration (SYSCON)
register, offset 03F0h, has two bit fields that configure HDLC: ITF4 (bits 9–8) and EXSYNC
(bit 7).

In the Am186CC microcontroller, the IFT4 bit field configures the interface of HDLC
Channel D. Setting the EXSYNC bit causes the clock and frame information to be driven
out of HDLC Channel C.

In the Am186CH HDLC microcontroller, there is no HDLC Channel D, but the ITF4 bit field
default value is 00b, specifying full HDLC with flow control. Therefore, software must change
the value of the ITF4 bit field to 10b before using the UART interface or High-Speed UART
with flow control.

Appendix A summarizes the bits in all the registers. For a complete description of all the
peripheral registers, see the Am186™CC/CH/CU Microcontrollers Register Set Manual,
order #21916.

D

DCE_RXD_D PCM_RXD_D — RXD_U PIO26 DCE and PCM data input/
UART data receive PIO26

DCE_TXD_D PCM_TXD_D — TXD_U PIO20 DCE and PCM data output/
UART data transmit PIO20

DCE_RCLK_D PCM_CLK_D — RTR_U PIO25
DCE receive clock/PCM
receive and transmit clock
input/UART ready-to-receive

PIO25

DCE_TCLK_D PCM_FSC_D — CTS_U PIO24
DCE transmit clock/PCM frame
sync clock input/UART clear-
to-send

PIO24

DCE_CTS_D PCM_TSC_D — CTS_HU PIO46
DCE clear to send/PCM
external buffer enable/High-
Speed UART clear-to-send

PIO46

DCE_RTR_D — — RTR_HU PIO47 DCE ready to receive/High-
Speed UART ready-to-receive PIO47

Table 15-1 HDLC/TSA/GCI Multiplexed Signals (Continued)

Multiplexed Signals

Function
Default
SignalCh

External Interface
PIOs

DCE PCM GCI UARTCC

CC

CC

CC

CH
Am186™CC/CH/CU Microcontrollers User’s Manual 15-5

High-Level Data Link Control (HDLC)
Table 15-2 HDLC Register Summary

Offset1
Register
Mnemonic2 Register Name Description

00h HxCON HDLC Channel Control
Sets operating modes for both the transmitter
and receiver.

02h HxTCON0 HDLC Channel Transmit Control 0
Sets operating modes for transmitter.

04h HxTCON1 HDLC Channel Transmit Control 1

06h HxRCON0 HDLC Channel Receive Control Sets operating modes for receiver.

08h HxRCON1 HDLC Channel Receive Max Length
Sets maximum length for received frame.
Should never be set to 2 or less.

0Ah HxSTATE HDLC Channel Status
Contains read-only status for transmitter and
receiver.

0Ch HxISTAT0 HDLC Channel Interrupt Status 0
Contains status for transmitter and receiver. All
bits can generate an interrupt if not masked off
in HxIMSK0.

0Eh HxIMSK0 HDLC Channel Interrupt 0 Mask
Mask register for HxISTAT0. When a mask bit
is 0 (the reset value), the corresponding
interrupt is masked off.

10h HxISTAT1 HDLC Channel Interrupt Status 1
Contains status for receiver. All bits can
generate an interrupt if not masked off in
HxIMSK1.

12h HxIMSK1 HDLC Channel Interrupt 1 Mask
Mask register for HxISTAT1. When a mask bit
is 0 (the reset value), the corresponding
interrupt is masked off.

14h HxTD HDLC Channel Transmit FIFO Data Contains data for transmission.

16h

HxRD HDLC Channel Receive FIFO Data

Contains data from receive. After all the data
has been read, this register contains the three
bytes of status for the frame, as described
below.

HxRFS1 HDLC Channel Receive Frame Status 1
Contains the first byte of status: the least
significant byte of the length of the received
frame.

HxRFS2 HDLC Channel Receive Frame Status 2
Contains the second byte of status: the most
significant byte of the length of the received
frame.

HxRFS3 HDLC Channel Receive Frame Status 3
Contains the third byte of status: the status for
the frame and which address was matched.

18h HxRDP
HDLC Channel Receive FIFO Data
Peek

Copy of HxRD register that does not change
when read.

1Ah HxSFCNT HDLC Channel Short Frame Counter

Contains the count of the number of frames
that were discarded because they were
smaller than the minimum receive length.
Reading this register resets it to 0.

1Ch HxSFCNTP
HDLC Channel Short Frame Counter
Peek

Copy of HxSFCNT register that does not
change when read.

1Eh HxMACNT
HDLC Channel Mismatch Address
Counter

Contains the count of the number of frames
that were discarded because they did not
match any of the address registers. Reading
this register resets it to 0.
15-6 Am186™CC/CH/CU Microcontrollers User’s Manual

High-Level Data Link Control (HDLC)
15.5 OPERATION

15.5.1 Usage
Note: Before using the HDLC channels, configure the multiplexed pins for HDLC use (see
Table 15-1 on page 15-4). When using HDLC Channel D on the Am186CC microcontroller,
be sure to configure the ITF4 bit in the SYSCON register correctly.

The HDLC portion of the microcontroller is an extremely flexible serial communications
block that can be configured to support data movement in a variety of applications. When
initializing the HDLC channels for a particular operation, it is best to establish the Time Slot
Assigner and general HDLC functionality before beginning data reception or transmission.
Configure HDLC functionality through the HxCON, HxTCON0, HxTCON1, and HxRCON1
registers. Establish address matching through the address match registers and their
associated masks. Finally, enable the desired interrupts by setting the corresponding bits
in the appropriate mask registers.

To configure the HDLC channels, use the following procedure:

1. Configure the Time Slot Assigners (TSAs) as described in “Usage” on page 16-7.

2. Configure any required HDLC channel operating modes:

a. Configure the NRZI encoding, transparent mode, loop remote, loop local, or CRC type
by programming the HxCON register.

b. For transmissions, configure the flag idle, multidrop mode, automatic CTS, bit order,
clock invert, GCI (on the Am186CC microcontroller only), output drive, or transmit
delay by programming the HxTCON1 register.

20h HxMACNTP
HDLC Channel Mismatch Address
Counter Peek

Copy of HxMACNT register that does not
change when read.

22h HxA0 HDLC Channel Address 0
Contains the value to compare to the address
in the received frames. The address bits can
be masked with HxA0MSK.

24h HxA0MSK HDLC Channel Address Mask 0

Mask register for HxA0. When a mask bit is 0
(the reset value), the bit is always matched.
This means all frames are accepted when
none of the mask bits are set.

26h HxA1 HDLC Channel Address 1

Address match and mask registers. See
descriptions for HxA0MSK and HxA0.

28h HxA1MSK HDLC Channel Address Mask 1

2Ah HxA2 HDLC Channel Address 2

2Ch HxA2MSK HDLC Channel Address Mask 2

2Eh HxA3 HDLC Channel Address 3

30h HxA3MSK HDLC Channel Address Mask 3

Notes:
1. The x shown in the register name can be A, B, C, or D, depending on the channel selected. The offset shown is
for Channel A; for Channel B, add 40h to the offset shown; for Channel C, add 80h; and for Channel D, add C0h.
2. The Am186CC and Am186CH microcontrollers support Channels A and B; the Am186CC microcontroller also
supports Channels C and D.

Table 15-2 HDLC Register Summary (Continued)

Offset1
Register
Mnemonic2 Register Name Description
Am186™CC/CH/CU Microcontrollers User’s Manual 15-7

High-Level Data Link Control (HDLC)
3. Set the necessary transmit enables (HxTXON0 register) and receive enables
(HxRCON0 register) for each HDLC channel.

4. Do an HDLC reset. A reset flushes the FIFOs and clears all R/0 status bits, but does
not clear the R/W0 interrupt status registers.

5. Clear all pending interrupts by writing 0s to the INTSTS register.

15.5.2 Interface
The HDLC channels operate in one of two modes: SmartDMA data transfer or programmed
I/O. SmartDMA data transfer provides automated data movement to the transmit FIFO or
from the receive FIFO. Programmed I/O is intended for low data rates where processor
intervention is possible on a byte-by-byte basis.

15.5.2.1 SmartDMA Interface

Using the SmartDMA interface bypasses the HDLC status registers associated with data
handling (HxSTATE, HxISTAT0, HxISTAT1, HxRFS1, HxRFS2, HxRFS3, HxASBMSB,
HxASBLSB) because the SmartDMA interface automatically places all data and status to
and from the data buffers and buffer descriptors residing in memory. Some applications still
require additional status such as the link status. For more information about the SmartDMA
interface, see Chapter 8, “DMA Controller.”

15.5.2.2 Programmed I/O Interface

15.5.2.2.1 Transmit Programmed I/O Interface
To transmit a frame using programmed I/O, first program the control registers with the
appropriate mode(s), then enable the transmitter. Then, either poll a status bit indicating
transmit space is available or use the transmit space available interrupt to determine when
space is available in the transmit FIFO. Just after writing the last byte of a frame to the
transmit FIFO, set the “last byte” bit in the control register. When the last byte in the frame
is written to the transmit FIFO, the HDLC controller knows to append the CRC (if enabled)
and closing flag. When the last byte of the frame has been transmitted, the transmitter
generates a maskable interrupt and sets a status bit.

The interrupt register indicates if there was an underflow of the transmit FIFO, if CTS was
lost during transmission, or if the transmit frame was aborted during transmission. When
one of these conditions occurs, the HDLC controller flushes the transmit FIFO and stops
the transmitter until the appropriate status bit is cleared.

15.5.2.2.2 Receive Programmed I/O Interface
To receive a frame using programmed I/O, first program the control registers with the
appropriate mode(s) and then enable the receiver. Then, either poll a status bit (one receive
data byte available) or take an interrupt (receive threshold reached or data byte available)
to determine that data is available in the receive FIFO. This data can then be read from the
receive FIFO interface register. A different status bit (received end of frame) is active to
indicate that frame status is now available in the receive FIFO. A maskable interrupt is also
generated. The status consists of three bytes: the first two bytes are the frame byte count
and the last byte is the general frame status. When performing a word (16-bit) read of the
FIFO, the lower byte contains the data and the upper byte indicates whether the lower byte
is data or status byte one, two, or three. The upper byte also indicates whether the
programmed FIFO threshold has been reached and if any interrupts are pending.
15-8 Am186™CC/CH/CU Microcontrollers User’s Manual

High-Level Data Link Control (HDLC)
The receive status indicates the following information:

■ If there was an overflow of the receive FIFO

■ If a non-integer number of bytes were received

■ If a CRC error was detected

■ Which address was matched

■ If the frame was too short or too long

■ If the receiver was turned off during the frame

■ If the frame ended with an abort (one zero followed by seven to 14 consecutive 1s).

At the end of frame 1, software must read the status of frame 1 from the receive FIFO before
it can read any data from frame 2.

15.5.3 General HDLC Options
These options involve both the transmitter and the receiver. For transmitter-specific options,
see “HDLC Transmitter” on page 15-10; for receiver-specific options, see “HDLC Receiver”
on page 15-14.

■ Data Clocks: Each HDLC channel requires two clock sources: a transmit clock for the
transmit data, and a receive clock for the receive data.

■ HDLC Reset: To initiate HDLC reset, set the HRESET bit in the HxCON register to 1.
HDLC reset clears the HDLC channels and FIFOs and restores all status registers to
their default values. HDLC reset does not affect the user-programmed control bits.

■ NRZ/NRZI Data Encoding: The microcontroller supports both non-return to zero (NRZ)
and non-return to zero, invert on zero (NRZI) data formats. Specify the encoding format
with the NRZI bit of the HxCON register.

■ Transparent Mode: Transparent mode disables zero-bit insertion and deletion, CRC
generation and checking, abort generation, and opening/closing flag generation. The
HDLC controller transmits data exactly as it is loaded in the transmit FIFO. When the
FIFO is empty, the controller generates idles (mark or flag) and does not set the abort
bit. If CTS is deasserted in Transparent mode, the transmitter goes to the idle state.
Transparent mode also disables the receive byte counter; therefore, short frame and
long frame errors are not reported. Byte alignment is possible in all modes except raw
DCE. Additionally, alignment is not possible when the entire time-multiplexed bus is
allocated to a single TSA/HDLC channel. To enable Transparent mode, set the TRANSM
bit in the HxCON register to 1.

To use byte alignment when using Transparent mode with a time-multiplexed data format,
set, then clear, the HRESET bit in the HxCON register after configuring the TSA and
HDLC channels and establishing operation. The first byte received or transmitted may
be corrupted while the HDLC channel is performing the alignment. To mask this effect
on the transmit side, configure the transmitter to use mark idles and make the first
transmitted byte all 1s (FFh).

To maintain byte alignment, all time slot widths used must be a multiple of eight bits and
there must be at least one empty time slot. HDLC requires the unused time slot to properly
locate the byte boundary. If the transmit FIFO underflows, the transmitter loses byte
alignment.
Am186™CC/CH/CU Microcontrollers User’s Manual 15-9

High-Level Data Link Control (HDLC)
■ Remote Loopback Mode: To enable Remote Loopback mode, set the LOOPR bit in
the HxCON register to 1. Remote Loopback disables the transmitter and echoes the
data received at the serial input out to the serial output. The receiver operates normally
in this mode.

■ Local Loopback Mode: To enable Local Loopback mode, set the LOOPL bit in the
HxCON register to 1. Local Loopback mode disconnects the serial input and connects
the serial output to the receiver input. The serial output can operate in three-state, open
drain, or totem pole mode.

■ CRC Type: The algorithm for CRC generation and checking can be CRC-CCIT, CRC-16,
or CRC-32. Specify the CRC type in the CRCTYPE field of the HxCON register.

■ Time Slot Assigner (TSA): Each HDLC channel is tightly coupled with a TSA, which
can operate in either multiplexed or nonmultiplexed (pass-through) mode. In multiplexed
mode, the TXCLK input becomes the synchronization input and the TSA connects the
receive clock to the transmit clock. In multiplexed mode, the TSA controller determines
when to enable and disable the HDLC clock. It also allows the user to reduce the number
of bits transmitted in a single 8-bit time slot. This reduction allows the transmission of
data from 64 Kbit/s down to 8 Kbit/s in 8 Kbit/s decrements. This feature allows the HDLC
channel to be used for LAP-D and reduced data mode LAP-B transmissions such as
56 Kbit/s.

15.5.4 HDLC Transmitter
The transmitter functions include:

■ Opening flag transmission

■ Data transparency (via zero insertion)

■ Generation and transmission of the CRC frame-check-sequence characters (if enabled)

■ Transmission of the closing flag.

Figure 15-3 illustrates the block diagram for the transmitter.

Note: The HDLC transmitter requires at least one byte of data surrounded by flags: the
start flag, one byte of data, and the end flag. A 2-byte CRC with no data also constitutes a
valid transmission. The HDLC receiver can receive only frames two bytes or longer.

Figure 15-3 HDLC Transmitter Block Diagram

Flag/Abort
Generator

CRC Generator (16- or 32-bit)

Zero
Insert

Transmit

Transparent Mode Path

Parallel-to-Serial
Shift Register

FIFO

Serial
From
CPU

output
NRZ/NRZI
Encoder

End-of-Frame
Tag
15-10 Am186™CC/CH/CU Microcontrollers User’s Manual

High-Level Data Link Control (HDLC)
The HDLC transmitters have the following features:

■ Transmit FIFO: The transmit FIFO consists of a 16-byte FIFO buffer, end-of-frame logic,
and DMA-request logic. When using programmed I/O to fill the transmit FIFO, a bit must
be set after the last byte in a frame is written to the FIFO. The SmartDMA interface uses
the terminal count signal from the DMA controller. For more information, see Chapter 8,
“DMA Controller.” Read the transmit FIFO with the HxTD register.

■ Transmit-FIFO Interface: When the transmit FIFO requests data, it either generates
an internal DMA request or sets the TDATA1 bit in the HxISTAT0 register indicating
transmit space is available. This status bit being set can generate a maskable interrupt.

■ Transmit-FIFO Threshold: The transmit FIFO has three options for the level at which
it requests data, specified in the TTHRSH field of the HxTCON0 register:

– When there is space available in the transmit FIFO (TTHRSH = 00)

– When there are 9 bytes of FIFO space available (TTHRSH = 01)

– When there are 16 bytes of FIFO space available (TTHRSH = 10)

Reaching the transmit threshold also generates a maskable interrupt (indicated in the
TTHRES bit of the HxISTAT0 register).

■ Transmit-Space Available: For programmed I/O, the TDATA1 bit in the HxISTAT0
register indicates when there is space available in the transmit FIFO. This indication is
independent of the threshold selected. The space available status can also generate a
maskable interrupt.

■ Transmit-FIFO Underflow: When the transmit FIFO underflows, it generates a
maskable interrupt, enters the abort state, and reports a TUFLO error status.

■ Transmit-Clock Polarity: The transmit clock polarity is specified in the TXCINV bit of
the HxTCON1 register, independent of the receive clock polarity. This feature is
recommended for use only in DCE mode.

■ Immediate-Transmit Start: When immediate transmit start is enabled, the transmitter
begins transmitting as soon as data is available in the transmit FIFO. When immediate
transmit start is disabled, the transmitter does not start transmitting until the FIFO is half
full or the complete frame is in the FIFO, whichever comes first. To enable immediate
transmit start, set the IMSTART bit in the HxTCON0 register to 1.

■ Flag- or Mark-Idle Generation: The HDLC transmitter can transmit either flag- or mark-
idles when the transmitter is enabled and is not actively sending a data frame (including
the opening and closing flags) or an abort sequence. Specify a flag idle by setting the
FLAGIDL bit in the HxTCON1 register to 1; specify a mark idle by clearing the FLAGIDL
bit to 0. A flag is 7Eh (the sequence of one 0, six 1s, and one 0); a mark idle sequence
is fifteen 1s; an abort sequence is one 0 followed by from seven to 14 consecutive 1s.
To properly support multidrop configurations with collision detection, the HDLC
transmitter should be configured to generate mark-idles. When transmitting flag- or mark-
idles, the transmitter is in the idle condition.

■ Flag Generation with Back-to-Back Frames: The minimum number of flags between
frames transmitted is two. At least one closing flag is always generated at the end of a
frame, and at least one opening frame is generated at the beginning of a frame (except
in Transparent mode). Back-to-back flags are sent without sharing 0s (i.e.,
0111111001111110, not 011111101111110).
Am186™CC/CH/CU Microcontrollers User’s Manual 15-11

High-Level Data Link Control (HDLC)
■ Abort Generation: The HDLC transmitter sends an abort sequence (one 0 followed by
seven to 14 1s) whenever the FORABR bit of the HxTCON0 register is set to 1. The
transmitter continues sending an abort sequence as long as this bit is set; however, if
the send abort bit is set and cleared on two successive writes to the HDLC Command/
Control register, at least one abort character is sent. An abort is also sent if CTS is lost
while the transmitter is in-frame (and CTS is enabled) or if a transmit FIFO underflow
occurs (unless in Transparent mode). When in GCI (Am186CC microcontroller only) or
multidrop mode, only one abort is sent and then the transmitter is turned off.

■ Parallel-to-Serial Shift Register: The HDLC transmitter loads the output of the transmit
FIFO or the flag/abort generator one byte at a time into the parallel-to-serial shift register
and then shifts it out. Transmission of a flag or abort sequence bypasses the zero-bit-
insertion logic.

■ CRC Generator: The CRC or Frame Check Sequence (FCS) contains the generated
CRC code for the frame being transmitted. All data transmitted between the opening
and closing flags (excluding inserted 0s) is included in the CRC calculation. The
transmitter appends the calculated CRC to the end of the frame just before the closing
flag. The transmitter supports the CRC-CCITT, CRC-16, and CRC-32 algorithms,
selected in the CRCTYPE field of the HxCON register. You can disable CRC generation
by setting the CRCDIS bit of the HxTCON0 register to 1. When CRC is disabled, the
transmitter does not append the CRC bytes to the end of the frame. The disable option
may be changed at any time before the last byte is to be transmitted. This ability allows
programmed I/O to generate some frames with CRC and some without CRC.

■ Zero-Bit lnsertion: The zero-bit-insertion logic, also referred to as data transparency,
ensures that the remote receiver does not recognize a flag, mark-idle, or abort embedded
in the data. The zero-bit-insertion logic monitors the data stream between the opening
and closing flags of a frame and inserts a 0 after detecting five contiguous 1s. Zero-bit
insertion does not operate in Transparent mode or when generating flags, mark-idles,
or aborts.

■ Transmit Enable: When transmit is disabled, the transmitter waits for the current frame
to complete transmission (if there is one) and for status on that frame to be reported,
then sets the transmitter stopped bit and begins transmitting either flags or marks
depending on the selected idle condition. While transmit is disabled, the transmitter
continues to fill up its internal pipe and FIFO. If the transmit FIFO contains data when
transmit is enabled, the transmitter begins transmission within one bit time of when
external CTS is asserted. If the idle condition is flag-idle, the transmitter finishes the
current flag before starting transmission of data. If the idle condition is mark-idle and at
least 16 1s have been transmitted, the transmitter may not finish the current mark idle
sequence before starting data transmission. To disable transmit, clear the HTEN bit of
the HxTCON0 register.

■ Transmit-FIFO Enable: Normal operation requires both the Transmit Enable (HTEN)
and the Transmit FIFO Enable (TFIFOEN) bits of the HxTCON0 register to be set.
Clearing the TFIFOEN bit causes the transmit FIFO data to be flushed. To avoid possible
data loss, disable SmartDMA control before flushing the FIFO.

■ Output States: The serial data output pin on the DCE interface (DCE_TXD_x) supports
three-state (reset default), open drain, or totem pole operation under program control.
The output must be set to open drain for proper operation in multidrop mode. Specify
the output state in the ODRV field of the HxTCON1 register.

■ Transmitter Status: After transmitting a frame, the transmitter generates a maskable
interrupt. If an error occurs during transmission, the transmitter stops. Read the
15-12 Am186™CC/CH/CU Microcontrollers User’s Manual

High-Level Data Link Control (HDLC)
transmitter status in the FABRST, CTSLST, TUFLO, TGOODF, and TSTOP bits of the
HxISTAT0 register.

■ Automatic CTS: When automatic CTS is enabled, the transmitter does not start
transmission until CTS is asserted. If the transmitter is transmitting (in-frame) and CTS
is deasserted, a lost CTS has occurred. A lost CTS halts transmission and generates
an abort and a maskable interrupt. If CTS is deasserted while the transmitter is in idle,
the transmitter does not respond. In multiplexed mode, the transmitter ignores CTS. If
CTS is deasserted in Transparent mode while transmitting, the transmitter begins
transmitting idles. When auto-enable CTS is disabled, the transmitter ignores the CTS
input. Auto-enable CTS must be disabled for Multidrop mode. To enable automatic CTS,
set the AUTOCTS bit of the HxTCON1 register to 1.

■ Multidrop Mode with Collision Detection: This mode requires the transmit data pin
to be physically tied, externally, to the CTS input pin. In addition, it requires the mark-
idle flag, disabled auto-enable CTS, and an open drain output. The HDLC channel delays
transmission until it sees a programmable number of consecutive 1s on the CTS input
pin. Specify the number of 1s to delay in the TDELAY field of the HxTCON1 register.
This feature provides some collision avoidance and a transmit priority based on the
number of 1s waited for before transmission. When transmission begins, the transmitter
samples the transmit data stream on the CTS input and internally compares it to what
is transmitted by the HDLC. Upon detecting a difference, the transmitter generates a
maskable interrupt (lost CTS), stops the data transmission, starts transmitting idle flags,
disables transmit, and flushes the transmit FIFO. To enable multidrop mode with collision
detection, set the MLTDRP bit of the HxTCON1 register to 1.

■ GCI D Channel Contention Resolution Request: The transmitter asserts a signal
when it wants to send data. In the Am186CC microcontroller, the GCI controller asserts
a signal back indicating when access to the D channel is available. When the GCIDEN
bit of the HxTCON1 register is set to 1, the transmitter does not begin transmitting until
the GCI gives this indication. If the access signal is deasserted in the middle of
transmission, the transmitter immediately transmits an abort, starts transmitting idles,
generates a maskable interrupt, and indicates a lost CTS status. At the end of
transmission (after the closing flag), the transmitter briefly stops requesting access even
if additional frames are to be transmitted. See Chapter 17, “General Circuit Interface
(GCI),” for additional information.

■ Transmit Bit Order: The transmitter supports the option of transmitting data MSB first
instead of LSB. To specify MSB-first transmission, set the TMSBF bit in the HxTCON1
register to 1. This ability is typically used only in Transparent mode.

■ Transparent Mode: The transmitter supports a Transparent mode (set the TRANSM bit
of the HxCON register to 1) that transmits the data exactly as it appears in the FIFO.
Transparent mode does no bit stuffing, no framing with flags, and does not support CRC.
Transparent mode is useful for transmitting raw data streams such as audio data (for
use with a codec or DSP). To achieve byte alignment, synchronize the transmitter by
resetting the HDLC after configuring the TSA and HDLC. Raw DCE mode does not
support byte alignment. Additionally, byte alignment is not possible when the entire time-
multiplexed bus is allocated to a single TSA/HDLC channel. To enable Transparent mode,
set the TRANSM bit in the HxCON register to 1. Transparent mode is the opposite of
data transparency, where zero-bit insertion (bit stuffing) is used to ensure the receiver
does not recognize a flag, mark-idle, or abort in the data stream.

Figure 15-4 and Figure 15-5 show a typical transmit with auto-enable CTS enabled. CTS
goes active to start the transmission, which begins with a flag. After the flag, three bits of
data are transmitted before CTS is recognized as going inactive. This forces TXD High.

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 15-13

High-Level Data Link Control (HDLC)
Figure 15-6 shows another typical transmit with auto-enable CTS enabled. At the end of
the closing flag, CTS is driven inactive. CTS is actually driven inactive at the same time as
the last bit of the byte before the flag, but it is not recognized until the next bit; therefore, a
lost CTS does not occur.

Figure 15-4 CTS Controlled Start of Transmit

Figure 15-5 CTS Controlled End of Transmit

Figure 15-6 CTS Inactive at End of Frame

15.5.5 HDLC Receiver
The receiver takes serial data, determines the frame boundaries, and transfers the data to
a 32-byte receive FIFO, where it is transferred to memory by the SmartDMA interface or
under programmed I/O control. The SmartDMA interface automatically puts the frame status
into the buffer descriptors. Programmed I/O puts the frame status into the FIFO at the end
of the frame.

The receiver functions include:

■ Mark-idle and flag-idle detection

■ Flag/abort recognition

■ Zero-bit deletion

■ CRC checking

■ Address recognition

Figure 15-7 illustrates the block diagram for the receiver.

CTS

TCLK

TXD

CTS

TCLK

TXD

TCLK

TXD

CTSCTS
15-14 Am186™CC/CH/CU Microcontrollers User’s Manual

High-Level Data Link Control (HDLC)
Note: The HDLC receiver requires frames two bytes or longer. The HDLC transmitter
requires at least one byte of data surrounded by flags: the start flag, one byte of data, and
the end flag. A 2-byte CRC with no data also constitutes a valid transmission.

Figure 15-7 HDLC Receiver Block Diagram

The HDLC receivers have the following features:

■ Flag/Abort Detection: A flag must be detected before starting to receive a frame. A
frame ends and status is reported when the receiver detects a flag or abort sequence.
The Am186CC and Am186CH microcontrollers support receiving back-to-back frames
with only one flag between frames. In Transparent mode, flag/abort delineation is
disabled, and reception begins as soon as the receiver is enabled. Reception continues
until the receive FIFO overflows.

■ Zero-Bit Deletion: Between the opening and closing flags, the receiver removes any 0
that appears after a string of five consecutive 1s (these 0s are added during transmission
to prevent a data pattern from resembling an abort, or an opening or closing flag).

■ Receive-Byte Counter: The receive-byte counter counts the number of bytes received
between flags. If the number is less than a 4-bit programmable number, the frame has
an error status reported, and part of the frame may be truncated. The receiver rejects
very short frames (less than two bytes) and does not put them into the receive FIFO.
Short frames (less than the value set in the MINRL field of the HxRCON0 register) and
very short frames each generate a separate maskable interrupt. Frames that are
truncated due to an abort condition do not count as short or very short frames. If the
number of bytes received exceeds a 16-bit programmable number, current frame
reception stops, an error status is reported, and the receiver begins to look for a flag.
Transparent mode operation disables the receive-byte counter.

■ Receive-Clock Polarity: The receive-clock polarity is programmable through the
RXCINV bit in the HxTCON0 register, independent of the transmit clock polarity. An
inverted clock is recommended for use only in DCE mode.

■ Frame Status: At the end of reception, the receiver places the receive byte counter
value and one byte of frame status in the receive FIFO. In programmed I/O mode, the
frame status becoming available generates a maskable interrupt, indicated in the REOF
bit of the HxISTAT0 register.

E
nd

-o
f-

F
ra

m
e

Serial

CRC Checker (16- or 32-bit)

Zero
Del.

Flag/Abort
Detection

Address Detector

Shift Register Shift Register

FIFO

Short Frame Det.

Transparent Mode Path DMA & Threshold
Logic

DRQ

Byte Clock

Byte Counter

Long Frame Det.

Input

Ta
g

Am186™CC/CH/CU Microcontrollers User’s Manual 15-15

High-Level Data Link Control (HDLC)
■ Short-Frame Counter: The HxSFCNT and HxSFCNTP registers indicate the total
number of short frames received. The HxSFCNT register clears when read; HxSFCNTP
does not. This count also includes all very short frames. If the counter rolls over, it
generates a maskable interrupt. This count does not include frames with mismatched
addresses.

■ CRC Checker: When the receiver detects the closing flag, it examines the 16-bit (or 32-
bit) CRC. If it detects an error, it reports a status bit to that effect. The receiver supports
the CRC-CCITT, CRC-16, and CRC-32 algorithms. The receiver always places the CRC
in the FIFO along with the rest of the frame data (that is, all data between flags is placed
in the FIFO). The CRC checker is always enabled, but software can ignore the CRC
error status (byte 3 of the status read from the HxRD register). Specify the CRC type in
the CRCTYPE field of the HxCON register.

■ Serial-to-Parallel Shift Register: Output from the zero-bit-deletion unit feeds into a 16-
bit shift register, which converts the serial stream into bytes. The receiver then feeds the
parallel output of the shift register to the receive FIFO one byte at a time.

■ Address Detection: The receiver uses address detection to determine whether to
receive the current frame. Each HDLC channel has four 16-bit matching address
registers (the HxA0–HxA3 registers) and four corresponding 16-bit matching address
mask registers (the HxA0MSK–HxA3MSK registers). The mask register determines
which of the first 16 data bits in the frame the receiver should compare to the
corresponding address register and which to ignore. If all unmasked bits of at least one
address match, the receiver accepts the frame; otherwise, it discards the frame and
starts looking for the next flag. The frame status byte contains information about which
address matched.

■ Mismatch-Address Counter: The HxMACNT and HxMACNTP registers keep count of
the number of frames that did not have an address match. The HxMACNT register clears
when read; HxMACNTP does not. Count rollover generates a maskable interrupt. The
receiver checks all frames two bytes or larger for an address match. The receiver does
not check the discarded very short frames.

■ Receive FIFO: The receive FIFO consists of a 32-byte FIFO buffer, end-of-frame logic,
and DMA-request logic. Read the receive FIFO at the HxRD register.

■ Receive-FIFO Interface: The receiver uses either programmed I/O or the DMA
controller to unload the receive FIFO. In programmed I/O mode, the RDATA1 bit of the
HxISTAT0 register indicates when data is ready to be read from the receive FIFO. Data
ready also generates a maskable interrupt. The REOF bit of the HxISTAT0 register (and
a maskable interrupt) indicate when the frame status from the last frame received is
available to be read from the receive FIFO and data is no longer ready to be read. The
next frame data is not available until that status bit is cleared. The SmartDMA interface
automatically moves the frame status to the buffer descriptors at the end of the frame.

■ Receive-FIFO Threshold: The receive FIFO supports thresholds of 1, 8, 16, or 32 bytes
under program control. Specify the receive FIFO threshold in the RTHRSH field of the
HxRCON0 register. The SmartDMA interface does not move data to memory until the
receive FIFO threshold is reached, indicated by the RTHRES bit of the HxISTAT0 register.
When the receive FIFO reaches the programmed threshold level, the data ready status
stays set until the receive FIFO is empty. At the end of a frame, the receive FIFO outputs
the remainder of the frame even if the receive FIFO threshold is not met.

■ Receive-Data Available: For programmed I/O, the RDATA1 bit of the HxISTAT0 register
indicates when there is a data byte presently available in the receive FIFO. This indication
15-16 Am186™CC/CH/CU Microcontrollers User’s Manual

High-Level Data Link Control (HDLC)
is independent of the threshold selected. The receiver can optionally generate a data-
ready interrupt as well.

■ Receive End-of-Frame: For programmed I/O, the REOF bit of the HxISTAT0 register
indicates when any status bytes (that is, an end-of-frame) are present in the FIFO. This
indication is independent of the threshold selected. The receiver can optionally generate
a status ready interrupt as well.

■ Receive-FIFO Overflow: If the receive FIFO overflows, it halts reception of the current
frame, disables the receiver, deasserts RTR, and generates a maskable interrupt. The
controller puts the overflow status into the receive FIFO when space is available. The
ROFLO bit of the HxISTAT1 register indicates when a receive-FIFO overflow occurs.

■ Bit Residue: If the number of bits in a frame is not an integer multiple of eight, the
receiver rejects the frame and reports the error status in the third status byte read from
the HxRD register. The last byte reported of the frame may or may not contain the
incomplete last byte of the frame.

■ Receiver Enable: When the receiver is disabled, the receiver continues to receive the
current frame. When the current frame ends (including the closing flag), or immediately
if not in-frame, the receiver deasserts the Ready-to-Receive (RTR) signal, and generates
a maskable interrupt. After the RTR signal is deasserted, the receiver does not receive
any data. When the receiver is re-enabled, it asserts the RTR signal. After reasserting
the RTR signal, it does not receive any data until it detects a flag and goes to the in-
frame state. When the receiver is disabled in Transparent mode, it immediately deasserts
the RTR signal and stops reception. When the receiver is enabled in Transparent mode,
it immediately asserts the RTR signal and starts reception. Disable the receiver by
clearing the HREN bit of the HxRCON0 register to 0.

■ Receive Reject: When receive reject is enabled, the receiver immediately stops
reception of data and reports an error status if the event occurred while in-frame. The
RTR signal is not affected. When receive reject is disabled, the receiver starts looking
for a flag. To enable receive reject, set the RREJECT bit of the HxRCON0 register to 1.

■ Receiver Stop: When the receiver is stopped, the receiver immediately stops reception
of data and deasserts RTR. The receiver also generates an error status if the event
occurred while in-frame. To stop the receiver, set the RSTOP bit of the HxRCON0 register
to 1.

■ Link Status: The status of the receiver is reported through the link status. The possible
states are: flag idle, mark idle, abort, and in-frame. For each state, the receiver can
generate a maskable interrupt when it enters the state. After receiving a flag, a
continuous input of 1s goes directly to the mark-idle state without transitioning to the
abort state. After exiting reset and a valid state is identified, the receiver always reports
the last valid state detected. Read the link status in the RTRS, ABORTS MARKIS,
FLAGS, and FRAMES bits of the HxSTATE register. Read the interrupts for these states
in the HxISTAT1 register.

■ Receive Bit Order: The receiver supports the option of receiving data MSB first instead
of LSB first. To specify MSB first reception, set the RMSBF bit of the HxRCON0 register
to 1. This ability is typically used only in Transparent mode.

■ Transparent Mode: The receiver supports a Transparent mode that moves the data into
the FIFO exactly as it is received with no bit stuffing, flag/abort detection, or CRC support.
To achieve byte alignment, synchronize the receiver through an HDLC reset after
configuring the Time Slot Assigner (TSA) and the HDLC. Raw DCE mode does not
support byte alignment. Additionally, alignment is not possible when the entire time-
Am186™CC/CH/CU Microcontrollers User’s Manual 15-17

High-Level Data Link Control (HDLC)
multiplexed bus is allocated to a single TSA/HDLC channel. To enable Transparent mode,
set the TRANSM bit of the HxCON register to 1.

Figure 15-8 shows the assertion and deassertion of RTR with back-to-back flags. A real
frame would contain additional data between the two flags.

Figure 15-8 RTR Timing

15.5.6 HDLC and SmartDMA
All SmartDMA channels support HDLC (the general-purpose DMA channels cannot be
used with HDLC). For information about using the SmartDMA interface, see Chapter 8,
“DMA Controller.” This section discusses some of the issues with using an HDLC channel
as the transmitter and receiver.

15.5.6.1 HDLC Transmitter

The only complication with a normal HDLC transmit using SmartDMA transfer is that, if the
packet to be transmitted is composed of more than one buffer and the buffer descriptors
are stored from a task that is interruptible, the HDLC transmitter could start up and underflow
if the task is interrupted before the last buffer descriptor is updated. To avoid this problem,
delay setting the OWN bit in the first buffer descriptor until all the other descriptors have
been completely set up, and set up the other descriptors in reverse order, that is, from last
to first.

If an error (such as a loss of CTS or a FIFO underflow) occurs during transmission of a
packet, the transmitter stops until software clears the error condition in the HDLC controller.
Software can either poll for these error conditions or, preferably, set the hardware up to
generate an interrupt when they occur. When such an error occurs, the software should
take the following steps:

1. Clear the SmartDMA control register TXST bit to stop the DMA. This stops the DMA
without clearing the OWN bit on the current buffer descriptor or going to the next buffer
descriptor.

2. Clear the HDLC error bit (CTSLST or TUFLO) in the HxISTAT0 register. This
automatically flushes and restarts the FIFO and re-arms the interrupt.

3. To resend the same packet that contains more than one buffer, software must:

a. Read the CTBD register to determine the current descriptor.

b. Back up to the start of the packet in the descriptor ring (find the descriptor with the
STP bit set), setting the OWN bit in each buffer before the current buffer back to and
including the buffer with the STP bit set.

c. Store the number of the descriptor, with the STP bit set, into the CTBD register.

Note that this technique does not work if buffers are reclaimed by the software as soon
as their OWN bits are reset by the hardware. For this technique to work properly,
buffers must not be reclaimed until an entire packet has been sent.

RCLK

RXD

RTR
15-18 Am186™CC/CH/CU Microcontrollers User’s Manual

High-Level Data Link Control (HDLC)
4. Finally, set the SmartDMA TXST and POLL bits to restart the DMA and poll the current
descriptor. If step 3 was executed to back the DMA to the start of the packet, or if the
DMA was already at the start of the packet (e.g., if CTS was lost during transmission of
the first buffer in the packet), then the packet is resent. If step 3 was not executed, and
the current DMA descriptor does not have STP set, then the DMA controller clears the
OWN bit on the descriptor and reads in the next descriptor. The DMA controller repeats
this clearing of the OWN bit and stepping to the next descriptor until it encounters a
descriptor with the OWN bit clear, or a descriptor with the STP bit set.

In other words, if the current descriptor is not the first descriptor of a packet (STP bit
is 0) and step 3 is not executed, the DMA controller automatically starts up again at the
next packet boundary (next buffer with STP set), and it is up to higher-level end-to-end
protocols to notice that the current packet was not transmitted successfully and to
resend it.

15.5.6.2 HDLC Receiver

Under normal operation, when an HDLC packet is received, the SmartDMA interface stores
it in one or more buffers, setting the STP bit in the first buffer descriptor, clearing the status
bits in any middle buffer descriptors, setting the EOP (end-of-packet) and error bits, and
storing the total length in the last (or only) buffer descriptor.

Software must perform two tasks, which in some systems can be performed at the same
time:

■ Software must fill the buffer descriptors with pointers to available buffers and information
about their size, and set the OWN bits to make them available to the SmartDMA interface.
If software is late in performing this task, an RBU interrupt is generated. If software is
so late that data is lost, an HDLC ROFLO interrupt is generated. Software does not need
to enable these interrupts or poll for this status. If software enables these interrupts, it
does not need to take any action in response to the interrupts except to provide buffers
to the descriptor ring (and reset the interrupt status bit in order to enable subsequent
interrupts of the same kind) because the overflow status is reflected in the next packet
stored to the ring.

If software provides buffers in response to an RBU or HDLC ROFLO interrupt, the
software can also set the DMA POLL bit. Setting this bit causes the DMA controller to
notice that the OWN bit of the next buffer is set, sooner than the DMA controller may
have noticed it on its own. There is never any reason to set the POLL bit for the receive
buffer unless the DMA controller run out of empty buffers.

■ Software must examine the descriptors of buffers that have been received. Software
searches through the descriptor ring until it finds the first descriptor that either has the
OWN bit set, or has the EOP bit set, or until it gets to the last descriptor that it has made
available to the hardware. When software finds a descriptor with the OWN bit reset and
the EOP bit set, it knows it has found the end of a packet. Software then moves the
descriptors off the ring, and sends the buffers to a higher-level task. If the error bits are
set in the descriptor with the EOP, software could simply recycle the buffers to the next
free position in the ring, without sending them to the next layer.
Am186™CC/CH/CU Microcontrollers User’s Manual 15-19

High-Level Data Link Control (HDLC)
15.5.7 Interrupts
All interrupts are individually maskable. Set the status bits in the HxISTAT0 and HxISTAT1
registers. Mask interrupts in the HxIMSK0 and HxIMSK1 registers.

15.5.7.1 Transmit Interrupts

The microcontroller provides the following transmit interrupts:

■ Transmit threshold reached

■ Data byte available

■ Abort sent

■ Lost CTS

■ Transmit FIFO underflow

■ Good frame transmitted

■ Transmitter stopped

15.5.7.2 Receive Interrupts

The microcontroller provides the following receive interrupts:

■ Receive threshold reached

■ Receive status available

■ Data byte available

■ Short frame counter rollover

■ Mismatch address counter rollover

■ Receive FIFO overflow

■ Flag idle state entered

■ Mark idle state entered

■ Abort state entered

■ In-frame state entered

■ RTR deasserted

■ Short frame detected

■ Very short frame detected

15.5.8 Hardware-Related Considerations
■ The Receive Threshold (RTHRSH) bits in the HDLC Channel Receive Control 0

(HxRCON0) register specify the amount of data needed in the receive FIFO before giving
an interrupt. The possible values are: 1, 8, 16, or 32 bytes. The Receive FIFO Threshold
Reached (RTHRES) bit in the HxISTAT0 register can generate an interrupt if this
programmed threshold has been reached or exceeded in the receive FIFO and there
were no status bytes present in the FIFO at that time. When RTHRES is set by hardware,
the receiver reads the threshold value from the FIFO without rechecking the status. If a
status byte is put into the FIFO after the RTHRES bit is set, after the first read of the
FIFO the receiver clears the bit, even if there is still a threshold number of data bytes in
the receive FIFO. Therefore, when the RTHRES bit is set, the receiver can read the
threshold number of data bytes consecutively.
15-20 Am186™CC/CH/CU Microcontrollers User’s Manual

High-Level Data Link Control (HDLC)
■ The receiver sets the One Receive Data Byte Available (RDATA1) bit in the HDLC
Channel Interrupt Status 0 (HxISTAT) register when the current byte available is data;
the RDATA1 bit does not reflect the entire FIFO contents. If the next byte is status and
the following byte is data, the receiver does not set RDATA1.

15.5.9 Software-Related Considerations
■ After setting the HREN bit to enable the receiver, the device software must reset the

HDLC FIFOs by setting the HRESET bit in the HxCON register. This clears any invalid
data in the receive FIFO that might be mistaken as the start of the data stream. Invalid
data is a concern when using Transparent mode (TRANSM = 1 in the HxCON register),
because in Transparent mode the receiver cannot rely on flag sequences to indicate the
start of valid data.

■ When the HDLC channel is disabled, the FIFO status reads as full.

■ In the Am186CC microcontroller, HDLC Channel D is multiplexed with the UART and
with flow control on the High-Speed UART. The Interface 4 Select (ITF4) bits in the
System Configuration (SYSCON) register must be configured for the HDLC interface.

15.5.10 Comparison to Other Devices
In addition to HDLC, the HDLC channels support the SDLC, LAP-B, LAP-D, PPP, and v.120
communications protocols. The HDLC channels can also be used in transparent mode to
support the v.110 protocol.

The HDLC protocol is similar to these other bit-oriented protocols:

■ The Advanced Data Communication Control Procedures (ADCCP) developed by the
American National Standards Institute (ANSI X3.66) is virtually identical to the HDLC
protocol.

■ The Link Access Procedure Balanced (LAP-B), adopted by the International Telegraph
and Telephone Consultative Committee (CCITT) as part of its X.25 packet-switched
network standard, is a subset of HDLC.

■ Although not a standard, IBM’s Synchronous Data Link Control (SDLC) is in widespread
use. SDLC is a subset of HDLC, with some differences.

15.6 INITIALIZATION
On both external and internal reset, the following occurs:

■ The multiplexed HDLC signals default to the signals shown in Table 15-1 on page 15-4.

■ All HDLC registers default to 00h except the HxSTATE, HxTD, HxRD/HxRDP, and
HxRFSx registers.

■ The ITF4 bit in the SYSCON register is cleared, which defaults external interface D to
HDLC with flow control.

■ The EXSYNC bit in the SYSCON register is cleared, which configures HDLC Channel C
for raw DCE or PCM highway modes.

CC

CC

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 15-21

High-Level Data Link Control (HDLC)
15-22 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
16 H
I

DLC EXTERNAL SERIAL
NTERFACE CONFIGURATION (TSAS)
Note: Only the Am186CC and Am186CH microcontrollers support the TSAs.

16.1 OVERVIEW
Time Slot Assigners (TSAs) and muxing logic between the HDLC channels and the external
communications interfaces of the chip provide flexible data path control on the Am186CC
and Am186CH microcontrollers. This data path control, combined with flexible time slot
allocation, allows the microcontroller’s external data streams to take on a wide variety of
forms.

The Am186CC microcontroller supports raw DCE, PCM Highway, and General Circuit
Interface (GCI) external data streams.

The Am186CH HDLC microcontroller supports raw DCE and PCM Highway external data
streams.

In the Am186CC microcontroller, interface A not only allows for a dedicated DCE/PCM
HDLC path, but has the capability to multiplex GCI/PCM data from each of the remaining
nondedicated HDLC channels.

Depending on the application, each HDLC can communicate to the external world with or
without a TSA. Each TSA resides between a PCM Highway internal bus and an individual
HDLC channel. A TSA’s main function is to allow the transmission and reception of data to
and from an individual HDLC by providing the appropriate HDLC clock and clock enable
signals during its programmed time slot within an 8-KHz frame.

In nonmultiplexed mode (there is no time-division multiplexing), an individual external serial
bus interface connects directly to an individual HDLC for both transmission and reception.
Configuring the microcontroller’s muxing logic for a specific raw DCE data path uses
nonmultiplexed mode.

In multiplexed mode (there is time-division multiplexing), all HDLC data that enters or leaves
the microcontroller passes through a TSA. Configuring the microcontroller’s muxing logic
and TSAs for the multiplexed PCM Highway uses multiplexed mode. External interface A
is unique in that it allows multiple time slots, to and from each HDLC, to multiplex on and
off this single interface.

Configuring the Am186CC microcontroller’s muxing logic and TSAs for the GCI data path
also uses multiplexed mode.

Time Slot selection allows up to 156 8-bit time slots within a time-division multiplexed (TDM)
frame. Each TSA channel can support a burst data rate to or from the HDLC of up to 10
Mbit/s in DCE and PCM highway modes. In all modes of operation, each channel is capable
of supporting full-duplex communications. With a maximum data rate of 10 Mbit/s and an
8-KHz frame, each channel provides programmability to support a maximum of 156 time
slots per TDM frame. (Although the microcontroller supports up to 4096 bit positions, this
requires a lower frame synchronization (frame sync) or a higher, unguaranteed clock rate.)

CHCC

CC

CH

CC

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 16-1

HDLC External Serial Interface Configuration (TSAs)
In the Am186CC microcontroller, Time Slot selection also supports isolation of GCI B and
D channels on separate HDLC channels. Each TSA channel can support a burst data rate
to or from the HDLC of up to 768 Kbit/s in GCI mode.

The TSA controllers also generate control signals for programmable frame sync pulse
polarity and individual channel time slot control output, which is asserted for the duration
of the programmed time slot(s). The latter is routed externally for PCM Highway applications
and can be used in subscriber linecard applications where it is used as an enable for three-
state data buffering on the PCM Highway.

The TSA controllers support adjustable channel sizing with the ability to define time slot
start and stop points. This channel adjustment and placement feature is an essential factor
for the creation of a GCI frame. The adjustable sizing feature also allows the associated
HDLC channel to be used for ISDN LAP-D and reduced data mode X.25 LAP-B
transmissions.

For applications that do not use the entire allocated time slot but do require a defined polarity
for the remaining unused bit positions, the TSA controllers provide the option of adding
additional polarity bits (up to seven) to fill out the remaining bit positions.

CC
16-2 Am186™CC/CH/CU Microcontrollers User’s Manual

HDLC External Serial Interface Configuration (TSAs)
16.2 BLOCK DIAGRAMS
Figure 16-1 and Figure 16-2 show simplified block diagrams for the TSA muxing.
Figure 16-3 shows a block diagram for a single HDLC channel, including connections with
the TSA and GCI.

Figure 16-1 Block Diagram For TSA Multiplexing (Am186CC Communications Controller)

Figure 16-2 Block Diagram For TSA Multiplexing (Am186CH HDLC Microcontroller)

RTR, CTS

Muxing Logic

TDM1

DCE1

TDM1
TSA

Mux

RTR, CTS

HDLC TDM2

DCE2

TDM2
TSA

Mux

RTR, CTS

HDLC
TDM3

DCE3

TDM3
TSA

Mux

RTR, CTS

HDLC TDM4

DCE4

TDM4
TSA

Mux

GCI/PCM Hwy. Conversion

HDLC

DCE2

DCE3

DCE4

External
Interface D

External
Interface C

External
Interface B

External
Interface A

DCE1

GCI

A

B

C

D

CC

RTR, CTS

Muxing Logic

TDM1

DCE1

TDM1
TSA

Mux

RTR, CTS

HDLC TDM2

DCE2

TDM2
TSA

Mux

HDLC

DCE2

External
Interface B

External
Interface A

DCE1

A

B

CH
Am186™CC/CH/CU Microcontrollers User’s Manual 16-3

H
D

L
C

 E
xtern

al S
erial In

terface C
o

n
fig

u
ratio

n
 (T

S
A

s)

16-4
A

m
186™

C
C

/C
H

/C
U

 M
icrocontrollers U

ser’s M
anual

F
ig

u
re

 1
6

-3
H

D
L

C
, T

S
A

, a
n
d

 G
C

I B
lo

c
k
 D

ia
g

ra
m

 (S
a
m

e
 a

s F
ig

u
re

 1
5
-2

)

rs

P
A

D
 In

te
rf

ac
e

Clock
Mux

 Mux

sters

Receive CLK (A, B, C, D)

Transmit CLK (A, B, C, D)

Receive DATA (A, B, C, D)

Transmit DATA (A, B, C, D)

Receive CLK_A

Transmit CLK_A

Receive DATA_A

Transmit DATA_A

us

A

ontrol

C
on

tr
ol

/

C
ha

nn
el

S
ta

tu
s

M
on

ito
r

C
on

tr
ol

da
ta

 Bus
ontrol

CC
transmit clock
transmit data

PCB

Registers Loopback

Receiver

Transmitter

PCB Bus

32 x 8 FIFO

16 x 8 FIFO

Control/Status

Interface

Control/Status

Registe

Monitor

Time Slot

TIC Bus

Time
Mux

Data

Regi

SmartDMA

Internal RTR

TIC Bus Control
Internal CTS

C
on

tr
ol

Control
I/O

OutOut

receive data
receive clock

Control

I/O

rxd

rxc

txc

txd

IN

IN

I/O

I/O

I/O

SmartDMA Bus PCB B

TS

GCI

HDLC

C

tim
e

S
lo

t C
on

tr
ol Channel

Controller

Controller

Controller
TIC
C

I/O

CC

HDLC External Serial Interface Configuration (TSAs)
16.3 SYSTEM DESIGN
lists the signals that are multiplexed with other microcontroller functions. Pinstraps are
sampled only at external reset and do not affect the pin’s other functions, so they are not
shown in this table. Other multiplexed signals, when enabled, either disable or alter any
other functions that use the same pin. Figure 16-4 illustrates an example application.

Figure 16-4 ISDN PCM System Application Example

Table 16-1 HDLC/TSA/GCI Multiplexed Signals (Same as Table 15-1)

Multiplexed Signals

Function
Default
SignalCh

External Interface
PIOs

DCE PCM GCI UART

A

DCE_RXD_A PCM_RXD_A GCI_DD_A — — DCE and PCM data input/
GCI downstream pin DCE_RXD_A

DCE_TXD_A PCM_TXD_A GCI_DU_A — — DCE and PCM data output/
GCI upstream pin DCE_TXD_A

DCE_RCLK_A PCM_CLK_A GCI_DCL_A — —
DCE receive clock/PCM
receive and transmit clock/GCI
receive and transmit clock

DCE_RCLK_A

DCE_TCLK_A PCM_FSC_A GCI_FSC_A — —
DCE transmit clock/PCM frame
sync clock/GCI frame sync
clock

DCE_TCLK_A

DCE_CTS_A PCM_TSC_A — — PIO17 DCE clear to send/PCM
external buffer enable PIO17

DCE_RTR_A — — — PIO18 DCE ready to receive PIO18

ISDN PCM Transceiver

PCM Codec

Am186CC/CH
Microcontroller

PCM_TXD_A

PCM_RXD_A

PCM_FSC_A

PCM_CLK_A

TDMDI

TDMD0

FS

TDMCLK

DXA

DRA

FS

PCLK

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 16-5

HDLC External Serial Interface Configuration (TSAs)
B

DCE_RXD_B PCM_RXD_B — — PIO36 DCE and PCM data input pin PIO36

DCE_TXD_B PCM_TXD_B — — PIO37 DCE and PCM data output pin PIO37

DCE_RCLK_B PCM_CLK_B — — PIO40 DCE receive clock/PCM
receive and transmit clock PIO40

DCE_TCLK_B PCM_FSC_B — — PIO41 DCE transmit clock/PCM frame
sync clock PIO41

DCE_CTS_B PCM_TSC_B — — PIO38 DCE clear to send/PCM
external buffer enable PIO38

DCE_RTR_B — — — PIO39 DCE ready to receive PIO39

C

DCE_RXD_C PCM_RXD_C — — PIO42 DCE and PCM data input pin PIO42

DCE_TXD_C PCM_TXD_C — — PIO43 DCE and PCM data output pin PIO43

DCE_RCLK_C PCM_CLK_C PCM_CLK_C — PIO22

DCE receive clock/PCM
receive and transmit clock
input/GCI-to-PCM conversion
clock output

PIO22

DCE_TCLK_C PCM_FSC_C PCM_FSC_C — PIO23
DCE transmit clock/PCM frame
sync clock input/GCI-to-PCM
conversion frame sync output

PIO23

DCE_CTS_C PCM_TSC_C — — PIO44 DCE clear to send/PCM
external buffer enable PIO44

DCE_RTR_C — — — PIO45 DCE ready to receive PIO45

D

DCE_RXD_D PCM_RXD_D — RXD_U PIO26 DCE and PCM data input/
UART data receive PIO26

DCE_TXD_D PCM_TXD_D — TXD_U PIO20 DCE and PCM data output/
UART data transmit PIO20

DCE_RCLK_D PCM_CLK_D — RTR_U PIO25
DCE receive clock/PCM
receive and transmit clock
input/UART ready-to-receive

PIO25

DCE_TCLK_D PCM_FSC_D — CTS_U PIO24
DCE transmit clock/PCM frame
sync clock input/UART clear-
to-send

PIO24

DCE_CTS_D PCM_TSC_D — CTS_HU PIO46
DCE clear to send/PCM
external buffer enable/High-
Speed UART clear-to-send

PIO46

DCE_RTR_D — — RTR_HU PIO47 DCE ready to receive/High-
Speed UART ready-to-receive PIO47

Table 16-1 HDLC/TSA/GCI Multiplexed Signals (Same as Table 15-1) (Continued)

Multiplexed Signals

Function
Default
SignalCh

External Interface
PIOs

DCE PCM GCI UARTCC

CC

CC
16-6 Am186™CC/CH/CU Microcontrollers User’s Manual

HDLC External Serial Interface Configuration (TSAs)
16.4 REGISTERS
Table 16-2 lists the three unique registers that program each individual TSA. The x shown
in the register name is A, B, C, or D, depending on the channel selected. The offset shown
is for Channel A; for Channel B, add 08h to the offset. Both the Am186CC and Am186CH
microcontrollers support Channels A and B.

The Am186CC microcontroller also supports Channels C and D. Add 10h to the offset for
Channel C and add 18h for Channel D.

Appendix A summarizes the bits in all the registers. For a complete description of all the
peripheral registers, see the Am186™CC/CH/CU Microcontrollers Register Set Manual,
order #21916.

16.5 OPERATION

16.5.1 Usage
Note: Before using the TSA channels, ensure multiplexed pins are configured to reflect the
use of the external interface desired and not other functionality (see Table 16-1 on
page 16-5).

Configure the Time Slot Assigner (TSA) controllers using the following process:

1. Define the bit start position for the transmitted or received data frame for each specific
TSA channel in the TSA Channel Bit Start Position (TSxSTART) register.

2. Define the bit stop position for the transmitted or received data frame for each specific
TSA channel in the TSA Channel Bit Stop Position (TSxSTOP) register.

3. Configure the operating modes for each specific TSA channel in the TSA Channel
Configuration (TSxCON) register—channel mode, channel frame sync pulse polarity,
and channel adjust bit drive level—and enable each TSA channel by setting the EN bit
to 1. These bits may be set simultaneously but EN cannot be set before steps 1–2.

The TSAs are now enabled for data transfers. For information about configuring HDLC
channels to begin transferring the data, see “Usage” on page 15-7.

For information about using GCI, see “Usage” on page 17-5.

Table 16-2 TSA Register Summary

Offset1

Notes:
1. The x shown in the register name can be A, B, C, or D, depending on the channel selected. The offset shown is
for Channel A; for Channel B, add 08h to the offset; Channel C, add 10h; Channel D, add 18h. Both the Am186CC
and Am186CH microcontrollers support Channels A and B. The Am186CC microcontroller also supports Channels
C and D.

Register
Mnemonic

Register Name Description

2C0h TSxCON TSA Channel Configuration Configures and enables the TSA channel.

2C2h TSxSTART TSA Channel Bit Start Position
Defines the time slot start position for transmit
and receive data frames.

2C4h TSxSTOP TSA Channel Bit Stop Position
Defines the bit stop position for transmit and
receive data frames.

CC

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 16-7

HDLC External Serial Interface Configuration (TSAs)
4. To establish byte alignment in transparent mode, additional configuration is necessary
as follows:

a. Enable transmit FIFO (TFIFOEN bit), force abort (FORABR bit), and transmit enable
(HTEN bit) of the HxTCON0 register for each specific HDLC channel.

b. Enable receiver (HREN bit) of the HxRCON0 register for each specific HDLC channel.

c. Toggle (set, then clear) HDLC reset (HRESET bit) of the HDLC channel control register
(HxCON) for each specific HDLC channel.

d. Clear HxISTAT0 and HxISTAT1 registers for each specific HDLC channel.

The first byte received or transmitted may be corrupted while the HDLC is performing the
alignment. This effect can be masked on the transmit side by configuring the transmitter to
use mark idles and making the first byte transmitted all 1s (FFh).

16.5.2 Programmable Time Slots
Each TSA is unique, and time slots can start and stop on any bit boundary within a time-
division multiplexed (TDM) frame, up to a maximum of 4096 bit positions. Frame boundary
overlapping is allowed and occurs whenever the programmed bit start point exceeds the
bit stop point. The microcontroller supports the isolation of 8-bit time slots from 0 to 155 on
a standard 8-KHz TDM frame (this limitation is due to the 10-MHz limitation of HDLC).

The ability to define time slot start and stop points allows for adjustable channel sizing and
placement. Adjustable channel sizing enables the TDM data channel to or from an individual
HDLC to support differing data rates.

In the Am186CC microcontroller, the channel adjustment and placement feature is an
essential factor for the creation of a GCI frame. In GCI applications, the GCI D channel
must be size-adjusted to two bits and the GCI B channels must be size-adjusted to eight
bits (see Chapter 17, “General Circuit Interface (GCI),” for further information regarding B
and D channel size and placement).

The adjustable sizing feature also allows the HDLC channel to be used for ISDN LAP-D
and reduced data mode X.25 LAP-B transmissions such as 56 Kbit/s.

Certain applications do not use the entire allocated time slot, but do require a defined
polarity for the remaining unused bit positions. For these applications, the user is given the
option of adding additional polarity bits (up to seven) to fill out the remaining bit positions.
In short, the user must program a start point, a stop point, the number of bits remaining to
complete the allocated time slot, and a polarity for the remaining unused bit positions.

Note: Since a maximum clock rate of 10 MHz is supported, the utilization of the full 4096
bit range is sync rate dependent. For example, the standard 8-KHz frame does not support
bit ranges above 1250 bit positions or 156 8-bit time slots (this requires a clock rate higher
than 10 Mhz). Applications capable of supporting lower sync rate frequencies can use the
full bit range.

16.5.3 Muxing Logic
For the most part, the muxing logic controls the path data takes from an HDLC to an external
communication interface (or vice versa). The exception to this can be seen in the last mux
stage on interface C in the Am186CC microcontroller. Here, one of the mux options provides
an adjusted GCI clock and frame sync source for external interface C. For more information,
see “GCI Frame Sync and Clock Conversion” on page 16-12.

CC

CC
16-8 Am186™CC/CH/CU Microcontrollers User’s Manual

HDLC External Serial Interface Configuration (TSAs)
Figure 16-5 on page 16-10 demonstrates the muxing logic for an ISDN basic-rate GCI
interface. The muxes at each stage level have been removed for clarity. In their place is the
end data path established after proper mux initialization. This figure illustrates the following:

1. Adjustable time slot size: eight bits for each GCI B channel and two bits for the GCI D
channel

2. Isolation of single time slots 0, 1, and 3

3. GCI B and D channel isolation

4. GCI support

5. Multiplexed mode for interface A (where multiple HDLC channels are multiplexed onto
one line)

Depending on whether you are transmitting or receiving, Figure 16-5 on page 16-10 can
be read: Stage 1, Stage 2, Stage 3; or Stage 3, Stage 2, Stage 1.

In Stage 1, the GCI controller extracts the GCI Monitor (Mon), Command/Indicate (C/I),
Intercommunication (IC), and Terminal Interchip Communication (TIC) channels. At the end
of stage 1, the HDLC data is multiplexed with the GCI channel data (the B1-, B2- and D-
channel ISDN data is present as well as the GCI Mon, C/I, IC, and TIC data).

In Stage 2, all channels are logically muxed onto one internal bus heading to and from
interface A. The GCI B and D channels are isolated.

In Stage 3, each HDLC clock is only active during the time slot for the channel it is to transmit
or receive. TSA A is configured to enable HDLC clocks for GCI channel D data. TSA B is
configured to enable clocks for GCI B2 channel data. TSA C is configured to enable clocks
for GCI B1 channel data.
Am186™CC/CH/CU Microcontrollers User’s Manual 16-9

HDLC External Serial Interface Configuration (TSAs)
Figure 16-5 ISDN Basic-Rate GCI Application (Am186CC Communications Controller)

Stage 1Stage 2Stage 3

Stage 1

Stage 2

Stage 3

 5c 81 7e 8f 3a 4b xx xx xx 8c 9a 8b

 xx xx xx xx 3a 4b xx xx xx xx xx xx

GCI
with

PCM
Conversion

D-channel

HDLC
Channel A

B2-channel

HDLC
Channel B

B1-channel

HDLC
Channel C

 D,C/I0,
 MR,MX MR,MX

C/I1,

B1 B2

 3a 4b

B1 B2

B1 B2 Mon0 IC1 IC2 Mon1 TIC
,

D (2 bits: 10)

T
S
A

GCI BusPCM Bus
Internal External Interface A

HDLC
Controller D

Frame Sync.
sync

Adjuster

CLK

External Interface C
GCI Conv. to
PCM CLK and Sync

Time

External Interface D
PCM Highway

1

 D
(10xxxxxx)

HDLC_CLK

HDLC_CLK

HDLC_CLK

HDLC_CLK

 0

A

T
S
A

B

T
S
A

C

T
S
A

D

traffic

traffic

traffic

CC
16-10 Am186™CC/CH/CU Microcontrollers User’s Manual

HDLC External Serial Interface Configuration (TSAs)
16.5.4 External Interfaces
As mentioned previously, the Am186CC and Am186CH microcontrollers’ external data
streams can take the following forms: raw DCE and PCM Highway. When connecting directly
to an individual HDLC, raw DCE format is available. When HDLC data passes through a
TSA, the PCM Highway interface is available.

In addition, the Am186CC microcontroller supports the GCI external data stream when
HDLC data passes through a TSA.

16.5.4.1 Raw DCE

Raw DCE is a synchronous serial bus generally used in modem and other high-speed serial
applications, and runs at up to 10 Mbit/s. The Am186CC and Am186CH microcontroller
implementation requires transmit (TCLK) and receive (RCLK) clock inputs, has receive
(RXD) and transmit data (TXD), and the Clear-To-Send (CTS) and Ready-To-Receive (RTR)
flow control signals.

16.5.4.2 PCM Highway

PCM Highway is a generic serial bus used to support a wide range of data rates (including
E1/T1) and runs at up to 10 Mbit/s. The Am186CC and Am186CH microcontroller
implementation is composed of data transmit (TXD), data receive (RXD), data clock (CLK),
frame sync clock (FSC), and time slot control (TSC) signals.

Each of the individual PCM Highway interfaces are pin-multiplexed with one or more of the
following serial bus interfaces: raw DCE and High-Speed UART.

In the Am186CC microcontroller, the individual PCM Highway interfaces are also pin-
multiplexed with GCI. A converted GCI frame sync and clock interface for the PCM codecs
is also multiplexed with one of the four PCM Highway interfaces. For a listing of all the pin
multiplexing, see Table 16-1 on page 16-5.

PCM channel configuration (e.g., channel size, channel length, channel placement, etc.)
is provided through proper TSA initialization.

16.5.4.2.1 PCM Highway Applications
The PCM Highway implementation features the following:

■ Every TSA can support a separate PCM physical interface simultaneously.

■ Each PCM interface is pin-multiplexed with other serial bus interfaces.

■ All of the HDLC channels can be routed to PCM Highway interface A.

■ Each HDLC channel supports PCM channel time slot selection, fully configurable
through the integrated TSAs.

■ GCI clock and frame synchronization conversion and routing directly from the GCI to
the PCM Highway interface are supported for external codec applications. Data is routed
externally (with respect to the Am186CC microcontroller) directly from the codec to the
GCI transceiver device for this type of application.

■ Support for a time slot control signal that asserts for the duration of the programmed
time slots.

CC

CC

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 16-11

HDLC External Serial Interface Configuration (TSAs)
■ Targets the following external codecs (see Table 16-3 on page 16-14):

– AMD Am79C02/03

– AMD Am79C031

– Motorola MC14555x

– National TP305x family

– National TP307x family

– AT&T T75xx family

– TI/Intel 291x family

■ Targets the following external ISDN transceivers (ISDN requires three channels):

– AMD Am79C30A/32A S/T

– Lucent T7237 U

Note: The Am186CC microcontroller does not provide the PCM codec master clocks for
GCI applications.

16.5.4.2.2 GCI Frame Sync and Clock Conversion
To support a wide variety of external PCM codecs while in GCI mode, the microcontroller
divides down the GCI clock frequency (which is twice the GCI data rate) to match the PCM
data rate. In addition to a divided-down clock, a programmable one-clock-prior-to-data
frame sync (the programmability determines where the frame sync appears relative to a B
channel time slot) provides the needed flexibility to support the targeted PCM codecs (listed
previously). These two converted signals (converted GCI frame sync and converted GCI
clock) are an output on the Am186CC microcontroller’s external communication interface
C. All codec data movement is completely external to the microcontroller and is directly
routed between the PCM codec and the GCI bus. All external PCM codecs directly
connected to the GCI bus must meet all of the following conditions:

1. Be configured to output data on the rising edge of the converted clock and input data
on the falling edge of the converted clock (for GCI bus compatibility).

2. Be able to accept a one-clock-prior-to-data frame sync.

3. Be able to accept an active High frame sync.

4. Be capable of accepting a data clock frequency of 768 KHz.

Note: The Am186CC microcontroller only provides the PCM codec data/bit clock. The
Am186CC microcontroller does not provide the PCM codec master clock(s).

Figure 16-6 and Figure 16-7 illustrate both frame sync programmability and GCI conversion,
respectively.

CC

CC

CC

CC
16-12 Am186™CC/CH/CU Microcontrollers User’s Manual

HDLC External Serial Interface Configuration (TSAs)
Figure 16-6 Programmable Frame Sync

Figure 16-7 Converted GCI Clock and Frame Sync

GCI B1 Channel GCI B2 Channel

1 2 3 4 5 6 7 0 1 2 3

Frame Sync Programmed for Channel B1

Frame Sync Programmed for Channel B2

07

 FSC

CLK

GCI B1 Channel GCI B2 Channel

1 2 3 4 5 6 7 0 1 2 307

 FSC

 CLK

CC

Bit 0 Bit 1

DCL

CLK

G
C

I C
lo

ck an
d

 F
ram

e S
yn

c
 P

C
M

 C
lo

ck an
d

 F
ram

e S
yn

c G
C

I D
ata

FSC

FSC

Signifies the clock edge data is input
Signifies the clock edge frame sync is detected

Don’t care for codec

Bit 0 Bit 1Don’t care for codecDU

Solid Line Illustrates Frame Sync’s Minimum Setup
and Hold Times (with respect to DCL)

DD

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 16-13

HDLC External Serial Interface Configuration (TSAs)
16.5.4.3 GCI

The Am186CC microcontroller supports GCI, which is an industry-standard serial bus for
interconnecting telecommunications integrated circuits. For more information, see
Chapter 17, “General Circuit Interface (GCI).”

16.5.5 Software-Related Considerations
■ When using the TSAs in Transparent PCM Highway mode, the first byte of data

transferred must always contain a 1 as the first bit. If the first bit is a 0, the idle state
(mark idle) previous to the actual data stream is corrupted, which could falsely indicate
the start of actual data. This only applies when using Transparent mode.

16.5.6 Comparison to Other Devices
The Am186CC and Am186CH microcontrollers are similar to the AMD Am79C30 in clock
slave mode.

16.6 INITIALIZATION
On both external and internal reset, the following occurs:

■ All the TSA registers default to C0h, which disables the TSA channels (they must be
configured by software before being enabled).

■ The multiplexed signals default as shown in Table 16-1 on page 16-5.

Table 16-3 Timing Parameters Per Device (Supported PCM Codecs in GCI Mode)

Parameter1

Notes:
1. All loading is 150 pF.

Device Time (in ns)

79C30 as
Master

Am186CC
Am79C02/

03/031
MC14555

x
TP305x TP307x

Clock Period
Min: 487
Max: 815

Min: 974
Max: 1630

Min: 122
Max: 7812

Clock High Pulse Width Min: 260 Min: 260
Min: 48

Max: 3890
Min: 50 Min: 160 Min: 80

Clock Low Pulse Width Min: 260 Min: 260
Min: 48

Max: 3890
Min: 50 Min: 160 Min: 80

Frame Sync Setup Time Min: 50 Min: 50
Min: 25
Max:

clk prd-50
Min: 50 Min: 50 Min: 30

Frame Sync Hold Time Min: 50
Min: 260

(min PW)2

2. One clock prior to frame sync is a full clock period, guaranteed to hold for a minimum pulse width Low.

Min: 50 Min: 50 Min: 100 Min: 30

Data Output Delay Max: 100 Data
movement
occurs out-

side the
Am186CC

Min: 3/30ns
Max: 80/150

Min: 20
Typ: 60

Max: 140

Min: 0
Max: 140

Max: 80

Data Output Hold Time Min: 70
Min: 5/30

Max: 80/150
Max: 80

Data Input Setup Time PW + 20 Min: 25 Min: 0 Min: 50 Min: 30

Data Input Hold Time 50 Min: 5 Min: 50 Min: 50 Min: 15

CC

CC
16-14 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
17 G
ENERAL CIRCUIT INTERFACE (GCI)
Note: Only the Am186CC microcontroller supports GCI.

17.1 OVERVIEW
The General Circuit Interface (GCI) is an interface specification developed jointly by Alcatel,
Italtel, GPT and Siemens. This specification (sometimes called IOM-2) defines an industry-
standard serial bus for interconnecting telecommunications integrated circuits. The
standard covers linecard, NT1, and terminal architectures for Integrated Services Digital
Network (ISDN) applications. The Am186CC microcontroller supports the terminal version
of GCI, which serves four main functions:

■ Connection of voice/data modules to an OSI Layer 1, GCI-SCIT (Special Circuit
Interface T) device (transceiver)

■ Programming and control of devices that do not have a microprocessor interface (e.g.,
a coder-decoder (codec) or a U-Interface transceiver)

■ Interchip communications between devices on the bus (e.g., a codec to a speech
encryption device)

■ Connection of multiple data link controllers to the D channel, including access arbitration
handled through the Terminal Interchip Communication (TIC) bus

Depending on the application, each HDLC can communicate to the external world with or
without a TSA. Each of the four HDLC channels can be programmed to select between raw
DCE and dedicated PCM Highway external interfaces.

The Am186CC microcontroller’s HDLC Channel A interfaces to the GCI controller block,
and allows multiplexed PCM Highway and GCI interfaces to the other three HDLC channels.
See Chapter 15, “High-Level Data Link Control (HDLC)” and Chapter 16, “HDLC External
Serial Interface Configuration (TSAs)” for more information. Full documentation on
GCI/IOM-2 is available in the AMD IOM-2 Interface Reference Guide, order #12576.

17.2 BLOCK DIAGRAM
Figure 17-1 shows the block diagram for a single HDLC channel, including connections
with the TSA and GCI.

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 17-1

G
en

eral C
ircu

it In
terface (G

C
I)

17-2
A

m
186™

C
C

/C
H

/C
U

 M
icrocontrollers U

ser’s M
anual

F
ig

u
re

 1
7

-1
H

D
L

C
, T

S
A

, a
n
d

 G
C

I B
lo

c
k
 D

ia
g

ra
m

 (S
a
m

e
 a

s F
ig

u
re

 1
5
-2

)

rs

P
A

D
 In

te
rf

ac
e

Clock
Mux

 Mux

ters

Receive CLK (A, B, C, D)

Transmit CLK (A, B, C, D)

Receive DATA (A, B, C, D)

Transmit DATA (A, B, C, D)

Receive CLK_A

Transmit CLK_A

Receive DATA_A

Transmit DATA_A

s

A

ontrol

C
on

tr
ol

/

C
ha

nn
el

S
ta

tu
s

M
on

ito
r

C
on

tr
ol

da
ta

 Bus
ntrol

CC
transmit clock
transmit data

PCB

Registers Loopback

Receiver

Transmitter

PCB Bus

32 x 8 FIFO

16 x 8 FIFO

Control/Status

Interface

Control/Status

Registe

Monitor

Time Slot

TIC Bus

Time
Mux

Data

Regis

SmartDMA

Internal RTR

TIC Bus Control
Internal CTS

C
on

tr
ol

Control
I/O

OutOut

receive data
receive clock

Control

I/O

rxd

rxc

txc

txd

IN

IN

I/O

I/O

I/O

SmartDMA Bus PCB Bu

TS

GCI

HDLC

C

tim
e

S
lo

t C
on

tr
ol Channel

Controller

Controller

Controller
TIC
Co

I/O

CC

General Circuit Interface (GCI)
17.3 SYSTEM DESIGN
Table 17-1 lists the HDLC/TSA/GCI signals that are multiplexed with other Am186CC
microcontroller functions. Pinstraps are sampled only at external reset and do not affect
the pin’s other functions, so they are not shown in this table. Other multiplexed signals,
when enabled, either disable or alter any other functions that use the same pin. Table 17-2
on page 17-3 shows an example application.

Figure 17-2 ISDN TA GCI-to-PCM Conversion System Application Example

Table 17-1 HDLC/TSA/GCI Multiplexed Signals (Same as Table 15-1)

Multiplexed Signals

Function
Default
SignalCh

External Interface
PIOs

DCE PCM GCI UART

A

DCE_RXD_A PCM_RXD_A GCI_DD_A — — DCE and PCM data input/
GCI downstream pin DCE_RXD_A

DCE_TXD_A PCM_TXD_A GCI_DU_A — — DCE and PCM data output/
GCI upstream pin DCE_TXD_A

DCE_RCLK_A PCM_CLK_A GCI_DCL_A — —
DCE receive clock/PCM
receive and transmit clock/GCI
receive and transmit clock

DCE_RCLK_A

DCE_TCLK_A PCM_FSC_A GCI_FSC_A — —
DCE transmit clock/PCM frame
sync clock/GCI frame sync
clock

DCE_TCLK_A

DCE_CTS_A PCM_TSC_A — — PIO17 DCE clear to send/PCM
external buffer enable PIO17

DCE_RTR_A — — — PIO18 DCE ready to receive PIO18

ISDN GCI Transceiver

PCM Codec

GCI_DU_A

GCI_DD_A

GCI_FSC_A

GCI_DCL_A

SBIN

SBOUT

SFS

SCLK

DXA

DRA

FS

PCLK

PCM_FSC_C

PCM_CLK_C

Am186CC Controller

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 17-3

General Circuit Interface (GCI)
B

DCE_RXD_B PCM_RXD_B — — PIO36 DCE and PCM data input pin PIO36

DCE_TXD_B PCM_TXD_B — — PIO37 DCE and PCM data output pin PIO37

DCE_RCLK_B PCM_CLK_B — — PIO40 DCE receive clock/PCM
receive and transmit clock PIO40

DCE_TCLK_B PCM_FSC_B — — PIO41 DCE transmit clock/PCM frame
sync clock PIO41

DCE_CTS_B PCM_TSC_B — — PIO38 DCE clear to send/PCM
external buffer enable PIO38

DCE_RTR_B — — — PIO39 DCE ready to receive PIO39

C

DCE_RXD_C PCM_RXD_C — — PIO42 DCE and PCM data input pin PIO42

DCE_TXD_C PCM_TXD_C — — PIO43 DCE and PCM data output pin PIO43

DCE_RCLK_C PCM_CLK_C PCM_CLK_C — PIO22

DCE receive clock/PCM
receive and transmit clock
input/GCI-to-PCM conversion
clock output

PIO22

DCE_TCLK_C PCM_FSC_C PCM_FSC_C — PIO23
DCE transmit clock/PCM frame
sync clock input/GCI-to-PCM
conversion frame sync output

PIO23

DCE_CTS_C PCM_TSC_C — — PIO44 DCE clear to send/PCM
external buffer enable PIO44

DCE_RTR_C — — — PIO45 DCE ready to receive PIO45

D

DCE_RXD_D PCM_RXD_D — RXD_U PIO26 DCE and PCM data input/
UART data receive PIO26

DCE_TXD_D PCM_TXD_D — TXD_U PIO20 DCE and PCM data output/
UART data transmit PIO20

DCE_RCLK_D PCM_CLK_D — RTR_U PIO25
DCE receive clock/PCM
receive and transmit clock
input/UART ready-to-receive

PIO25

DCE_TCLK_D PCM_FSC_D — CTS_U PIO24
DCE transmit clock/PCM frame
sync clock input/UART clear-
to-send

PIO24

DCE_CTS_D PCM_TSC_D — CTS_HU PIO46
DCE clear to send/PCM
external buffer enable/High-
Speed UART clear-to-send

PIO46

DCE_RTR_D — — RTR_HU PIO47 DCE ready to receive/High-
Speed UART ready-to-receive PIO47

Table 17-1 HDLC/TSA/GCI Multiplexed Signals (Same as Table 15-1) (Continued)

Multiplexed Signals

Function
Default
SignalCh

External Interface
PIOs

DCE PCM GCI UARTCC

CC

CC
17-4 Am186™CC/CH/CU Microcontrollers User’s Manual

General Circuit Interface (GCI)
17.4 REGISTERS
The registers listed in Table 17-2 program the GCI. Appendix A summarizes the bits in all
the registers. For a complete description of all the peripheral registers, see the
Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916.

17.5 OPERATION

17.5.1 Usage
Note: Before using GCI, ensure multiplexed pins are configured to reflect the use of GCI
and not other functionality (see Table 17-1 on page 17-3).

1. To enable the GCI interface, software must set the MODE field of the TSACON register
to 10b. This is necessary whether or not TSA Channel A is being used.

2. If transmitting using the GCI, see “Transmitting Data” on page 17-6; if receiving, see
“Receiving Data” on page 17-7.

Table 17-2 GCI Register Summary

Offset
Register
Mnemonic

Register Name Description

2A0h GPCON GCI Peripheral Control Configures GCI.

2A2h GISTAT GCI Interrupt Status
Contains status. All bits can generate an
interrupt if not masked off in GIMSK.

2A4h GIMSK GCI Interrupt Mask
Mask register for GISTAT. When a mask bit is
0 (the reset value), the corresponding interrupt
is masked off.

2A6h GTIC GCI TIC Bus Address Enables TIC bus operation.

2A8h GICTD GCI Intercommunication Transmit Data
Contains user-defined transmission data for
GCI IC Channel 1 or 2.

2AAh GICRD GCI Intercommunication Receive Data
Contains received data for either GCI IC
Channel 1 or 2.

2ACh GICRDP
GCI Intercommunication Receive Data
Peek

Copy of GICRD register that does not change
status when read.

2AEh GCITD0
GCI Command/Indicate Transmit
Data 0

Contains user-defined transmission data for
GCI C/I0 channel.

2B0h GCIRD0 GCI Command/Indicate Receive Data 0 Contains received data for GCI C/I0 channel.

2B2h GCIRD0P
GCI Command/Indicate Receive Data 0
Peek

Copy of GCIRD0 register that does not change
status when read.

2B4h GCITD1
GCI Command/Indicate Transmit
Data 1

Contains user-defined transmission data for
GCI C/I1 channel.

2B6h GCIRD1 GCI Command/Indicate Receive Data 1 Contains received data for GCI C/I1 channel.

2B8h GCIRD1P
GCI Command/Indicate Receive Data 1
Peek

Copy of GCIRD1 register that does not change
status when read.

2BAh GMTD GCI Monitor Transmit Data
Contains user-defined transmission data for
GCI Mon0 or Mon1 channels.

2BCh GMRD GCI Monitor Receive Data
Contains received data for GCI Mon0 or Mon1
channels.

2BEh GMRDP GCI Monitor Receive Data Peek
Copy of GMRD register that does not change
status when read.
Am186™CC/CH/CU Microcontrollers User’s Manual 17-5

General Circuit Interface (GCI)
17.5.1.1 Transmitting Data

1. Configure the HDLC channels and time slot assigners to transmit the data. For details,
see Chapter 15, “High-Level Data Link Control (HDLC),” and Chapter 16, “HDLC
External Serial Interface Configuration (TSAs).”

2. Configure and activate the GCI channels:

a. If using the TIC bus access procedure, set the TICEN and TICAD bits in the GTIC
register. For information about the TIC bus access procedure, see “TIC Bus Support”
on page 17-16.

b. If transmitting Monitor channel data, set the applicable configuration options in the
GPCON register (the MCHEN, MCHSEL, and BRDIS bits).

c. If transmitting IC channel data, set the applicable configuration options in the GPCON
register (the ICSEL and BRDIS bits).

d. For CI/1 channel data, set the applicable configuration option in the GPCON register
(the BRDIS bit).

e. If the bus is in a deactivated state, activate the bus by setting the GCIACT bit in the
GPCON register. For details, see “GCI Bus Deactivation/Activation” on page 17-9.

3. Set the interrupts to be taken with the GIMSK register. Bits in this register enable
interrupts based on interrupts set in the GISTAT register. Corresponding bits must be
set in both registers for the interrupt to be taken. If an interrupt is disabled in GIMSK,
the status can still be read. Note that for each GCITD0 register write, if using the TIC
bus access procedure, the BAR bit must be taken into consideration.

4. Wait for the DCLST bit in the GISTAT register to be set, indicating the data clock has
been started by the master clock device.

5. If the bus was in a deactivated state, turn off the GCI activation request by clearing the
GCIACT bit in the GPCON register.

6. For monitor channel transmission, each Transmit Buffer Available Interrupt should write
new data into the transmit register until all data has been transmitted.

7. For monitor channel transmission, set the MEOMRQ bit in the GPCON register on the
last byte transmitted. This bit forces the monitor channel transmitter to send an EOM
when all data is written.

The outgoing MX bits and incoming MR bits held inactive for two or more frames indicates
that the Monitor channel is idle in the outgoing direction.

At the start of transmission, program the GPCON register to select one of the two monitor
channels. Then load data into the GCI Monitor Transmit Data (GMTD) register, which causes
the GCI controller to present the first data byte to the bus and to perform an inactive-to-
active transition of the outgoing MX bits. Placing data on the bus also generates the Monitor
channel transmit buffer available interrupt, indicating that the next data byte may be written
to the buffer. Outgoing MX bits remain active, and the data is repeated until an inactive-to-
active transition of the incoming MR bit is received.

In subsequent transmissions, all the following bytes to be transmitted are presented to the
bus coincident with an active-to-inactive transition of outgoing MX bits. The GCI
specification defines a general case in which the transmitter waits for an inactive-to-active
transition of incoming MR bits, and a maximum speed case in which the transmitter achieves
a higher transmission rate by anticipating the falling edge of incoming MR bits. After
transmitting the last byte of data, indicated by the GMTD register being empty and the
17-6 Am186™CC/CH/CU Microcontrollers User’s Manual

General Circuit Interface (GCI)
MEOMRQ bit being set, the GCI controller deactivates the outgoing MX bits in response
to incoming MR bits going inactive, and leaves them inactive.

17.5.1.2 Receiving Data

1. Configure the HDLC channels and time slot assigners to receive the data. For details,
see Chapter 15, “High-Level Data Link Control (HDLC),” and Chapter 16, “HDLC
External Serial Interface Configuration (TSAs).”

2. Configure the GCI channels:

a. If using the TIC bus access procedure, set the TICEN bits in the GTIC register. For
information about the TIC bus access procedure, see “TIC Bus Support” on
page 17-16.

b. If receiving Monitor channel data, set the applicable configuration options in the
GPCON register (the MCHEN, MCHSEL, and BRDIS bits).

c. If receiving IC channel data, set the applicable configuration options in the GPCON
register (the ICSEL and BRDIS bits).

d. For CI/1 channel data, set the applicable configuration option in the GPCON register
(the BRDIS bit).

e. If the bus is in a deactivated state, activate the bus by setting the GCIACT bit in the
GPCON register. For details, see “GCI Bus Deactivation/Activation” on page 17-9.

3. Set the interrupts to be taken with the GIMSK register. Bits in this register enable
interrupts based on interrupts set in the GISTAT register. If software disables an interrupt
in GIMSK, it can still read the interrupt status in the GISTAT register.

4. Wait for the DCLST bit in the GISTAT register to be set, indicating the data clock has
been started by the master clock device.

5. If the bus was in a deactivated state, turn off the GCI activation request by clearing the
GCIACT bit in the GPCON register.

6. For monitor channel transmission, on the first data available interrupt, software must set
the MCARV configuration bit to continue transmission. This bit holds off the remote
transmitter until software has determined the first byte is valid (the first byte is usually a
known address byte). If software fails to determine that the first byte is valid, then software
should abort reception (i.e., this message is for some other downstream device).

7. For monitor channel transmission, the MEOMRD interrupt is set to indicate that an end-
of-message (EOM) has been received by the monitor channel.

At the time the receiver sees the first byte, indicated by the inactive-to-active transition of
incoming MX bits, outgoing MR bits are by definition inactive. The GCI controller activates
outgoing MR bits in response to the activation of incoming MX bits, loads the data byte on
the bus into the Monitor Receive Data register, and generates a Monitor channel receive
data available interrupt. Outgoing MR bits remain active until the next byte is received or
an EOM is detected (incoming MX bits held inactive for two or more frames).

In subsequent receives, the GCI controller receives data into the buffer on each falling edge
of incoming MX bits, and generates a Monitor channel receive data available interrupt. Note
that the data was actually valid at the time the incoming MX bits became inactive, one frame
before becoming active (the Am186CC microcontroller performs a data integrity check to
confirm stable data for two frames). Outgoing MR bits are deactivated at the time data is
read and reactivated one frame later. The receipt of an EOM, which is incoming MX bits
remaining inactive for two or more frames, terminates the reception of data.
Am186™CC/CH/CU Microcontrollers User’s Manual 17-7

General Circuit Interface (GCI)
An abort is a signal from the receiver to the remote transmitter indicating that data has been
missed. The receiver sends an abort (indicated with the MTARD bit in the GISTAT register)
by holding MR bits inactive for two or more frames in response to MX bits going active.
Receiving an abort, indicated with the MRAD bit of the GISTAT register, generates a
transmitter interrupt.

The remote transmitter is held off until the Monitor Receive Data register is read, because
MR bits are held active until the receive byte is read. The transmitter does not start the next
transmission cycle until MR bits go inactive.

17.5.2 GCI Structure: Channels and Frames
Figure 17-3 illustrates the GCI terminal mode frame structure. The Am186CC
microcontroller also provides a second interface used with the GCI interface (discussed in
“GCI-to-PCM Converted Pin Interface” on page 17-14). This second interface allows an
external PCM codec to multiplex directly onto a GCI terminal frame B channel. For more
information, see the AMD IOM-2 Interface Reference Guide, order #12576.

Figure 17-3 GCI Terminal Mode Frame Structure

17.5.3 GCI Applications
The Am186CC microcontroller GCI implementation:

■ Targets the following external ISDN transceivers in GCI mode:

– AMD Am79C30/Am79C32 S

– Siemens PEB2091 U

– Siemens PEB2081 S/T

– Siemens PEB2086 S

– Motorola MC145574 S/T

– Motorola MC145572 U

– National TP3420 S/T

■ Targets the following external codec:

– AMD Am79C04

■ With GCI-to-PCM conversion, targets the following PCM external codecs (see Table 16-3
on page 16-14):

– AMD Am79C02/03

– AMD Am79C031

– Motorola MC14555

B1 B2 Mon0 D C/I0 MX
MR IC1 IC2 Mon1 C/I1 MX

MR
TIC

8-bits 8-bits 8-bits
2-bits 2-bits 2-bits

8-bits 8-bits 8-bits4-bits 8-bits6-bits 8-bits 8-bits 8-bits

GCI Subframe 0 GCI Subframe 1 GCI Subframe 2

FSC

DD/
DU
17-8 Am186™CC/CH/CU Microcontrollers User’s Manual

General Circuit Interface (GCI)
– National TP305x family

– National TP307x family

– AT&T T75xx family

– TI/Intel 291x family

■ Supports GCI Terminal Mode

■ Supports GCI Slave Mode (i.e., a timing slave where the GCI_FSC_A and GCI_DCL_A
signals are inputs)

■ Supports interdevice communication via Monitor and Command/Indicate channels

■ Supports the TIC bus, providing the capability of connecting more than one device to
the D and C/I channels in the first subframe (via C/I0 and D-channel arbitration)

■ Supports D-channel Collision Detection via the Echo bits from the S-interface

■ Is multiplexed with one fixed Am186CC external raw DCE interface

■ Does not support:

– GCI Linecard Mode

– GCI Master Mode

– TIC bus A/B bit: an optional supplementary bit used for D-channel control: 1 indicates
the D channel is available, 0 indicates the D channel is blocked

– The following terminal mode signals (used for connecting non-GCI components):

– BCL: 1X-bit rate clock

– SDS1 and SDS2: Data strobes which identify the location of the B channels

17.5.4 GCI Bus

17.5.4.1 GCI Bus Deactivation/Activation

The GCI bus includes an activation/deactivation capability. Either upstream components or
downstream components on the bus can initiate activation and deactivation. Figure 17-4
illustrates the activation/deactivation process. When deactivated, the upstream device
holds all clock outputs Low. The downstream device holds all the clock outputs Low, and
forces open drain data outputs to a high-impedance state (seen as a High on the system
bus due to the external pullup resistor). The activation/deactivation procedure is a
combination of software handshakes through the C/I channel, and hardware indications
through the clock and data lines. The AMD IOM-2 Interface Reference Guide, order #12576,
describes both the hardware and the software protocols in detail.
Am186™CC/CH/CU Microcontrollers User’s Manual 17-9

General Circuit Interface (GCI)
Figure 17-4 Bus Activation/Deactivation

17.5.4.1.1 Deactivation
The upstream device typically initiates deactivation. When the Am186CC microcontroller
receives the deactivation request over the C/I channel, it must respond by sending the
deactivation indication over the C/I channel. The upstream device then sends the
deactivation confirmation command over the C/I channel. The Am186CC microcontroller
detects that the clock has stopped (defined as no clock pulse received for 650 ns) and
forces itself to the deactivated state.

In the deactivated state, the microcontroller forces both the DU and DD signals to a high-
impedance state, and monitors the DCL input (by use of the DCLST bit in the GISTAT
register) for any rising edge that would indicate an activation request from the upstream
device.

17.5.4.1.2 Activation
Either the upstream or the downstream device can initiate activation. For the Am186CC
microcontroller to activate the interface, software must set the activation bit (GCIACT) of
the GPCON register. This forces the microcontroller to pull its data output pin (DU) Low,
causing the upstream device to start the GCI clocks. When the clocks are running, as
indicated by the DCLST status bit being set, the microcontroller must respond to the interrupt
by loading the proper C/I command response into the C/I0 transmit register, then clearing
the GCIACT bit. This releases the data output pin (DU) from being held Low and allows the
microcontroller to complete the activation procedure by sending the proper commands over
the C/I channel. The DCL clock remains active until the upstream device stops the clock.

When activation originates from the upstream device, the DCLST bit is set when the clocks
become active (DCL going High). The microcontroller begins normal GCI transmission/

Clock (DCL) received
from upstream; Timing
Request interrupt
generated

Deactivation

Activation Downstream

Activation Upstream

Clocks stopped
by upstream
deviceSoftware clears

Activation bit

Software sets
Activation bit;
DU output forced Low

DU output forced to Z
DD output forced to Z

Time out
(clocks off)

(DU = 0)
(clocks off)

(DU = 0)
(clocks on)

Idle
(clocks off)
(DU = Z)
(DD = Z)

Active
(clocks on)
(DU = data)
17-10 Am186™CC/CH/CU Microcontrollers User’s Manual

General Circuit Interface (GCI)
reception as soon as DCL appears; no intervention from the controller is required. However,
the microcontroller must respond to the interrupt and perform the normal C/I channel
software handshakes before activation completes.

17.5.4.2 GCI Bus Reversal

In Terminal mode, a device may be required to transmit both upstream and downstream,
based on which GCI channel is being transmitted at any one time. As a result, the actual
data pins of the GCI interface need to be both inputs and outputs, changing direction based
on which channel is being transmitted at the time.

17.5.4.2.1 Downstream Versus Upstream
The following terms are used in GCI:

Downstream Direction: Data is output on GCI_DD_A by an upstream device and this data
is a GCI_DU_A input to the downstream device.

Upstream Direction: Data is output on GCI_DU_A by a downstream device and this data
is a GCI_DD_A input to the upstream device.

Downstream Device: Generates GCI_DU_A and terminates GCI_DD_A.

Upstream Device: Generates GCI_DD_A and terminates GCI_DU_A.

Because pin reversal is supported, a device on the GCI bus can be considered a
downstream device, an upstream device, or both. Figure 17-5 demonstrates the Am186CC
microcontroller as an GCI Subframe 0 downstream device (the transceiver, an upstream
device, outputs data on GCI_DD_A and the Am186CC microcontroller, the downstream
device, inputs data from GCI_DD_A).

Figure 17-5 also demonstrates the Am186CC microcontroller as a GCI Subframe 1
upstream device (the Am186CC microcontroller, an upstream device, outputs data on
GCI_DD_A and a downstream device, such as an GCI codec, inputs data from GCI_DD_A).
Devices which do not support pin reversal are fixed to transmit and receive in one direction
only.

For example, a line transceiver is always an upstream device communicating solely with
downstream devices (it transmits information on GCI_DD_A to downstream devices, and
receives information on GCI_DU_A from devices sending information upstream to this
upstream transceiver). Therefore, in this case, anything on the GCI bus is always considered
downstream from the upstream transceiver.

Note: In most documentation, where a reference point is not given, but upstream or
downstream are mentioned, the default reference point is almost always the transceiver:
that is, downstream (from the transceiver), upstream (to the transceiver), the upstream
(transceiver) device, and so on.
Am186™CC/CH/CU Microcontrollers User’s Manual 17-11

General Circuit Interface (GCI)
Figure 17-5 Downstream Versus Upstream

17.5.4.2.2 Bus Reversal Enabled Versus Disabled
When Bus Reversal is enabled (see Figure 17-6), the Am186CC microcontroller is the clock
slave (GCI_FSC_A and GCI_DCL_A are inputs) and control master (can communicate with
other downstream devices through the MON1 and C/I1 channels). When Bus Reversal is
disabled (see Figure 17-7), the Am186CC microcontroller is the clock slave (GCI_FSC_A
and GCI_DCL_A are inputs) and control slave (cannot communicate with other downstream
devices).

D and C/I0 channel arbitration are provided by the TIC bus. (The TIC bus has been split
up into its individual bits for illustration.)

Figure 17-6 GCI With Bus Reversal Enabled

GCI_DU_A

GCI_DD_A

GCI_FSC_A

GCI_DCL_A
Clock Source

GCI_DU_A

GCI_DD_A
GCI

Upstream
Device

(Control Mas-
ter and Clock

Slave)

Am186CC Transceiver Am186CCCodec

Example 1: Am186CC microcontroller downstream,
transceiver upstream

Example 2: GCI codec downstream,
Am186CC microcontroller upstream

ControllerController

GCI
Downstream

Device
(Control Slave

and Clock
Master)

GCI
Upstream

Device
(Control Mas-
ter and Clock

Master)

GCI
Downstream

Device
(Control Slave

and Clock
Slave)

GCI_FSC_A

GCI_DCL_A

DD DU

Downstream
#1

Downstream
#2

DD

DD

DU

DU

DD

DU

IC1,IC2,MON1,C/I1

B1,B2,D,MON0,C/I0,E(in),S/G(in),
BAC(out), TBA2–TBA0(out)

Transceiver

Am186CC

Notes:
E, S/G, BAC, and TBA2–TBA0 are bits on the TIC bus.
17-12 Am186™CC/CH/CU Microcontrollers User’s Manual

General Circuit Interface (GCI)
Figure 17-7 GCI With Bus Reversal Disabled

17.5.5 GCI Interface Signals

17.5.5.1 Four-Pin Interface

The GCI terminal mode interface consists of a four-pin subset of the seven-pin GCI industry
standard serial bus. The GCI interface for the Am186CC microcontroller uses the frame
synchronization clock (GCI_FSC_A), data clock (GCI_DCL_A), data downstream
(GCI_DD_A), and data upstream (GCI_DU_A) signals. The definition of the GCI external
signals is dependent on the current bus state (activated/deactivated) and the mode of
operation (bus reversal enabled/disabled), as described in Table 17-3.

Table 17-3 GCI Signals

Signal
Signal

Function
Mode: Reversal
State: Activated

Mode: Reversal
State: Deactivated

Mode: No Reversal
State: Activated

Mode: No Reversal
State: Deactivated

GCI_FSC_A
Frame

sync clock
Input Input Input Input

GCI_DCL_A Data clock Input Input Input Input

GCI_DD_A
Data down-

stream
Input/

Open Drain Output
High Impedance Input High Impedance

GCI_DU_A
Data up-
stream

Open Drain
Output/Input

Open Drain Output Open Drain Output Open Drain Output

 Transceiver

DD DU

Downstream
#1

Downstream
#2

DD

DD

DU

DU

DD

DU

B1,B2,D,MON0,C/I0,IC1,IC2,
MON1,C/I1,E(in),S/G(in), BAC(out),
TBA2-0(out)

Am186CC

Notes:
E, S/G, BAC, and TBA2–TBA0 are bits on the TIC bus.
Am186™CC/CH/CU Microcontrollers User’s Manual 17-13

General Circuit Interface (GCI)
17.5.5.2 GCI-to-PCM Converted Pin Interface

The converted GCI to PCM interface consists of two pins. This interface (external interface C
on the Am186CC microcontroller) uses the signals listed in Table 17-4. For more information
about frame sync and clock conversion, see Chapter 16, “HDLC External Serial Interface
Configuration (TSAs).”

17.5.6 Operating Frequencies
GCI_DCL_A is used to clock data on and off of the bus, and it operates at twice the data rate.

The clock rate is 1.536 MHz (the data rate is 768 KHz). GCI_DCL_A is always generated
by the upstream component. When the bus is deactivated, GCI_DCL_A is held in a Low
state by the upstream device.

GCI_FSC_A is an 8-KHz clock that indicates the start of a frame. GCI_FSC_A is always
generated by the upstream device, which is the Layer 1 device in terminal applications.

17.5.7 GCI Channels
The GCI channels consist of three voice/data channels (B1, B2, and D), two monitor
channels (Mon0 and Mon1), two command/indication channels (C/I0 and C/I1), two
Interchip Communication channels (IC1 and IC2), and the TIC bus.

17.5.7.1 GCI HDLC Channel Steering

All HDLC channel data steering is provided through proper TSA (Time Slot Assigner) and
MUX initialization. While there is nothing to prevent an HDLC channel from accessing any
set of contiguous bits within the GCI frame, only accesses to the B, D, and IC channels are
guaranteed.

For more information about TSA configuration, see Chapter 16, “HDLC External Serial
Interface Configuration (TSAs).”

17.5.7.2 Monitor Channel Operation

The monitor channel is full duplex and operates on a pseudo-asynchronous basis, that is,
while data transfers on the bus take place synchronized to frame sync, the flow of data is
controlled by a handshake procedure using the MX (monitor transmit) and MR (monitor
receive) bits. For example, data is placed onto the monitor channel and the MX bit is
activated. This data is transmitted repeatedly (once per 8-KHz frame) until the transfer is
acknowledged through the MR bit. Thus, the data rate is not 8 Kbyte per second. Am186CC
microcontroller monitor channel support is provided on a one-at-a-time basis (the MCHSEL
bit in the GPCON register designates which monitor channel is selected). For a detailed
description of the monitor channel handshake procedure, see the AMD IOM-2 Interface
Reference Guide, order #12576.

17.5.7.3 Monitor Channel Collision Detection

For multidrop configurations, a collision resolution mechanism is implemented in the Monitor
Channel transmitter that looks for the idle phase of the transmitted MX/MR bits and makes
a per bit check on the transmitted monitor data.

Table 17-4 Converted GCI Signals

External Signal Function

PCM_CLK_A Converted GCI to PCM data clock

PCM_FSC_A Converted GCI to PCM frame synchronization clock
17-14 Am186™CC/CH/CU Microcontrollers User’s Manual

General Circuit Interface (GCI)
To access the monitor channel through Upstream Monitor Channel Collision Detection on
the first byte and Downstream Device Recognition on the first byte (these procedures are
used in Monitor Channel multidrop configurations), use the following procedures.

17.5.7.3.1 Upstream Monitor Channel Data Transmission
The address of the monitor message contained in the first monitor byte transmitted
determines the monitor channel access priority. The following hardware/software procedure
is followed:

1. Software configures the monitor channel for data transmission.

2. Hardware waits for the idle phase before transmitting the first byte of monitor data.

3. During the first byte transmitted, a per bit check occurs on each transmitted monitor bit.
If any bit mismatches, the transmitter immediately withdraws from the monitor channel
by setting all remaining monitor bits to 1 (thus allowing another device with higher priority
to gain control of the monitor channel), sets the monitor channel collision detection
interrupt, and reverts back to waiting for the idle condition.

Note: The collision detection interrupt is set on any monitor data transmit bit mismatch
(i.e., from the first byte transmitted to the last byte transmitted). Therefore, if software wishes
to differentiate how it services other byte collisions from first-byte collisions, it must maintain
this knowledge itself.

17.5.7.3.2 Downstream Monitor Channel Data Reception
Device recognition allows a downstream device to determine whether or not it is the intended
target for an initiated Monitor Channel message sent by an upstream device (the address
to be recognized is contained in the first byte of the monitor message). The following
hardware/software procedure is followed:

1. Hardware waits for the idle phase.

2. After detecting the idle phase, hardware waits for a valid first byte to be sent by an
upstream device.

3. After receiving the first byte, hardware indicates to software, through a data-available
interrupt, that the first byte has arrived.

4. Software determines whether or not the microcontroller was the intended target.

5. If a valid address is recognized (from the first byte), software indicates to the receiver
to continue with data reception by setting a valid address-compare bit. Otherwise,
software indicates to the receiver that it should not continue receiving data (through a
software-abort bit).

17.5.7.4 C/I Channel Operation

The C/I channel communicates real-time status information and maintenance commands.
Unlike the monitor channel, the Am186CC microcontroller supports both C/I channels
contained in GCI Subframe 0 and GCI Subframe 1 concurrently. Software reads the
received data from one of the C/I Receive Data (GCIRD0 or GCIRD1) registers. Software
writes C/I transmit data to one of the C/I Transmit Data (GCITD0 or GCITD1) registers. The
GCI controller monitors these two channels, and generates an interrupt any time the receive
data changes and is stable for two frames (GCI’s standard data integrity check). Data on
the C/I channel is continuously transmitted in each frame until new data is to be sent. In
this way, the C/I channel can be thought of as a set of static status lines that only change
when the status changes. For a list of C/I codes (for GCI Subframe 0 only), and further C/I
channel operation, refer to the AMD IOM-2 Interface Reference Guide, order #12576.
Am186™CC/CH/CU Microcontrollers User’s Manual 17-15

General Circuit Interface (GCI)
17.5.7.5 TIC Bus Support

The meaning of each bit within the TIC bus is dependent on whether the Am186CC
microcontroller is transmitting or receiving on the TIC bus. Table 17-5 lists and describes
the TIC bus bits.

In the downstream direction (from the transceiver), the TIC bus on GCI Subframe 2 is used
for D and C/I0 channel access control in S/T interface terminals.

The TIC bus downstream has the format shown in Figure 17-8.

Figure 17-8 TIC Bus Downstream Format

The availability of the S/T interface D-channel is indicated in bit 5 (Stop/Go bit) of the
downstream TIC bus. The Am186CC microcontroller GCI TIC bus controller checks the
Stop/Go bit to determine if it has access to the D-channel. If it does, it can start transmission
of an HDLC frame. If the TIC bus controller does not have access, it must halt the
transmission. Bits 7 and 6 are the D-channel Echo bits from the S-interface (reflecting back
the two D-channel bits of the current frame). The Am186CC microcontroller GCI TIC bus
controller compares the Echo bits with the sent D-channel bits to determine if a collision
has occurred. A D-channel collision is reported to an HDLC through an internal signal,
originating from the GCI TIC bus controller, whose function is similar to an external CTS
deassertion (a mechanism that stops HDLC transmission). The Am186CC microcontroller
does not use the A/B bit.

In the upstream direction (to the transceiver), the TIC bus on GCI Channel 2 is used for the
TIC bus access procedure, enabling the connection of several Layer 2 D-channel protocol
controllers to the GCI interface.

The TIC bus upstream has the format shown in Figure 17-9.

Figure 17-9 TIC Bus Upstream Format

Table 17-5 TIC Bus Bits

Bit Name Bit Function

BAC (Bus Accessed)
Indicates to the other devices that the TIC bus is being accessed. When 0, the
bus is being accessed; when 1, it is free. This bit is driven to zero by the device
that gets an address match on TBA2–TBA0.

TBA2-0 (TIC Bus Address)
Address bit used for arbitration of TIC bus control. Assumes open-drain bus
such that the device with the lowest address has the highest priority. The lowest
priority address, which is also the default, is 111.

E-bits (Echo Bits) D-channel Echo bits from the S-interface.

S/G bit (Stop/Go)
Indicates availability of the S-interface D-channel. When 0, the D-channel is
clear for transmission. When 1, D-channel transmission should be halted.

Bit Number 7 6 5 4 3 2 1 0

Bit Name E E S/G A/B 1 1 1 1

Bit Number 7 6 5 4 3 2 1 0

Bit Name 1 1 BAC TBA2 TBA1 TBA0 1 1
17-16 Am186™CC/CH/CU Microcontrollers User’s Manual

General Circuit Interface (GCI)
An Am186CC microcontroller access request can either be generated by software
(microprocessor access to C/I Channel 0) or by the HDLC controller itself (transmission of
an HDLC frame—signified internally by a signal, originating from the GCI TIC bus controller,
whose function is similar to an external RTS assertion). In the case of an access request,
the GCI TIC bus controller checks the BAC bit for the status “bus free” (BAC = 1). If the bus
is free, the GCI TIC bus controller starts transmitting its individual TIC bus address (the
source address indicated in Figure 17-9 by the TBA2–TBA0 bits). If an erroneous address
is detected, the procedure is terminated immediately. If the complete TIC bus address can
be transmitted without error, the D-channel and C/I Channel 0 are immediately occupied;
during the subsequent frames the bus is identified as occupied (BAC = 0) until the access
request is withdrawn. After a successful bus access, the HDLC controller is set into a lower
priority class, that is, a new bus access cannot be performed until the status “bus free”
(BAC = 1) is indicated in two successive frames.

If none of the D-channel protocol controllers connected to the GCI interface request access
to the D and C/I channels, the TIC Bus Address 7 is present. The device with this address
therefore has access, by default, to the D and C/I channels.

The following procedures gain access to the D-channel and C/I0 channel when TIC bus
support is enabled.

17.5.7.5.1 D-Channel Arbitration and Collision Detection (Hardware Control)
Hardware flow control for the GCI Bus Accessed (BAC) bit is added through RTS/CTS
handshaking, and follows a procedure very similar to the C/I0 arbitration scheme discussed
in “C/I0 Arbitration (Software Control)” on page 17-18.

1. The HDLC controller makes a D-channel send request to the GCI TIC bus controller by
asserting an internal RTS signal (this signal remains asserted until the entire HDLC
frame has been transmitted).

2. The GCI TIC bus controller checks if the BAC bit is set to 1. If not, access is not currently
allowed—transmission is postponed. Only when BAC = 1 does the GCI TIC bus controller
continue with this access procedure. Otherwise, it remains in this state.

3. When BAC = 1, the GCI TIC bus controller, in the same frame, transmits the TIC bus
address (TBA2–TBA0) on the open drain output. On the TIC bus, binary 0s overwrite
binary 1s. Therefore, low TIC bus addresses have higher priority. During TIC bus
reception, the S/G bit is monitored.

Note: S/G bit generation in the GCI TIC bus is sent downstream from an upstream
transceiver.

4. After transmitting a TIC bus address bit, the GCI TIC bus controller reads back the value
to check whether its own address bit has been overwritten by a controller with higher
priority. This procedure continues until all three address bits are sent and confirmed—
thus granting access to the GCI TIC bus. In the event a bit is overwritten by an external
controller with higher priority, the GCI TIC bus controller withdraws immediately from the
bus by setting all remaining TIC bus address bits to 1. (This assures that the lowest
address has priority. If the remaining bits are not immediately set to 1, addresses such
as 101 and 011 would have equal priority.) If a bit is overwritten and an address mismatch
occurs, the TIC bus controller returns to step 2.

5. If access is granted (i.e., no address mismatch occurred) and the S/G bit is 0 (i.e., the
S-interface is free for transmission), the GCI TIC bus controller asserts an internal CTS
signaling to the HDLC controller that it is now allowed to clock out data on its programmed
time slot starting in the following GCI frame. The BAC bit, during this HDLC transmission,
is set to 0 by the GCI TIC bus controller to block all remaining controllers.
Am186™CC/CH/CU Microcontrollers User’s Manual 17-17

General Circuit Interface (GCI)
In the case where the S/G bit is 1, only the D-channel data is prevented from being
switched through the GCI bus (i.e., the C/I0 channel could request access to this already
established TIC bus and transmit its information). The TIC bus request remains
unaffected (for example, if the microcontroller has earned the right to the GCI TIC bus
it does not give up this bus and keeps BAC and the TIC address active while waiting for
GO). As soon as the S-interface D-channel is clear, signified by the S/G bit cleared (GO),
the controller commences with D-channel data transmission.

Note: When GCI TIC access is granted, BAC = 0, regardless of S/G. At this point, both
C/I0 and the HDLC controller have access to the GCI TIC bus (i.e., if C/I0 data needs to
be transmitted it does not have to arbitrate for the GCI TIC bus—TIC bus access has already
been established). To relinquish the GCI TIC bus after a C/I0 or D-channel transmission,
both the C/I0 request (a software request) and the HDLC controller request (a hardware
request) must be deasserted. The HDLC controller cannot transmit back-to-back frames.
Therefore, if C/I0 keeps the TIC bus open (the TIC bus established by the HDLC controller),
another HDLC transmission does not occur until after the C/I0 gives up the TIC bus and
BAC = 1 in two successive frames (i.e., the TIC bus cannot be accessed again for at least
one GCI frame—regardless of whether the HDLC controller request or the C/I0 request
established the TIC bus).

6. After the completed transmission of an HDLC frame, signified by the HDLC controller
deasserting the TIC bus controller’s RTS, the HDLC controller is withdrawn from the TIC
bus (BAC is set back to 1 in the following frame if a software TIC bus request has not
been made for C/I0 communication), and the HDLC controller is prevented from
accessing the TIC bus again for one GCI frame (i.e., the controller was moved into a
lower priority as mentioned earlier). This also applies even if a new HDLC frame is to
be transmitted in immediate succession. This gives all connected devices an equal
chance to access the TIC bus.

7. If a collision occurs at any time during the transmission of a D-channel HDLC frame, the
Am186CC microcontroller immediately ceases transmission (collision is signified to the
HDLC controller by deasserting CTS while in frame), returns to the D-channel monitoring
state (i.e., waits for another request to send and start over), and sends 1s over the
D-channel.

17.5.7.5.2 C/I0 Arbitration (Software Control)
Software controls the GCI Bus Accessed (BAC) bit through the Bus Access Request (BAR)
bit of the GCITDx register following a procedure very similar to the D-channel arbitration
scheme described above. This bit provides access to the C/I0 channel when TIC bus
support is enabled. Software should set the BAR bit whenever the microcontroller has C/I0
data available to transmit.

1. When BAR = 1, the TIC bus controller arbitrates access to the C/I0 channel.

2. The GCI TIC bus controller checks if the BAC bit is set to 1. If not, access is not currently
allowed—transmission is postponed. Only when BAC = 1 does the GCI TIC bus controller
continue with this access procedure. Otherwise, it remains in this state.

3. When BAC = 1, the GCI TIC bus controller, in the same frame, transmits the TIC bus
address (TBA2–TBA0) on the open drain output. On the TIC bus, binary 0s overwrite
binary 1s. Thus, low TIC bus addresses have higher priority.

4. After transmitting a TIC bus address bit, the GCI TIC bus controller reads back the value
to check whether its own address bit has been overwritten by a controller with higher
priority. This procedure continues until all three address bits are sent and confirmed—
thus granting access to the GCI TIC bus. In the event a bit is overwritten by an external
controller with higher priority, the GCI TIC bus controller withdraws immediately from the
17-18 Am186™CC/CH/CU Microcontrollers User’s Manual

General Circuit Interface (GCI)
bus by setting all remaining TIC bus address bits to 1. (This assures that the lowest
address has priority. If the remaining bits are not immediately set to 1, addresses such
as 101 and 011 would have equal priority.) If a bit is overwritten and an address mismatch
occurs, the TIC bus controller returns to step 2.

5. If access was granted, the C/I0 channel is in possession of the GCI TIC bus, and C/I0
communication can begin in the following GCI frame.

Note: When GCI TIC access is granted, BAC = 0—regardless of S/G. At this point, both
C/I0 and the HDLC controller have access to the GCI TIC bus (i.e., if the HDLC controller
needs to transmit D-channel data, it does not have to arbitrate for the GCI TIC bus—TIC
bus access has already been established). The HDLC controller does not have to arbitrate
for the GCI TIC bus, but it must wait for an asserted S/G from the transceiver before it
receives its internal CTS and can transmit, as stated in the previous section. To relinquish
the GCI TIC bus after a C/I0 or D-channel transmission, both the C/I0 request (a software
request) and the HDLC controller request (a hardware request) must be deasserted. When
the software request bit has been cleared (ending C/I0 transmission), the C/I0 channel is
not allowed back onto the same established TIC bus should it remain open for a HDLC
transmission. When the TIC bus is given up by the HDLC controller, neither the D-channel
nor the C/I0 channel is allowed access to the TIC bus again for at least one GCI frame.

6. After the completion of C/I0 data, software should remove its request by clearing its
request bit. When done, the C/I0 channel control is withdrawn from the TIC bus (BAC
is set back to 1 in the following frame as long as the HDLC controller has no D-channel
communication in progress) and the C/I0 channel is prevented from accessing the TIC
bus again for one GCI frame (i.e., the channel is moved into a lower priority as mentioned
earlier in this chapter). This gives all connected devices an equal chance to access the
TIC bus.

17.5.7.6 IC Channel Operation

The two IC channels have access to a single interrupt-driven microprocessor
transmit/receive buffer. A register bit determines which channel gets access to this buffer.
Because the data output is open-drain, the unused IC channel and all High bits of the
chosen IC channel are placed in a high-impedance state (unless driven by an HDLC channel
through a Time Slot Assigner).

17.5.8 Interrupts
The GCI controller can generate the following maskable interrupts (sharing one direct
processor interrupt line) using the GISTAT and GIMSK registers.

■ IC Buffer Available or Buffer Empty: Indicates that a byte of data has been received
on the IC channel, and that a new IC byte can be loaded for transmission.

■ GCI Timing Request: Response to GCI_DCL_A starting (going High) from the
deactivated state.

■ Change in C/I1 Channel Status: Indicates that the contents on the receive side of
C/I channel 1 have changed since the C/I Receive Data register was last read.

■ Change in C/I0 Channel Status: Indicates that the contents on the receive side of
C/I channel 0 have changed since the C/I Receive Data register was last read.

■ Monitor Channel Receive Abort Detected: Indicates an implied transmitter abort due
to out-of-sequence transmit handshake bits or handshake bit transmission errors.

■ Monitor Channel Collision Detected: Indicates that a collision has occurred on the
monitor channel during the transmission of a monitor byte.
Am186™CC/CH/CU Microcontrollers User’s Manual 17-19

General Circuit Interface (GCI)
■ Monitor Channel Transmit Abort Request Received: Indicates that an abort request
has been received on the monitor channel. This indicates that the receiver on the other
end of the Monitor channel has failed to receive the transmitted data correctly and is
requesting that the current transmission be discontinued and the data transmission be
repeated through software.

■ Monitor Channel End-of-Message Received: Indicates that an EOM has been
received on the monitor channel. This indicates that the message currently being
received has concluded.

■ Monitor Channel Transmit Buffer Available: Indicates that a new byte of data can be
loaded into the Monitor Transmit Data register.

■ Monitor Channel Receive Data Available: Indicates that a byte of data has been
received on the monitor channel and is available in the Monitor Receive Data register.

17.5.9 Software-Related Considerations
To enable the GCI interface, software must set the MODE bit field to 10b in the TSA
Channel A Configuration (TSACON) register. This is necessary regardless of whether TSA
Channel A is being used.

17.5.10 Comparison to Other Devices
The Am186CC microcontroller’s GCI interface is similar to the AMD Am79C30 in clock slave
mode.

17.6 INITIALIZATION
On external and internal reset, the following occurs:

■ The TSAs default to non-GCI mode.

■ The GCI signals default to alternate functionality as shown in Table 17-1 on page 17-3.

■ The EXSYNC bit of the SYSCON register is cleared, making the HDLC Channel C
interface available for raw DCE or PCM highway operation.

■ The MODE field of the TSxCON register is cleared, specifying raw DCE operation.

■ The GCIDEN bit of the HxTCON1 register is cleared, disabling GCI D-Channel control
of the HDLC channel.

■ The MCHEN bit of the GPCON register is cleared, disabling both monitor channels.

■ The MCHSEL bit of the GPCON register is cleared, selecting monitor channel 1.

■ The ICSEL bit of the GPCON register is cleared, selecting IC channel 1.

■ The BRDIS bit of the GPCON register is cleared, enabling bus reversal.

■ The MXBA bit of the GISTAT register is set, indicating that a new byte of data can be
loaded into the GMTD register.

■ All GCI interrupts enables are cleared to 0 in the GIMSK register, masking the interrupts.

■ The TICEN and ECHOEN bits are cleared to 0 in the GTIC register, disabling TIC bus
access and D-channel echo compares, respectively.
17-20 Am186™CC/CH/CU Microcontrollers User’s Manual

CHAPTER
18 U
NIVERSAL SERIAL BUS (USB)
Note: Only the Am186CC and Am186CU microcontrollers support USB.

18.1 OVERVIEW
The Universal Serial Bus (USB) is an industry-standard bus architecture for computer
peripheral attachment. The USB provides a single interface for easy, plug-and-play, hot-
plug attachment of peripherals such as a keyboard, mouse, speakers, printers, scanners,
and communication devices. The USB allows simultaneous use of many different
peripherals with a combined transfer rate of up to 12 Mbit/s.

Both the Am186CC and Am186CU microcontrollers include a highly flexible integrated USB
peripheral controller that designers can use to implement a variety of microcontroller-based
USB peripheral devices for telephony, audio, or other high-end applications. These
microcontrollers can be used in self-powered USB peripherals that use the full-speed
signaling rate of 12 Mbit/s. They do not support the USB low-speed rate (1.5 Mbit/s). An
integrated USB transceiver is provided to minimize system device count and cost, but an
external transceiver can be used instead, if required.

The USB peripheral controller’s features meet or exceed all of the USB device class
resource requirements defined by the USB Specification, Version 1.0. This chapter refers
to this version of the USB specification throughout. Consult the USB specification for details
about overall USB system design. (At the time of this writing, the current USB specification
and related information can be obtained on the Web at www.usb.org.)

The USB controller does not support USB host or hub functions. However, the Am186CC
and Am186CU microcontrollers can be used to implement USB peripheral functions in a
device that also contains separate USB hub circuitry.

The integrated USB peripheral controller provides a very efficient and easy-to-use interface,
so that device software (or software) does not incur the overhead of managing low-level
USB protocol requirements. Each of the controller’s data endpoints is highly programmable
and flexible, allowing the device to adapt to any USB host request that is made during the
device configuration process. Because of the flexibility of the USB peripheral controller’s
endpoints, a design can allow its descriptors to be updated on-the-fly by the host’s device
driver, if necessary.

The USB peripheral controller hardware implements a number of USB standard commands
directly; the rest can be implemented in device software. In addition, the USB peripheral
controller provides a high degree of flexibility to help designers accommodate vendor- or
device-class-specific commands, as well as any new features that might be added in future
USB specifications.

The USB peripheral controller includes specialized hardware to support isochronous data
transfers. Using the microcontroller’s DMA features, isochronous transfers from an off-chip
peripheral can be automatically synchronized to the USB data rate with little or no CPU
overhead.

CUCC
Am186™CC/CH/CU Microcontrollers User’s Manual 18-1

Universal Serial Bus (USB)
The Am186CC microcontroller also supports isochronous transfers from one of the
integrated HDLC channels.

The USB peripheral controller also includes robust error detection and management
features so the device software can manage transfers in any number of ways as required
by the application. The USB suspend/resume, reset, and remote wake-up features are also
supported.

18.2 BLOCK DIAGRAM
Figure 18-1 shows the block diagram for the USB peripheral controller.

Figure 18-1 USB Interface Block Diagram

18.3 SYSTEM DESIGN
The following sections describe pin multiplexing and feature trade-offs to consider when
designing peripherals that use the USB peripheral controller.

18.3.1 Signal Trade-Offs
Table 18-1 lists the USB interface signals (including signals internal to the microcontroller)
that are multiplexed with other microcontroller functions. Pinstraps are sampled only at
reset and do not affect the pin’s other functions, so they are not shown in this table. Other
multiplexed signals, when enabled, either disable or alter any other functions that use the
same pin.

CC

General-
Purpose DMA

USBD+
USBD–

External
Transceiver

Interface Control
Registers

CPU, Memory Interface,
and Other Peripheral Devices

USB
Controller

USB
Transceiver

Am186CC/CU Microcontroller

FIFO
Buffers

USBX1
USBX2

HDLC A
PCM
GCI

USBSCI/
USBSOF

CC

SmartDMA
Channel
18-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
.

18.3.1.1 USB Transceiver Interface

By default, the USB peripheral controller utilizes an integrated USB transceiver to directly
drive and receive data on the USBD+ and USBD– differential physical interface signals.
This transceiver allows a USB peripheral device to be designed with the Am186CC or
Am186CU microcontroller without requiring the additional board space needed by a discrete
transceiver device. The USB device terminator requirement is not integrated, so the
designer should add a single 1.5 K-Ω pullup resistor on the USBD+ signal to indicate this
is a full-speed device.

The USB specification requires a driver impedance between 29 Ω and 44 Ω on the USBD+
and USBD– signals. The CMOS drivers used have a much lower impedance, so matching
resistors must be placed in series on the USBD+ and USBD– signals as shown in
Figure 18-2 on page 18-4 and Figure 18-3 on page 18-5.

18.3.1.2 Programmable Connect and Disconnect

Because the microcontroller is meant to be in a self-powered application, there are a few
issues to resolve to meet USB specifications. For a full-speed device, the USB specification
requires a 1.5 K-Ω device terminator to a 3.0-V to 3.6-V voltage source on USBD+, derived
from or controlled by the power supplied by the USB cable (VUSB), that does not supply
current when VUSB is unpowered or removed. In a self-powered USB application, the USB
host/hub also cannot supply current to the USB device when the device is unpowered.

To help meet these criteria, the microcontroller is programmable to disable and three-state
the internal transceiver differential outputs. The other requirement is to disable the external

Table 18-1 USB Multiplexed Signals

Signal Function
Multiplexed

Signal(s)
Default
Signal

Internal USB Transceiver I/O Pins

USBD+ Internal USB transceiver differential input/output UDPLS USBD+

USBD– Internal USB transceiver differential input/output UDMNS USBD–

External USB Transceiver I/O Pins

UDMNS Status input from external transceiver USBD– USBD–

UDPLS Status input from external transceiver USBD+ USBD+

UTXDMNS
Output to the external transceiver differential
driver

RSVRD_102 RSVRD_102

UTXDPLS
Output to the external transceiver differential
driver

RSVRD_101 RSVRD_101

UXVOE External transceiver transmit output enable RSVRD_103 RSVRD_103

UXVRCV Receive input from external transceiver RSVRD_104 RSVRD_104

USB Clock Inputs

USBSCI USB sample clock input
UCLK

USBSOF
PIO21

PIO21

USBSOF USB start-of-frame synchronization output
UCLK

USBSCI
PIO21

PIO21

USBX1 USB peripheral controller crystal input — USBX1

USBX2 USB peripheral controller crystal output — USBX2
Am186™CC/CH/CU Microcontrollers User’s Manual 18-3

Universal Serial Bus (USB)
1.5 K-Ω pull up on USBD+ when VUSB is removed. The following system design issues
should be resolved to provide a robust self-powered USB device application:

On Connect:

■ Monitor VUSB to identify a powered USB host/hub.

■ Enable the 1.5 K-Ω pullup on USBD+ to signal a connect condition to the host/hub.

On Disconnect:

■ Monitor VUSB to identify power being removed from the USB host/hub.

■ Three-state USBD+/USBD– outputs.

■ Remove power from 1.5 K-Ω pull up.

On both Connect and Disconnect:

■ Isolate VUSB from the USB device when the device is unpowered.

Figure 18-2 illustrates a circuit diagram of an example application using the internal
transceiver. Figure 18-3 illustrates a circuit diagram of an example application using the
external transceiver.

Figure 18-2 USB With Internal Transceiver

Am186CC/CU
Microcontroller

D G

S

D

S

G

1.5 K-Ω

PIO_USB_DETECT

PIO_USB_VCC

USBD– [UDMNS]

USBD+ [UDPLS]

VUSB

USBD–

USBD+

GND

1

2

3

4

USB Type “B”

R1

R2

Note: The USB specification requires a driver impedance between 29 Ω and 44 Ω on the
USBD+ and USBD– signals. For information about driver characteristics and selecting a
series resistor value, see the data sheets for the Am186CC and Am186CU microcontrollers.
18-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
Figure 18-3 USB With External Transceiver

If necessary, to enable interface signals for an external transceiver, disable the integrated
USB transceiver by asserting the USBXCVR pinstrap at reset (power-on or assertion of
RES). Table 18-1 on page 18-3 lists all USB signals, plus information about multiplexed
functions.

Note: Before using either the internal USB transceiver or the external USB transceiver
interface, software must set the PUP_XCVER bit in the USB Device Miscellaneous
Functions (USBMFR) register to power up the USB transceiver and enable the transceiver
interface.

18.3.1.3 USB Clock Source

The USB peripheral controller hardware requires a 48-MHz clock input for proper operation.
The USB peripheral controller can be driven directly from the primary system clock if the
primary system clock is operating at 48 MHz. Otherwise, use a dedicated USB clock source
so that the primary microcontroller system clock and the USB clock are independent of
each other. When the dedicated USB clock source is used, the only requirement is that the

PIO_USB_DETECT

PIO_USB_VCC

D G

S

D

S

G

USB Type “B”

VUSB

USBD–

USBD+

GND

1

2

3

4

UTXDMNS[RSVRD_102]

UTXDPLS[RSVRD_101]
UXVOE[RSVRD_103]

UXVRCV[RSVRD_104]

UDMNS[USBD–]

UDPLS[USBD+]

1.5 K-Ω

R1

R2

Note: The USB specification requires a driver impedance between 29 Ω and 44 Ω
on the USBD+ and USBD– signals. For information about driver characteristics and
selecting a series resistor value, see the documentation for the external transceiver.

Am186CC/CU
Microcontroller
Am186™CC/CH/CU Microcontrollers User’s Manual 18-5

Universal Serial Bus (USB)
primary system clock must be a minimum of 24 MHz when using the USB peripheral
controller.

To select the dedicated USB clock source, assert either the USBSEL2 or USBSEL1 pinstrap
during reset (power-on or assertion of RES). These pinstraps select either 4x or 2x PLL
operation, allowing the use of a 12-MHz or 24-MHz crystal, respectively, as the USB clock
input on pins USBX1 and USBX2. Table 18-2 lists the permutations of the USB PLL mode
pinstraps.

18.3.1.4 Isochronous Synchronization Signals

The USBSCI signal input and USBSOF signal output provide for isochronous transfer
synchronization, which is described on page 18-23. These signals are multiplexed on the
same pin with the UART external clock input signal (UCLK).

Enabling the USBSOF signal output (by setting the ESOF_EN bit in the Isochronous
Synchronization Control (ISCTL) register) overrides the USBSCI signal input if that signal
is also selected (through the SAM_CLK_SEL field in the ISCTL register.)

Do not enable the USBSOF signal output at the same time as the UART external clock
input (UCLK). The UCLK signal is enabled by the XTRN bit in the High-Speed Serial Port
Control 1 (HSPCON1) or Serial Port Control 1 (SPCON1) registers.

The USBSCI and UCLK signal inputs can be enabled at the same time, but it is unlikely
that the same signal source can be used as an input for both of these functions.

18.3.2 DMA Trade-Offs
The microcontroller contains two different kinds of DMA channels, general-purpose DMA
and SmartDMA channels. The USB data endpoints can use either kind. Choosing which
type of DMA channel to use, if any, involves the following system trade-offs:

■ The integrated HDLC controllers in the Am186CC microcontroller can use only the
SmartDMA channel. Consequently, if all four HDLC controllers are to be used with DMA
(for high-bandwidth HDLC connections), then the USB can use only general-purpose
DMA or no DMA.

■ Other integrated peripherals such as the UARTs and the external DMA request lines
can use only the general-purpose DMA channels.

■ For USB bulk endpoints, SmartDMA channels have advantages over general-purpose
DMA channels that can result in higher performance and lower software overhead,
especially when each transaction is relatively small. When most transactions are
relatively large, general-purpose DMAs may have a small performance advantage over
SmartDMA channels.

■ For USB isochronous endpoints with true streaming data, general-purpose DMAs are
slightly easier to use than SmartDMA channels.

Table 18-2 USB PLL Mode Pinstraps

{USBSEL1} {USBSEL2} USB PLL Mode

1 1 Use CPU clock, USB PLL disabled (default)

0 1 4x, USB PLL enabled

1 0 2x, USB PLL enabled

0 0 Reserved

CC
18-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
■ Each USB data endpoint can only be connected to a single specific SmartDMA channel,
but can be connected to any general-purpose DMA channel. Because SmartDMA
channels are directional (either transmit or receive), a general-purpose DMA channel
must be used if more than 2 IN data endpoints or more than 2 OUT data endpoints are
desired.

For more about DMA and other I/O options, see “Handling USB Data” on page 18-18.

18.4 REGISTERS
The registers listed in Table 18-3 program the USB peripheral controller. There are four
general configuration registers, six miscellaneous control and status registers, ten registers
for the dedicated control and interrupt endpoints, and eight registers each for the four data
endpoints.

Appendix A summarizes the bits in all the registers. For a complete description of all the
peripheral registers, see the Am186™CC/CH/CU Microcontrollers Register Set Manual,
order #21916.

Table 18-3 USB Register Summary

Offset
Register
Mnemonic

Register Name Description

USB General Configuration Registers

1E0h UISTAT1 USB Interrupt Status 1
Common status register for interrupt-capable
status bits of each USB endpoint.

1E2h UIMASK1 USB Interrupt Mask 1
Enables or disables interrupts generated by
UISTAT1 bits.

1E4h UISTAT2 USB Interrupt Status 2 Shows status of USB and controller features.

1E6h UIMASK2 USB Interrupt Mask 2
Enables or disables interrupts generated by
UISTAT2 status bits.

USB Miscellaneous Registers

1E8h USBMFR USB Device Miscellaneous Functions

Provides internal USB transceiver power and
disable control; USB suspend status; USB soft
reset control; USB self-powered device
attribute; and remote wake-up control/status.

1EAh RTFMCNT Real Time Frame Monitor Count
Used to estimate progress of the current host
frame.

1ECh TSTMP Time Stamp Contains the current frame number.

1EEh TSTMPM Time Stamp Match Match register for time stamp bit in UISTAT2.

1F0h ISCTL Isochronous Synchronization Control

Used to control external frame synchronization
(USBSOF signal enable), auto-rate bytes per
sample, USB sample source clock; and
FPMCNT bit latch count rate.

1F2h FPMCNT Frame Position Monitor Count

Used during isochronous IN transfers to
compare the source data rate (USBSCI signal)
to the USB host’s data rate. The host’s SOF
rate or data rate can then be adjusted
accordingly.

 In the Am186CC microcontroller, the
HDLC A/PCM/GCI source data rate can also
be compared to the USB host’s data rate.

CC CH
Am186™CC/CH/CU Microcontrollers User’s Manual 18-7

Universal Serial Bus (USB)
USB Control Endpoint Registers

200h CNTCTL Control Endpoint Control/Status
Contains control and status bits for the Control
endpoint (endpoint 0).

202h CNTSIZ Control Endpoint Receive Packet Size
Shows the size of the packet present in the
Control endpoint’s FIFO.

206h CNTDAT Control Endpoint Data Port
Used to read from or write to the Control
endpoint’s FIFO. The FIFO address pointer is
advanced on each access.

208h CNTRPK
Control Endpoint Receive Data Port
Peek

Used to read the current value in the Control
endpoint’s FIFO without advancing the FIFO
pointer.

20Ah CNTDEF1 Control Endpoint Definition 1

Shows the control endpoint’s definition:
endpoint number, configuration, interface,
alternate setting, direction, and type. These
parameters are fixed for the control endpoint.

20Ch CNTDEF2 Control Endpoint Definition 2
Shows the control endpoint’s FIFO size and
maximum packet size. These parameters are
fixed for the control endpoint.

USB Interrupt Endpoint Registers

210h IEPCTL Interrupt Endpoint Control/Status
Contains control and status bits for the
Interrupt endpoint.

216h IEPDAT Interrupt Endpoint Data Port
Used to write to the interrupt endpoint’s FIFO.
The FIFO address pointer is advanced on each
access.

21Ah IEPDEF1 Interrupt Endpoint Definition 1

Used to set the interrupt endpoint’s definition:
endpoint number, configuration, interface,
alternate setting. The interrupt endpoint’s
direction (IN) and type (interrupt) are fixed.

21Ch IEPDEF2 Interrupt Endpoint Definition 2
Used to set the interrupt endpoint’s FIFO size
(fixed for the interrupt endpoint) and maximum
packet size.

USB Data Endpoint A Registers

220h AEPCTL A Endpoint Control/Status
Contains control, status, and error bits for the
endpoint.

222h AEPSIZ A Endpoint Received Packet Size
Shows the size of the packet present in the
endpoint’s FIFO.

224h AEPBUFS A Endpoint Buffer Status
Shows the number of bytes present in the
endpoint’s FIFO.

226h AEPDAT A Endpoint Data Port
Used to read from or write to the endpoint’s
FIFO. The FIFO address pointer is advanced
on each access.

228h ARCVPK A Endpoint Receive Data Port Peek
Used to read the current value in the endpoint’s
FIFO without advancing the FIFO pointer.

22Ah AEPDEF1 A Endpoint Definition 1
Used to set the endpoint’s definition: endpoint
number, configuration, interface, alternate
setting, direction, and type.

Table 18-3 USB Register Summary (Continued)

Offset
Register
Mnemonic

Register Name Description
18-8 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
22Ch AEPDEF2 A Endpoint Definition 2
Used to set the endpoint’s FIFO size and
maximum packet size.

22Eh AEPDEF3 A Endpoint Definition 3
Used to set auto-rate enable, status interrupt
mask, transfer mode, and stop mask.

USB Data Endpoint B Registers

230h BEPCTL B Endpoint Control/Status

Behaves the same as the Endpoint A registers,
but for Endpoint B.

232h BEPSIZ B Endpoint Received Packet Size

234h BEPBUFS B Endpoint Buffer Status

236h BEPDAT B Endpoint Data Port

238h BRCVPK B Endpoint Receive Data Port Peek

23Ah BEPDEF1 B Endpoint Definition 1

23Ch BEPDEF2 B Endpoint Definition 2

23Eh BEPDEF3 B Endpoint Definition 3

USB Data Endpoint C Registers

240h CEPCTL C Endpoint Control/Status

Behaves the same as the Endpoint A registers,
but for Endpoint C, except that Endpoint C and
D have two additional FIFO size options: 32
and 64 bytes.

242h CEPSIZ C Endpoint Received Packet Size

244h CEPBUFS C Endpoint Buffer Status

246h CEPDAT C Endpoint Data Port

248h CRCVPK C Endpoint Receive Data Port Peek

24Ah CEPDEF1 C Endpoint Definition 1

24Ch CEPDEF2 C Endpoint Definition 2

24Eh CEPDEF3 C Endpoint Definition 3

USB Data Endpoint D Registers

250h DEPCTL D Endpoint Control/Status

Behaves the same as the Endpoint A registers,
but for Endpoint D, except that Endpoint C and
D have two additional FIFO size options: 32
and 64 bytes.

252h DEPSIZ D Endpoint Received Packet Size

254h DEPBUFS D Endpoint Buffer Status

256h DEPDAT D Endpoint Data Port

258h DRCVPK D Endpoint Receive Data Port Peek

25Ah DEPDEF1 D Endpoint Definition 1

25Ch DEPDEF2 D Endpoint Definition 2

25Eh DEPDEF3 D Endpoint Definition 3

Table 18-3 USB Register Summary (Continued)

Offset
Register
Mnemonic

Register Name Description
Am186™CC/CH/CU Microcontrollers User’s Manual 18-9

Universal Serial Bus (USB)
18.5 OPERATION
The Am186CC and Am186CU microcontrollers act as USB peripheral devices. The USB
is a half-duplex, master/slave, polled bus. In other words, the microcontroller only transmits
on the USB in response to a request from the USB host, usually a personal computer. There
can be only one transmitter on the USB at a time.

When the USB host addresses a peripheral, it also addresses a particular endpoint on that
device. Each endpoint is configured with a logical number that the USB host uses to address
that endpoint. No two endpoints can be configured with the same logical number.

The endpoint responds to the host’s requests, sending or receiving device data. In USB
nomenclature, data flowing from the host travels in the OUT direction, and data flowing to
the host travels in the IN direction. Because the Am186CC or Am186CU microcontroller
resides in a USB peripheral, its OUT endpoints receive data, and its IN endpoints transmit
data.

Each endpoint is supported by a first-in-first-out buffer (FIFO). The FIFO is a temporary
storage location for the data that is passed between the microcontroller’s CPU or memory
bus and the integrated USB peripheral controller.

The microcontroller supports six endpoints:

■ One dedicated control endpoint (Endpoint 0)

■ One dedicated interrupt endpoint

■ Four fully programmable data endpoints (named A–D)

The following sections describe the USB endpoints and explain how to use them.

18.5.1 Usage
This section briefly lists the tasks that software must perform to program the USB peripheral
controller for various applications. The following programming tasks do not cover all
possibilities. They are intended to provide a basic understanding of USB register usage.
The user should program the registers appropriately for each specific application.

Many of the subjects mentioned in the following lists are discussed more thoroughly
elsewhere in this chapter.

18.5.1.1 General USB Peripheral Controller Programming Issues

■ Always power up the transceiver (internal or external) by setting the PUP_XCVR bit in
the USB Device Miscellaneous Functions (USBMFR) register.

■ Always configure an endpoint’s definition registers before enabling the endpoint.
Changing the endpoint register values while the endpoint is enabled could result in
unpredictable behavior.

■ When using USB status bits as interrupt sources, be sure to program the interrupt
Channel 2 Control (CH2CON) register to enable the channel and select its internal
source (USB).

■ Refer to the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916
for register default values and details about using each register field.
18-10 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
18.5.1.2 Programming the Control Endpoint

The host uses the USB peripheral controller’s dedicated control endpoint for detection and
control of the device. The endpoint contains an 8-byte FIFO for storage of commands,
command data (for host command writes), and responses (for host command reads). The
maximum packet size of the control endpoint is always eight bytes, the physical size of the
FIFO.

The control endpoint’s number is fixed at 0. All USB devices must have a control endpoint
with endpoint number 0. The USB host uses this endpoint to initialize and control the device.
Endpoint 0 gives the host access to the device’s configuration information (device
descriptors) and overall status. All of the USB standard and vendor- or device-class-specific
commands are directed to this endpoint. See “Command Handling” on page 18-26.

The following registers configure the control endpoint:

■ Control Endpoint Definition 1 (CNTDEF1):

All fields in this register are read only. They can be read to determine endpoint attributes.

■ Control Endpoint Definition 2 (CNTDEF2):

All fields in this register are read only. They can be read to determine endpoint attributes.

■ Control Endpoint Control/Status (CNTCTL):

– The endpoint enable bit (EP_EN) enables or disables the endpoint.

Device software can enable the endpoint in the stalled state by clearing the
EP_NOT_STALLED bit while the EP_EN bit is being set. The hardware, however, sets
the EP_NOT_STALLED bit upon reception of a SETUP packet from the host.

– Device software can be interrupted by two sources: the ACT_REQ bit or the
NEW_COMMAND bit. To enable these bits as interrupt sources, set the CNT_EP_ACT
and CNT_EP_NEW bits in the USB Interrupt Mask 1 (UIMASK1) register.

On reset, hardware owns the FIFO (indicated by the cleared ACT_REQ bit). After
hardware fills the FIFO, it sets the ACT_REQ bit to transfer ownership of the FIFO to
software. The first time software owns the FIFO, it clears the NEW_COMMAND bit
and proceeds with writing data to or reading data from the FIFO. Software can use
the Control Endpoint Receive Packet Size (CNTSIZ) register to determine the number
of valid data bytes present in the endpoint FIFO. After software has completed its
tasks, it hands the FIFO back to the hardware by clearing the ACT_REQ bit. At the
end of data (the last time software puts data in the FIFO), software also clears the
COMMAND_BUSY bit. Hardware then sets the ACT_REQ bit once for the last packet,
and then again for the end of command. For more information, see the Am186™CC/
CH/CU Microcontrollers Register Set Manual, order #21916.

18.5.1.3 Programming the Interrupt Endpoint

Because USB is polled, this is not an interrupt in the traditional sense. When the device
wishes to interrupt the host, it returns data when the interrupt endpoint is polled. The USB
peripheral controller’s dedicated interrupt endpoint contains a 16-byte FIFO, which software
loads with the data to return on the next poll from the host. The maximum packet size can
be set to eight or 16 bytes. For more information, see “Interrupt Endpoint Programming” on
page 18-29.
Am186™CC/CH/CU Microcontrollers User’s Manual 18-11

Universal Serial Bus (USB)
The host polls the interrupt endpoint once every 1 to 255 ms. Device software requests a
poll rate when it sets up the endpoint’s descriptor data structure, which the host obtains by
issuing a GET_DESCRIPTOR command during device configuration.

Note that the interrupt endpoint can only be used in non-DMA mode.

The following registers are used to configure the interrupt endpoint in response to
commands received from the USB host:

■ Interrupt Endpoint Definition 1 (IEPDEF1):

– Based on the SET_CONFIGURATION command, the device software should write
the EP_CFG field in the IEPDEF1 register.

– Based on the SET_INTERFACE command, the device software should write the
EP_INT and EP_ASET fields in the IEPDEF1 register.

– Based on the endpoint descriptor associated with the alternate setting, the device
software should write the EP_NUM field in the IEPDEF1 register.

■ Interrupt Endpoint Definition 2 (IEPDEF2):

Endpoint maximum packet value can be programmed to a value of 8 or 16.

■ Interrupt Endpoint Control/Status (IEPCTL):

– The endpoint enable bit (EP_EN) enables or disables the endpoint.

– Initial control of the data FIFO is assigned to software. Device software can therefore
write to the endpoint FIFO (IEPDAT). After writing to the FIFO, the software should
clear the ACT_REQ bit, thereby giving control back to the USB endpoint hardware
and allowing it to transmit the written data.

– Hardware sets the ACT_REQ bit after the endpoint has successfully sent a data packet
to the host and the packet has been acknowledged. To enable the ACT_REQ bit as
an interrupt source, set the INT_EP_ACT bit in the UIMASK1 register.

– There is a feature that allows the device software to update stale data if it has not
been transmitted. This is done by clearing the NOT_FLUSH bit, which causes the
hardware to revert control to the device software by setting the ACT_REQ bit. Note
that the ACT_REQ bit is set only if there is no active data transfer from this endpoint
to the host. Device software can verify if the ACT_REQ bit is set and if it is, can update
stale data by writing to the FIFO (IEPDAT).

18.5.1.4 Programming Data Endpoints

The USB peripheral controller provides four data endpoints.Two have 16-byte FIFOs, and
the other two have 64-byte FIFOs. Each data endpoint is individually programmable as to
direction (IN or OUT relative to the host), transfer type (bulk, isochronous, or interrupt), and
maximum packet size. The maximum packet size set for these endpoints can be greater
than the FIFO’s physical size if using a general-purpose DMA or SmartDMA channel. (Note
that the endpoints have differences in how they interface to the SmartDMA channels.) Legal
maximum packet sizes are any power of 2 between 8 and 64 for data endpoints configured
for bulk transfers, and any integer up to 1023 for data endpoints configured for isochronous
transfers.

The four endpoints are named A, B, C, and D. Where the following description applies to
any of them, an “x” is used in the register name in place of the endpoint name.
18-12 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
The following registers configure a data endpoint in response to commands received from
the USB host. For details on any of these registers, see the Am186™CC/CH/CU
Microcontrollers Register Set Manual, order #21916.

■ Endpoint Definition 1 (xEPDEF1):

– Based on the SET_CONFIGURATION command, the device software should write
the EP_CFG field in the xEPDEF1 register.

– Based on the SET_INTERFACE command, the device software should write the
EP_INT and EP_ASET fields in the xEPDEF1 register.

– The Endpoint number should be configured through the EP_NUM field in the xEPDEF1
register.

– Endpoint direction and Endpoint type should be configured through the EP_DIR and
EP_TYPE fields, respectively.

■ Endpoint Definition 2 (xEPDEF2):

FIFO size and endpoint maximum packet value fields can be programmed. The values
depend on the endpoint type selection. (Endpoint A and B FIFOs can be 8 or 16 bytes.
Endpoint C and D FIFOs can be 8, 16, 32, or 64 bytes.)

■ Endpoint Definition 3 (xEPDEF3):

– Based on application requirements, the appropriate interrupt mask and stop mask
fields are programmable.

– The MODE field can configure the endpoint. This determines how the endpoint
interfaces with system memory or another peripheral's data port.

– To enable the auto rate feature, use the AUTO_RATE_EN field. Note that this feature
only applies to an endpoint that is configured as an isochronous IN endpoint and
interfaces with a DMA mode. This feature requires additional programming in the
Isochronous Synchronization Control (ISCTL) register. For more information, see
“Isochronous Transfer Features” on page 18-24.

■ Endpoint Received Packet Size (xEPSIZ):

This is a status register that provides information on the size of the received packet (in
bytes) when the endpoint is configured for the OUT direction.

■ Endpoint Buffer Status (xEPBUFS):

This is a status register that provides information on the number of bytes, if any, is in the
endpoint FIFO.

■ Endpoint Data Port (xEPDAT):

Device software or the DMA controller uses this register to read/write to the endpoint
FIFO. A valid access to this register increments the address pointer.

■ Endpoint Receive Data Port Peek (xRCVPK):

Debug or emulator software uses this register to read the endpoint data FIFO without
advancing the address pointer. It is only applicable for the OUT direction.
Am186™CC/CH/CU Microcontrollers User’s Manual 18-13

Universal Serial Bus (USB)
■ Endpoint Control/Status (xEPCTL):

This register controls various aspects of the data endpoint. Because the data endpoint
is flexible in terms of the endpoint type, direction, and mode, besides other programmable
features, use of this register is discussed in the following specific application scenarios.

18.5.1.4.1 Endpoint A Configured as Bulk OUT, Non-DMA Mode
1. Program the Endpoint A registers:

– Set EP_TYPE = 10b (Bulk) and EP_DIR = 1 (OUT) in the AEPDEF1 register.

– Set MODE = 000b (Non-DMA) in the AEPDEF3 register.

– If interrupts are to be used, set the appropriate bits in the UIMASK1 or UIMASK2
register. If endpoint status bits are to generate interrupts, also set the appropriate
mask bits in the AEPDEF3 register.

– Perform any additional programming of the definition registers that is required for the
specific application.

2. Enable the data endpoint by setting the EP_EN bit in the AEPCTL register.

3. Assign initial control of the data FIFO to the USB endpoint hardware by clearing the
ACT_REQ bit in the IEPCTL register.

Data sent by the host is written to the data FIFO. At the end of a successful transfer,
hardware sets the ACT_REQ bit to transfer control to software. To enable this bit as an
interrupt source, set the A_EP_ACT bit in the UIMASK1 register.

4. When the ACT_REQ bit is set, read the endpoint FIFO (AEPDAT). Note that the number
of bytes written by the host can be obtained from the AEPSIZ register.

5. After reading the appropriate number of bytes from the FIFO, clear the ACT_REQ bit to
give control back to the USB endpoint hardware and allow it to reuse the FIFO for
subsequent data.

18.5.1.4.2 Endpoint A Configured as Bulk IN, Non-DMA Mode
1. Program the Endpoint A registers:

– Set EP_TYPE = 10b (Bulk) and EP_DIR = 0 (IN) in the AEPDEF1 register.

– Set MODE = 000b (Non-DMA) in the AEPDEF3 register.

– If interrupts are to be used, set the appropriate bits in the UIMASK1 or UIMASK2
register. If endpoint status bits are to generate interrupts, also set the appropriate
mask bits in the AEPDEF3 register.

– Perform any additional programming of the definition registers that is required for the
specific application.

2. Enable the data endpoint by setting the EP_EN bit in the AEPCTL register.

3. For an IN endpoint, initial control of the data FIFO is assigned to the device. Device
software can therefore write to the endpoint FIFO (AEPDAT) when it is ready.

4. After it is finished writing to AEPDAT, software should clear the ACT_REQ bit in the
IEPCTL register to give control back to the USB endpoint hardware and allow it to transmit
the written data.

Hardware sets the ACT_REQ bit after the endpoint has successfully sent a data packet
to the host and the packet has been acknowledged. To enable the ACT_REQ bit as an
interrupt source, set the A_EP_ACT bit in the UIMASK1 register.
18-14 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
5. Device software can clear the NOT_FLUSH bit in the AEPCTL register if it needs to
update stale data in the FIFO before the data is transmitted. This causes the USB
hardware to return control to software by setting the ACT_REQ bit. However, the
ACT_REQ bit is set only if there is no active data transfer from this endpoint to the host.
Device software can verify if the ACT_REQ bit is set and if it is, can update stale data
by writing to the FIFO (AEPDAT).

18.5.1.4.3 Endpoint C Configured as Bulk OUT, General-Purpose DMA Mode
1. Program the endpoint C registers:

– Set EP_TYPE = 10b (Bulk) and EP_DIR = 1 (OUT) in the CEPDEF1 register.

– Set MODE = 010b or 011b (general-purpose DMA) in the CEPDEF3 register. These
modes behave the same when used for an OUT endpoint.

– Set the appropriate interrupt mask bits in the UIMASK1 or UIMASK2 register. For
general-purpose DMA operation, enable the appropriate interrupt mask bits in the
CEPDEF3 register to allow the device software to be notified of the FIFO status. For
example, the FULL_PKT, SHORT_PKT, OTHER_ERROR, or BUFFER_ERROR
status bits could stop the hardware, requiring device software to take appropriate
action and then clear the ACT_REQ bit to let the hardware continue.

– Perform any additional programming of the definition registers that is required for the
specific application.

2. In the General-Purpose DMA Control 0 (GDxCON0) register for an available general-
purpose DMA channel, set DSEL = 11100b (USB Endpoint C, source-synchronized).
Make any other DMA channel configuration settings that are required, then set ST = 1
in the GDxCON0 register to enable the DMA channel. Enable the DMA channel before
enabling the DMA request source to avoid data loss or initial error conditions.

It is important to note that in DMA mode, the ACT_REQ bit no longer serves as a
semaphore lock for the data FIFO. The data FIFO now behaves as a circular FIFO with
simultaneous read/write capability. The ACT_REQ bit acts as a Stop/Go bit for the
hardware. For details, see the xEPCTL register description in the Am186™CC/CH/CU
Microcontrollers Register Set Manual, order #21916. If software sets the endpoint’s
ACT_REQ bit, the DMA transfer stops until software clears the bit again.

18.5.1.4.4 Endpoint C Configured as Bulk IN, General-Purpose DMA Mode with Terminal
Count Not Ignored
1. Program the Endpoint C registers:

– Set EP_TYPE = 10b (Bulk) and EP_DIR = 0 (IN) in the CEPDEF1 register.

– Set MODE = 011b (general-purpose DMA, terminal count not ignored) in the
CEPDEF3 register.

In this mode, when the terminal count for the general-purpose DMA channel reaches
zero, the byte of data written is marked as the last byte in the USB endpoint FIFO. If
the transfer size is an integer multiple of the maximum packet size, device software
can write a zero byte to the endpoint FIFO by clearing the NOT_ZERO bit in the
CEPCTL register and following that with a dummy write to the CEPDAT register. The
NOT_ZERO bit is set automatically when the data port is written.

– Set the appropriate interrupt mask bits in UIMASK1 or UIMASK2. For general-purpose
DMA operation, enable the appropriate interrupt mask bits in the CEPDEF3 register
to allow the device software to be notified of the FIFO status. For example, the
FULL_PKT, SHORT_PKT, OTHER_ERROR, or BUFFER_ERROR status bits could
Am186™CC/CH/CU Microcontrollers User’s Manual 18-15

Universal Serial Bus (USB)
stop the hardware, requiring device software to take appropriate action and then clear
the ACT_REQ bit to let the hardware continue.

– Perform any additional programming of the definition registers that is required for the
specific application.

2. In the General-Purpose DMA Control 0 (GDxCON0) register for an available general-
purpose DMA channel, set DSEL = 11101b (USB Endpoint C, destination
synchronized). Make any other DMA channel configuration settings that are required,
then set ST = 1 in the GDxCON0 register to enable the DMA channel. Enable the DMA
channel before enabling the DMA request source to avoid data loss or initial error
conditions.

It is important to note that in DMA mode, the ACT_REQ bit no longer serves as a
semaphore lock for the data FIFO. The data FIFO now behaves as a circular FIFO with
simultaneous read/write capability. The ACT_REQ bit acts as a Stop/Go bit for the
hardware. For details, see the xEPCTL register description in the Am186™CC/CH/CU
Microcontrollers Register Set Manual, order #21916. If software sets the endpoint’s
ACT_REQ bit, the DMA transfer stops until software clears the bit again.

18.5.2 Data Transmission and Data Types
For the Am186CC and Am186CU microcontrollers, all communication across the USB takes
place in Full-speed mode. USB bus transactions involve transmissions in up to three types
of packets: token, data, and handshake. The token packet contains information about the
type and direction of the transaction as well as the device address and which endpoint to
use. The data packet, if any, contains actual commands or data. There can be one data
packet, none, or more than one in a transaction. The format of a data packet varies according
to what type of endpoint is being used. The handshake packet contains information
regarding whether or not the transaction was completed successfully.

When beginning a transfer, the host issues a start-of-frame (SOF) packet. When the USB
peripheral controller decodes this packet, it indicates the start-of-frame in the USB Interrupt
Status 2 (UISTAT2) register. Also decoded in the start-of-frame packet is a time stamp,
which the USB peripheral controller places in the Time Stamp (TSTMP) register.

18.5.2.1 USB Suspend, Resume, and Remote Wakeup

A USB Suspend is indicated if traffic across the USB cable ceases for 3 ms or more. This
causes the USB peripheral controller to go into Suspend mode, which hardware indicates
by setting both the SUSP bit in the USB Device Miscellaneous Functions (USBMFR) register
and the USB_SUS bit in the USB Interrupt Status 2 (UISTAT2) register. The USB_SUS can
be enabled as an interrupt source by setting the corresponding bit in the UIMASK2 register.

When a USB Suspend is detected, software should take any necessary action and wait for
a USB Resume, which hardware indicates by clearing the SUSP bit in the USBMFR register
and by setting the USB_RES bit in the UISTAT2 register. USB_RES can also be enabled
as an interrupt source by setting the corresponding bit in the UIMASK2 register.

The Remote Wakeup feature is provided for peripheral devices that might need to wake up
the USB remotely. The device’s Remote Wakeup feature must be enabled by the host,
which does so by issuing an appropriate SET_FEATURE command to the device. This
automatically sets the RWAKE_EN bit in the USBMFR register.

If the RWAKE_EN bit is set and the controller is in USB Suspend mode, device software
can initiate a USB Resume by setting the RWAKE bit in the USBMFR register.
18-16 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
18.5.2.2 USB Reset

Hardware sets the USB_RST bit in the UISTAT2 register when a USB reset signal is detected
on the USB bus. The USB_RST bit can be enabled as an interrupt source by setting the
corresponding bit in the UIMASK2 register.

18.5.2.3 USB Protocol Handling, IN Direction

For endpoints that are configured for the IN direction (transmit), data to be sent to the USB
host is placed in the endpoint FIFO by the device software or the DMA controller.

When the USB host issues an IN token packet to the endpoint, the controller hardware
converts the data stored in the endpoint’s FIFO into a serial data stream, computes the
CRC, performs the bit stuffing operation, and generates the NRZI converted data stream.
At the same time, it assembles the data packet in the correct format, including the SYNC,
PID, DATA, CRC, and EOP fields as required by the USB specification.

Finally, the USB peripheral controller drives the data stream out to the USB host through
the integrated transceiver drivers on the USBD+ and USBD– signal lines (or to an external
transceiver if one is used).

The device software is responsible for filling the endpoint’s FIFO before starting the
transaction, and for keeping the FIFO full during the transaction, if necessary. If a packet
error occurs, the device software is responsible for responding appropriately. For bulk
transfers, this entails refilling the endpoint FIFO with the data that was sent in the last frame.
For isochronous transfers, the software must proceed to fill the FIFO with data for the next
packet. For more information, see “Error Recovery on Bulk and Interrupt Endpoints” on
page 18-22 and “Error Recovery on Isochronous Endpoints” on page 18-23.

The controller hardware automatically generates the appropriate USB handshake packets
for the various transfer types. The device software can cause the endpoint to enter its stalled
condition when appropriate.

18.5.2.4 USB Protocol Handling, OUT Direction

For endpoints that are configured in the OUT direction (receive), the USB peripheral
controller receives the serial data stream from the USB host. The USB peripheral controller
hardware identifies the incoming SYNC field, performs the NRZI-to-NRZ conversion,
performs the bit-stripping operation, decodes the PID, and tests the device’s ADDR and
ENDP fields. For packets that are addressed to the device and an enabled endpoint number,
the USB peripheral controller performs the serial-to-parallel conversion and places the data
into the endpoint’s FIFO.

During this process, the endpoint hardware checks the packet’s CRC, Data toggle sense,
and all handshake packets. In addition, the controller hardware monitors the number of
data bytes sent by the host. If the number of bytes sent exceeds the endpoint’s maximum
packet size, the USB peripheral controller automatically flags an error and sends a negative
acknowledge packet to the host if the endpoint type is bulk, control, or interrupt.

The primary responsibility of the device software or DMA controller is to move data written
into the endpoint’s FIFO to system memory or some other microcontroller peripheral. The
device software must also monitor the USB peripheral controller to service packet errors
that are detected during reception.

The appropriate USB handshake packets are generated automatically by the controller
hardware for the various transfer types and error conditions. The device software can also
cause the endpoint to enter its stalled condition when appropriate.
Am186™CC/CH/CU Microcontrollers User’s Manual 18-17

Universal Serial Bus (USB)
For the USB control endpoint, the system software is responsible for decoding and servicing
several of the USB standard commands and all device class or vendor specific commands.
Hardware is provided that allows the system software to detect incoming commands, and
respond appropriately. The hardware also allows the software to detect all command abort
scenarios.

18.5.3 Handling USB Data
The USB peripheral controller handles all of the low-level USB protocol requirements in
hardware. Data movement between device memory or other microcontroller peripherals
and the USB peripheral controller’s endpoints is managed by device software executing on
the microcontroller CPU.

The device software can use status polling or interrupts to handle FIFO data for any endpoint
(control, interrupt, and A–D). In addition, the data endpoints (A–D) support either general-
purpose DMA or SmartDMA channel transfers.

Device software sets up the method of operation for the endpoints by programming control
and definition registers. There are register bits to enable or disable interrupts that can be
generated as data transfers proceed, or the software can poll status bits to determine the
status of each endpoint. Registers for each data endpoint determine the DMA channels
used (if any), the endpoint’s direction (IN or OUT, relative to the host), and its type
(isochronous, bulk, or interrupt). These registers are also used to set up other information
used in the USB configuration process.

For control, interrupt, and bulk data transfers, USB guarantees correct data delivery with
automatic retry. Microcontroller hardware performs this task transparently to the software
except for data endpoints that have been configured to use DMA. When DMA is being used,
the device software is involved in error detection and recovery.

For isochronous data transfers, the USB specification calls for only a good-faith attempt at
delivery. Isochronous transfers call for real-time delivery of each packet, so damaged
packets cannot be retransmitted.

Special status and interrupt bits are provided for the control endpoint to indicate whether
the packet currently in that endpoint’s FIFO is a command that must be handled by device
software.

18.5.4 Polled I/O
In Polled I/O mode, no DMA channel is specified, and interrupts are disabled. The device
software must actively poll the USB status register to determine when it owns the endpoint’s
FIFO, and then it must write or read the endpoint’s Data Port register to fill or empty the FIFO.

An endpoint operates in this mode only when the maximum packet size has been
programmed to be less than or equal to the size of the FIFO. In this mode, the FIFO cannot
operate in a circular fashion as it does for DMA transfers (see page 18-19).

For a receive endpoint (OUT direction relative to the host), the USB peripheral controller
sets the endpoint’s ACT_REQ bit in the status register whenever the FIFO is full of valid
data, or when an end-of-packet event has occurred. If this bit is set, the software can empty
the FIFO the next time it polls this endpoint. The amount of valid data in the FIFO is indicated
by the endpoint’s Received Packet Size and Buffer Status registers. When software has
finished reading the FIFO, it must clear the ACT_REQ bit to release FIFO ownership to the
USB peripheral controller.
18-18 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
For a transmit endpoint (IN direction), the ACT_REQ bit is set if the FIFO is ready to be
filled with data. If this bit is set, software can fill the FIFO when it has data for that endpoint
to transmit, then it must clear the ACT_REQ bit to release the FIFO.

If an error occurs on a packet received by a bulk, control, or interrupt endpoint, the ACT_REQ
bit is not set. Instead, the FIFO is flushed, and the host retransmits the packet. If an error
occurs when the endpoint being addressed is isochronous, no retransmission can occur;
the data that was sent or received must be used as is.

18.5.5 Interrupt-Driven I/O
A single interrupt channel can be configured to alert software that the USB peripheral
controller requires attention. Interrupt mask fields allow the device software to enable the
events it is interested in, and the status registers show which events have occurred.

The interrupt mode of operation is very similar to the polled mode. It is an extension of the
polled mode in which the ACT_REQ bit is enabled to cause an interrupt. The device
software’s interrupt handler then polls the status bits to see which endpoint needs service.
Errors that occur in this mode are handled the same as in polled mode.

18.5.6 Using USB with DMA
Compared with polled or interrupt I/O, using DMA with USB gives the following benefits:

■ Improved Throughput: This is an important consideration, not only from the
microcontroller's perspective, but also from the USB host's perspective. If the
microcontroller is ready to receive or transmit data whenever the host wishes, it reduces
USB bus overhead due to retries.

■ Larger Packets: When the USB peripheral controller is used with DMA, there is no
restriction on packet size, other than that mandated by the USB specification (1023
bytes/packet for isochronous, 64 bytes/packet for bulk). When DMA is not used, packets
are restricted to the size of the endpoints' FIFO.

■ Automatic Rate Control: The microcontroller's Automatic Rate Control feature is only
available when using DMA. This feature allows the amount of data sent in an isochronous
IN packet to be controlled by the number of PCM highway frames or other external events
that occur in each USB frame.

However, using DMA with USB is more complicated than using polled or interrupt I/O. In
Polled or Interrupt mode, the USB hardware performs all error handling itself. The host is
notified only when a packet has been received or transmitted without errors. With DMA,
software is responsible for recovering from errors. This includes backing up DMA pointers,
taking into account the amount of data that has not yet been transferred to or from the
endpoint's FIFO, and so on. In addition, using DMA requires extra programming effort even
before exception handling is considered.

18.5.6.1 DMA Availability

DMA mode is only available for Endpoints A–D. In DMA mode, endpoints are programmed
to use the microcontroller’s general-purpose DMA or SmartDMA channels.

When used with a USB data endpoint, the general-purpose DMA channels allow the device
software to set up a single USB packet or an entire I/O request packet (IRP) to transfer
data automatically between memory and the endpoint’s FIFO. During the transfer, software
interaction is required only to handle FIFO and USB packet errors.

SmartDMA channel pairs 2 and 3 can be used with specific endpoints if they are configured
in the correct direction, as shown in Table 18-4. SmartDMA channels allow device software
to set up single or multiple USB packets, or single or multiple IRPs, to be moved
Am186™CC/CH/CU Microcontrollers User’s Manual 18-19

Universal Serial Bus (USB)
automatically between the endpoint’s FIFO and memory (or I/O), possibly using even less
overhead than general-purpose DMA. Software interaction is still required to handle FIFO
and USB packet errors.

Selection of what type (if any) of DMA to use for a particular type of USB data pipe should
take into account several issues:

■ SmartDMA channels may be better for some tasks. For example, SmartDMA channels
can transition from one FIFO to the next without incurring any interrupt overhead or
latency.

■ General-purpose DMA is simpler to program and understand for many tasks.

■ Each SmartDMA channel is only capable of operation in a single direction. Because
each endpoint is associated with a particular SmartDMA channel, a given system can
have a maximum of two endpoints for any direction (IN or OUT).

When selecting DMA channels to use, be sure to consider other microcontroller functions
(such as HDLC or UARTS) that might be using DMA. See “DMA Trade-Offs” on page 18-6.

18.5.6.2 DMA/FIFO Interaction

Unlike the polled I/O or interrupt methods, in DMA mode the maximum packet size can be
programmed to a value greater than the physical size of the FIFO. Because of this, the
protocol for filling or emptying a FIFO is different than when using polled I/O or interrupts.
The FIFO in the endpoint operates in a circular fashion while in DMA mode.

For a receive (OUT) endpoint, the USB peripheral controller issues a DMA request
whenever the FIFO is not empty. It continues to assert the DMA request until the FIFO is
empty. The USB peripheral controller detects that a receive transaction has completed;
either successfully or unsuccessfully. If a SmartDMA channel is configured to store packet
status to the FIFO descriptor, it handles packet errors automatically and places the error
status in the last three bytes sent. If general-purpose DMA is used, or if a SmartDMA
channel is configured to not store packet status in the FIFO descriptor, bits in the endpoint’s
status register can cause an interrupt when an error occurs.

For a transmit (IN) endpoint, a DMA request is asserted whenever the FIFO is not full. The
request assertion continues until the FIFO is full. Data bytes can be marked either as the
last byte of the transfer or as a null byte. If the endpoint is configured to use a general-
purpose DMA channel, it can indicate the last byte upon reaching the terminal count. If the

Table 18-4 USB Endpoints Used with DMA

USB Endpoint DMA Channel

USB data Endpoint (A–D) configured in either direction Any General-Purpose DMA Channel, 0–3

USB data Endpoint A if configured as a USB OUT (receive) endpoint1

Notes:
1. SmartDMA Channels 2 and 3 Transmit and Receive cannot be assigned to different peripherals. For example, if
SmartDMA Channel 2 Receive is assigned to USB data endpoint A, then SmartDMA Channel 2 Transmit can be
used for USB data endpoint B, but cannot be used with the HDLC controller on the Am186CC microcontroller.

SmartDMA Pair 2 Receive Channel

USB data Endpoint B if configured as a USB IN (transmit) endpoint. SmartDMA Pair 2 Transmit Channel

USB data Endpoint C if configured as a USB OUT endpoint1 SmartDMA Pair 3 Receive Channel

USB data Endpoint D if configured as a USB IN endpoint1 SmartDMA Pair 3 Transmit Channel
18-20 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
endpoint is configured to use a Smart DMA channel, information in the FIFO descriptor
indicates if a byte is the last byte or a null byte.

18.5.6.3 Setting Up DMA for USB

The USB peripheral controller gives the programmer a large degree of freedom in using
DMA with USB endpoints. In general, most methods of using DMA with USB fall into one
of three categories:

■ Undelimited Transfers are generally used for isochronous data that has no natural
boundaries, such as audio data. For these types of transfers, either the SmartDMA
channel or the general-purpose DMA serve equally well to transfer data into a circular
FIFO. In addition, SmartDMA control can transfer data to or from another peripheral,
such as the HDLC controller on the Am186CC microcontroller.

For undelimited IN (to the host) transfers, the amount of data transferred in each packet
is the endpoint’s maximum packet size unless Auto Rate control is enabled on the
endpoint. If Auto Rate control is enabled, the packet size can equal the number of
samples received during the previous frame multiplied by a programmable byte/sample
factor, if this value is less than the programmed maximum packet size.

■ Buffer-Per-Packet transfers can be used for either bulk transactions or nonstreaming
isochronous transfers. The amount of data transferred for each packet is determined by
the FIFO size. Buffer per packet transfers are required if SmartDMA is used with packet
status stored in the FIFO descriptor (MODE = 101b in the xEPDEF3 register).

■ Buffer-Per-I/O Request Packet (IRP) transfers are similar to buffer-per-packet transfers,
except that a DMA FIFO contains multiple packets. In general, Buffer-per-IRP is simpler
to program for the normal case, but error handling is more complicated because DMA
must be restarted in the middle of the FIFO. Buffer per IRP transfers are highly
recommended for IN endpoints using a SmartDMA channel.

18.5.6.4 Short Packets

Short packets typically delineate the end of a USB I/O request packet (IRP). For example,
if the maximum packet size is 64 bytes, and a FIFO that is 260 bytes is to be transferred,
four full-length packets are transferred followed by a packet that contains only four bytes.

This delineation is very useful because it provides an “out-of-band” indication of where one
information FIFO ends and the next one starts. In fact, it is so useful that USB specifically
allows for zero-length packets, to ensure that this delineation can be performed even when
the FIFO size is a multiple of the maximum packet size.

The SmartDMA channel is fully capable of sending and receiving zero-length packets. (On
receive, it simply stores the byte count provided by the USB peripheral controller, which is
zero, and on transmit, a special signal from the SmartDMA controller indicates that the
packet has no data.)

With general-purpose DMA, receiving a zero-length packet is exactly the same as receiving
any other short packet—the USB should be set to stop on receipt of a short packet, and
the software examines the received length. Sending a zero-length packet is performed
differently because no data is transferred through the DMA controller. To send a short packet
of one byte or greater, simply program the DMA controller to send the desired count, after
programming the USB peripheral controller’s DMA mode to 011. In this mode, when the
DMA controller sends the last byte, the packet is sent, even if the USB FIFO is not full.

To send a zero-byte packet in general-purpose DMA mode, you must clear the NOT_ZERO
bit in the xEPCTL register, and then write one byte (of any value) to the endpoint’s FIFO.
Am186™CC/CH/CU Microcontrollers User’s Manual 18-21

Universal Serial Bus (USB)
18.5.6.5 Error Recovery on Bulk and Interrupt Endpoints

When an endpoint is configured as a bulk or interrupt endpoint, data delivered over the
endpoint is guaranteed to be correct, but is not guaranteed to be delivered within any certain
time interval. When DMA is used, device software must intervene when exceptions occur
to guarantee correct data. The following error recovery situations must be considered:

■ SmartDMA channel receive does not require any low-level software intervention if the
USB DMA mode is set to 110 (store status in SmartDMA channel FIFO). Instead, the
higher level software that pulls packets out of the SmartDMA channel FIFO descriptor
ring must examine each FIFO’s status to determine if it was received correctly or not,
and discard FIFOs with errors.

■ If SmartDMA channel receive is used when the USB DMA mode is set to 100 (don’t
store status), then all status processing must be performed by low level software. This
mode is typically used for bulk data if it is desired to receive an entire USB IRP as a
single FIFO. Because the USB hardware is not storing any status in the SmartDMA
channel descriptors, it is up to software to program the USB endpoint to interrupt
whenever an error or a short packet is received. The interrupt handler should then disable
the SmartDMA channel, update the SmartDMA channel descriptor (because some good
data may have been stored before the bad data—the descriptor is updated to point to
where the bad data was received so that it can be overwritten) and the SmartDMA
channel descriptor pointer, re-enable the SmartDMA channel, and then restart the USB
endpoint by clearing the ACT_REQ and interrupt bits. This is a significant amount of
overhead, but the interrupt routine is only executed when an error or an end of packet
occurs, and the higher level software never needs to worry about retrieving bad data
from the FIFO, because the interrupt routine can make sure that all stored data is good
before status is stored.

■ Like SmartDMA channel receive, general-purpose DMA receive can either be performed
per packet or per IRP, depending on whether the USB is programmed to stop on all
packets or just on short packets. If an error occurs, it is up to the software to back the
DMA pointer up to the start of the current packet (using information about where it is
and how much data is still left in the FIFO), and clear the error and the ACT_REQ bit.

■ SmartDMA channel transmit requires the USB to be set to stop on errors. If an error
occurs during transmit, the interrupt handler must disable the SmartDMA channel,
program its FIFO pointer to point back to the failing location, restart the DMA, and then
flush the FIFO and restart the endpoint by clearing the ACT_REQ, NOT_FLUSH, and
error bits. If the SmartDMA channel is being used in buffer-per-packet mode, then only
the SmartDMA channel’s FIFO descriptor pointer needs to be updated, but if the
SmartDMA channel is being used in a buffer-per-IRP mode, then the SmartDMA
channel’s memory pointer must be read, and the actual FIFO descriptor in memory must
be reprogrammed (starting address and length) so that the DMA can be restarted in the
middle of the FIFO. When reprogramming the starting address, the number of bytes that
were transferred from memory to the FIFO before the error occurred must be taken into
account.

■ General-purpose DMA transmit requires that the DMA mode be set to 011, to stop and
interrupt on DMA terminal count. As with the SmartDMA channel, just because a DMA
FIFO has been sent to the host doesn’t mean that it has been successfully delivered.
Interrupts should be enabled for FIFO errors and other errors, and if an error occurs, the
current packet must be resent. If multiple packets are in the FIFO (buffer per IRP), then
the start of the current packet in the FIFO must be calculated by taking into account the
current DMA pointer and the number of bytes that are currently stored in the endpoint's
FIFO. The endpoint's FIFO should be flushed before DMA is restarted.
18-22 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
18.5.6.6 Error Recovery on Isochronous Endpoints

Isochronous data, by definition, is very time-sensitive. Neither PCM highway nor USB have
any mechanism or concept of retransmission of isochronous data. Nevertheless, there are
error-recovery issues with isochronous data. For the intended audio applications, these
primarily revolve around making sure that FIFO pointers do not overlap or drift too far apart.

For example, assume the Am186CC microcontroller’s HDLC controller is storing audio data
in a circular FIFO, and the USB peripheral controller is pulling audio data out of the FIFO.
Because USB operation happens in (nominally) 8 sample bursts, and PCM highway
operation happens one sample at a time, if the FIFO pointers ever overlapped, old data
could be transmitted intermixed with the new data, and the audio would be garbled. Likewise,
if the pointers get too far apart, excessive delay is introduced in the audio.

During normal operation, the pointers should stay a relatively constant distance apart.
However, it is possible to miss a frame’s worth of data on the USB, because isochronous
transfers are not guaranteed. When this occurs, the best that software can do is to adjust
the DMA pointers to keep the error localized as a single glitch in the audio, rather than let
it accumulate and cause excessive delay, or cause garbled audio (by the pointers repeatedly
crossing each other). It is probably also a good idea for a missed OUT transaction for USB
(PCM highway pipes) to inject silence into the FIFO for the duration of the missed
transaction, to minimize the annoyance of the audio glitch.

Adjusting the pointers is very straightforward on a general-purpose DMA circular FIFO (e.g.,
stop the DMA, add a constant to the pointer, and restart the DMA), but is more complicated
on the SmartDMA channel. If a SmartDMA channel is being used for isochronous data, the
simplest thing to do is to set it up so that there are two descriptors in the ring. Each descriptor
points to a portion of the circular FIFO. When a pointer needs to be adjusted, the DMA is
stopped, the current location (low order 16 bits) of the memory pointer is read from the
DMA hardware, a new value is calculated by adding or subtracting the adjustment from the
memory pointer, and the FIFO descriptors are updated so that the next one executed covers
the portion of the FIFO from the new memory pointer to the end of the FIFO, and the other
descriptor covers the portion of the FIFO from the start of the FIFO to the new pointer. Then
the DMA is restarted.

Note that, because such an adjustment could make one FIFO very small (e.g. one byte),
it is important to use the feature that allows DMA OWN bits to be reset. Otherwise, DMA
effectively stops and requires software intervention each time through the FIFOs, and there
is a latency requirement to service both the descriptors within a very short time period.

18.5.7 Isochronous Transfer Synchronization
The isochronous transfer type is required by audio, telephony, or other applications that
need real-time streaming delivery to avoid distortion. The USB configuration process
ensures that the data pipe from the host to an isochronous endpoint has enough bandwidth
to transfer the endpoint's maximum packet size in every frame, but the design must also
synchronize the data so it is delivered at the correct rate.

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 18-23

Universal Serial Bus (USB)
Isochronous synchronization involves converting the data stream from its sample rate (for
example, the 44.1-KHz rate of an audio CD player) into packets delivered at the fixed USB
start-of-frame (SOF) rate of 1 KHz (1000 frames per second). The USB specification defines
three types of isochronous synchronization:

■ Asynchronous: The data sample clock and the USB frame rate are independent of
each other. It is up to the host’s device driver and device software to convert the data
rate as needed. For example, a receiving endpoint’s software (host or device) can provide
feedback so the transmitting endpoint’s software can adjust the amount of isochronous
data sent in each frame.

■ Synchronous: The data sample rate is synchronized with the USB SOF rate so the
same amount of isochronous data can be transmitted in every frame. There are two
ways to achieve this:

– Lock the data source sample clock to the USB SOF rate. For example, a design can
route the microcontroller’s USBSOF output through a PLL to drive the sample clock
of an external codec. For more about the USBSOF signal, see “Isochronous
Synchronization Signals” on page 18-6.

– Request USB master client capability (through the USB driver basic host interface)
and then adjust the USB SOF rate to keep it synchronized with the sample clock. Only
one device can be the master client at a time, so devices that use this method must
be able to operate asynchronously if master client capability is denied.

■ Adaptive: The data sample clock can be freely adjusted to receive or transmit data at
any rate within a given range. The microcontroller’s Auto Rate feature (described in the
following section) allows isochronous IN endpoints to implement adaptive
synchronization with a variety of input sources.

The type of synchronization to use for an isochronous endpoint depends on the design
requirements and capabilities of the peripheral device. All of these synchronization types
make use of USB peripheral controller features described in the following section.

18.5.8 Isochronous Transfer Features
The USB peripheral controller provides full support for the Isochronous transfer type while
minimizing system resource overhead. A USB peripheral device using the Am186CC or
Am186CU microcontroller can easily support the isochronous data transfer in the IN
direction as an asynchronous, synchronous, or adaptive synchronous data source. These
features combined with the other integrated communications devices and DMA controller
allow many different communications and audio devices to be built with this device. The
following microcontroller features are provided to support isochronous transfers:

■ Missing-SOF Detection: The USB peripheral controller implements an adaptive
missing-SOF detection mechanism. A missing SOF packet is detected when the current
USB frame length is six USB bit times greater than the last frame in which a SOF packet
was successfully received.

Hardware indicates a missing SOF by setting the UISTAT2 register’s MS_SOF bit, which
software can enable as an interrupt source by setting the corresponding bit in the
UIMASK2 register.

■ SOF Generation: Whenever an SOF is detected, hardware sets the UISTAT2 register’s
SOF_GEN bit, which software can enable as an interrupt source by setting the
corresponding bit in the UIMASK2 register.
18-24 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
The SOF is also reflected on the controller’s USBSOF output signal, which is used in
the first method (lock the sample clock) of synchronous isochronous synchronization,
as described in “Isochronous Transfer Synchronization” on page 18-23.

If a missing SOF is detected, the USB peripheral controller automatically generates an
internal SOF, which is reflected by the SOF_GEN bit and the USBSOF signal. This allows
synchronous isochronous endpoints to remain locked to the USB clock even when the
SOF packet is corrupted on the bus.

■ USB Frame Position Monitoring: This allows the device software to detect any
difference between the sample rate of a data source and the USB frame rate. This is
required for an Isochronous IN endpoint that uses the second method (request USB
master client capability) for synchronous isochronous synchronization, as described in
“Isochronous Transfer Synchronization” on page 18-23.

In the Am186CC microcontroller, the SAM_CLK_SEL field in the ISCTL register can
select a sample rate clock source: either the USBSCI signal (on the UCLK pin) or the
frame synchronization signal used for HDLC Channel A, PCM Highway, and GCI.

During each USB frame, the FPMCNT register latches the USB frame position bit counter
after a specific number of source clocks are counted on the sample input. The value
latched in the FPMCNT register is the number of USB bit times counted during the source
clock interval specified in the BCNT_LRATE field of the ISCTL register (1–64 source
clocks, programmable in powers of two). Device software can compare these two values
to determine whether the USB frame rate and the source sample clock are moving
relative to each other.

If the device is granted master client capability, it is able to use the USB Device basic
host interface (defined in the USB specification) to gradually increase or decrease the
USB SOF rate to correct any drift with respect to the data source’s sample rate.

Whenever FPMCNT is updated, hardware sets the UISTAT2 register’s POS_UP bit,
which software can enable as an interrupt source by setting the corresponding bit in the
UIMASK2 register.

■ Auto Rate: This allows the designer to implement adaptive synchronization on an
isochronous IN endpoint using general-purpose DMA or SmartDMA to handle an
arbitrary data source rate. The Auto Rate feature uses the data source’s sample rate
clock (frame rate) as an input to automatically control the number of data bytes sent to
the USB host during each transaction.

In the Am186CC microcontroller, the SAM_CLK_SEL field in the ISCTL register can
select a sample rate clock source: either the USBSCI signal (on the UCLK pin) or the
frame synchronization clock (FSC) signal used for HDLC Channel A, PCM Highway, and
GCI.

The BYTES_SAM field in ISCTL sets the number of bytes to move per source clock
sample (1, 2, or 4 bytes). Also make sure that the Max Packet Size programmed for the
endpoint is greater than or equal to the largest number of data bytes that the endpoint
might need to move during a USB transaction.

After the sample clock source and bytes per sample are selected, set the
AUTO_RATE_EN bit in the xEPDEF3 register (where x = A, B, C, or D) to enable auto
rate for the endpoint.

CC

CC
Am186™CC/CH/CU Microcontrollers User’s Manual 18-25

Universal Serial Bus (USB)
The specified number of bytes is transferred on each sample clock as long as data is
present in the endpoint’s FIFO, or is sequentially written to the FIFO as needed during
the transaction.

■ Start of Frame and Frame Number Monitoring: The USB peripheral controller
monitors the USB SOF packet and latches the frame number value into the Time Stamp
(TSTMP) register upon successfully receiving the SOF packet from the USB host.

Software can arm the Time Stamp Match (TSTMPM) register by writing a specific USB
frame number to it. Then, when the USB peripheral controller receives an SOF packet
with a number greater or equal to the written value, hardware sets the UISTAT2 register’s
TSTMP_M bit, which software can enable as an interrupt by setting the corresponding
bit in UIMASK2. The interrupt does not occur again until TSTMP_M is cleared in UISTAT2
and TSTMPM is written again.

This mechanism allows software to start a certain data pattern during a specific USB
frame, if required. This feature can be used for asynchronous USB data sources using
implicit data pattern generation.

18.5.9 Command Handling
The primary function of the device’s control endpoint is to accept and respond to commands
issued to it by the USB host. All of the USB standard, device class, and vendor specific
commands are issued to the control endpoint known as the device endpoint 0. The USB
peripheral controller hardware handles some of these commands without requiring that the
device software decode and specifically “handle” the command. Other commands are
received from the USB host and passed on to the device software for processing. These
commands and how they are handled are outlined in the following sections.

18.5.9.1 Commands Handled by Device Software

Table 18-5 on page 18-27 describes the commands that must be handled by the device
software.

When any command is received by the USB peripheral controller, hardware sets the
NEW_COMMAND bit in the CNTCTL register. If the device software must take some action,
the ACT_REQ bit is also set in the affected endpoint’s xEPCTL register.

The NEW_COMMAND bit and all of the ACT_REQ bits have mirror bits in the UISTAT1
register. (A mirror bit is set whenever the corresponding status bit is set.) Each mirror bit
can be enabled as an interrupt source by setting the corresponding bit in the UIMASK1
register.

The software is then required to decode the command data and either:

■ Accept subsequent data associated with the command (for OUT commands). When it
is finished handling an OUT command, software must clear the COMMAND_BUSY bit
in the CNTCTL register to indicate that it is ready to process more commands.

■ Return the appropriate data requested in the command (for IN commands). The USB
peripheral controller hardware automatically clears the COMMAND_BUSY bit in the
CNTCTL register when it finishes transmitting the requested data.

All of the low-level USB protocol processing is handled entirely in hardware (that is, all
handshake packets are accepted from or returned to the USB host automatically).
18-26 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
.

18.5.9.2 Commands Handled by the USB Peripheral Controller Hardware

Table 18-6 on page 18-28 describes the commands that do not require device software
handling. When these commands are detected by the USB peripheral controller, they are
handled entirely in hardware. The device software does have the ability to detect the
reception of any USB setup packet sent to it by the USB host, but it cannot monitor the
specific setup packet type when the command is handled solely by the controller hardware.

Table 18-5 USB Commands Handled by Device Software

Command
Parameters and
Data Passed

Data
Direction

Results

GET_DESCRIPTOR
Device, Configuration,
or String Descriptor

IN

The device software, upon detecting this
command, should return all of the data associated
with the particular descriptor that was requested.
Because this controller allows the endpoint
parameters to be programmed at any time, an un-
limited number of descriptors can be supported.

SET_CONFIGURATION Device Configuration OUT

The device software, upon detecting this
command, should configure all of the endpoints
with the applicable USB parameters based on the
descriptor information that was passed to the host
during the GET_DESCRIPTOR command.

SET_INTERFACE
Interface Alternate
Setting

OUT

The device software, upon detecting this
command, should configure the endpoints
associated with the specified interface, for the
requested alternate setting, based on the
descriptor information that was passed to the host
during the GET_DESCRIPTOR command.

SET_DESCRIPTOR
Device, Configuration,
String, Interface, or
Endpoint Descriptor

OUT
The device software, upon detecting this
command, should accept a new descriptor from
the USB host.

SYNC_FRAME Synchronization Frame IN

The device software, upon detecting this
command, should return the frame number in
which an isochronous, IN endpoint begins its data
pattern.

Device Class or
Vendor Specific

Various
IN and
OUT

The device software should service the
commands that it has been programmed to
handle. If the device software does not recognize
a particular command it should clear the
EP_NOT_STALLED bit in the CNTCTL register to
direct the controller hardware to return the stalled
handshake in the data stage. (The
NEW_COMMAND bit must be cleared at the
same time, or clearing the EP_NOT_STALLED bit
has no effect.)
Am186™CC/CH/CU Microcontrollers User’s Manual 18-27

Universal Serial Bus (USB)

18.5.10 Command Protocol
As a slave device, the Am186CC or Am186CU microcontroller must always be prepared
to let the USB master send a new SETUP packet. In other words, software could be
processing a command, and the host could send a new command without warning. The
software should stop working on the old command and deal with the new one immediately.
In practice, it is impossible to arbitrarily stop a program at any point like this. For example,
the software could have been writing out a response to the previous command, and stopping
it at a precise moment is very difficult.

The NEW_COMMAND interlock bit allows the hardware to ignore the software during time
periods when the software is still in the middle of processing a previous command.

During processing of a command, the ACT_REQ bit is “politely” bounced back and forth
between hardware and software. For setup and control write packets (data from the host),
hardware sets the ACT_REQ bit to indicate that the host has filled the FIFO. software then
clears the ACT_REQ bit to indicate that it has drained the FIFO. For control read packets,

Table 18-6 USB Commands Handled by USB Peripheral Controller Hardware

Command
Parameters and
Data Passed

Data
Direction

Results

SET_ADDRESS Device’s USB address OUT
Device stores the address assigned to it by the
USB host.

SET_FEATURE
Device Remote Wake-up,
or Endpoint Stall

OUT

The device’s remote wake up feature is enabled
(or)
A particular endpoint is forced to be stalled. If
the specified endpoint is not configured, the
device returns the stalled handshake to the host
during the status stage.

CLEAR_FEATURE
Device Remote Wake-up,
or Endpoint Stall

OUT

The device’s remote wake-up feature is
disabled (or)
A particular endpoint is forced to be un-stalled.
If the specified endpoint is not configured, the
device returns the stalled handshake to the host
during the status stage.

GET_STATUS
Device Self Powered,
Device Remote Wake-up,
or Endpoint Stall Status

IN

The device’s programmable Self Powered bit is
returned to the USB host as a value of 1 or 0,
indicating that the device is self-powered or
bus-powered.
The Remote Wake up bit is returned with a
value that depends on whether the remote
wake up feature was last set or cleared.
A particular endpoint’s stall status is returned
to the USB host. If the specified endpoint is not
configured, the device returns the stalled
handshake to the host during the status stage.

GET_CONFIGURATION
Device’s current
configuration

IN
The current device configuration number is
returned to the USB host.

GET_INTERFACE
Interface’s current
selected alternate setting

IN

The currently selected alternate setting for the
interface number that is specified in this
command is returned to the USB host. If the
specified interface is not present, the device
returns the stalled handshake to the host during
the status stage.
18-28 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
software clears the ACT_REQ bit when it has filled the FIFO with information to go to the
host, and hardware sets the ACT_REQ bit after the information has safely made it to the
host.

The host can send a new command at any time, so the NEW_COMMAND bit provides a
somewhat less “polite” method for the hardware to inform the software of who “owns” the
FIFO. When a SETUP packet is detected (before it is written to the FIFO), the hardware
clears the ACT_REQ bit, and sets the NEW_COMMAND bit, to show that the hardware
“stole” ownership from the software.

Because the software could be busy trying to update the FIFO and/or the ACT_REQ,
EP_NOT_STALLED, or COMMAND_BUSY bits, the host locks out accesses to the FIFO
and these bits whenever NEW_COMMAND is set. Attempts by software to read or write
the FIFO, or to alter these bits, fail silently.

When a command is received that software must handle, it is stored in the FIFO and then
the ACT_REQ bit is set to indicate that the FIFO contains valid data.

18.5.10.1 Data Transfer Using the Control Endpoint

The control endpoint can transfer data, but there are several potential problems.

At the end of control read data transfers, it is impossible for the software to know whether
the host accepted the most recent data sent, or whether it sent the status stage before
accepting the data. For USB commands, it is not an error for the host to terminate a
command early. For example, it can ask to read descriptors, and enter the status phase
before it has finished reading all the descriptors. This is problematic for data transfers, and
the only real way around it is for the host to transmit information in the SETUP packet that
describes where in the data stream it wishes to start reading.

At the end of control write data transfers, it is impossible for the software to know whether
the device successfully completed the status phase, or whether a new setup packet aborted
the status phase. As with the control read problem, this problem can be alleviated by the
host sending information in the command packet about where in the data stream this write
should start.

18.5.10.2 Control Endpoint Interrupts

The ACT_REQ bit and the NEW_COMMAND bit are reflected in the UISTAT1 register as
the CNT_EP_ACT and CNT_EP_NEW bits. Software can mask off these interrupts in the
UIMASK1 register. Most applications use only the CNT_EP_ACT interrupt, but some
applications may find it advantageous to use the CNT_EP_NEW interrupt. This interrupt is
useful if the system spawns a new task to deal with data transactions. In this case, the
software could use a CNT_EP_NEW interrupt to spawn the task dealing with the aborted
command.

18.5.11 Interrupt Endpoint Programming
The microcontroller's USB interface contains one interrupt endpoint. The purpose of an
interrupt endpoint is to allow small amounts of data to be transferred from the device to the
host. According to section 4.7.3 of the USB Specification, “A small, spontaneous data
transfer from a device is referred to as interrupt data. Such data can be presented for transfer
by a device at any time, and is delivered by the USB at a rate no slower than as is specified
by the device. Interrupt data typically consists of event notification, characters, or
coordinates that are organized as one or more bytes. An example of interrupt data is the
coordinates from a pointing device. Although an explicit timing rate is not required,
interactive data may have response time bounds that the USB must support.”
Am186™CC/CH/CU Microcontrollers User’s Manual 18-29

Universal Serial Bus (USB)
18.5.11.1 USB Command Processing and the Interrupt Endpoint

When a SET_CONFIGURATION or SET_INTERFACE command is received, software
must reprogram the Interrupt Endpoint Definition registers (if necessary) to reflect the new
configuration and alternate interface setting. Also, the descriptor relating to the interrupt
endpoint (which is returned to a host GET_DESCRIPTOR request) must contain the correct
maximum packet size (8 or 16 bytes) and Interval value (1-ms to 255-ms interrupt rate).

18.5.11.2 Data Transfer with the Interrupt Endpoint

The interrupt endpoint can be used in two different ways. If the amount of data to be
transferred on each interrupt is less than or equal to the maximum packet size, each packet
sent to the host constitutes an entire transaction. If the amount of data to be transferred on
each interrupt exceeds the maximum packet size, an interrupt can consist of multiple
packets. In this case, each packet except the last one must be MaxPacketSize bytes.
Transferring a number of bytes between 0 and MaxPacketSize – 1 (inclusive) denotes the
end of the transaction. If a large number of bytes are to be transferred on each interrupt, it
is strongly suggested that the maximum packet size be set to 16, because this makes more
efficient use of the USB bandwidth than a setting of 8.

18.5.11.3 Interrupt Endpoint Interrupts

The ACT_REQ bit is reflected in the UISTAT1 register as the INT_EP_ACT bit. Software
can mask off this interrupt in the UIMASK1 register.

18.5.12 Endpoint Definitions
The USB specification provides for endpoints to be grouped into interfaces. Multiple
interfaces that do not share endpoints can be grouped into configurations, and a device
can have multiple configurations, only one of which can be in use at any one time. In the
Am186CC and Am186CU microcontrollers, software assigns each of the endpoints (other
than the control endpoint, which has a number of 0 and appears in every interface) an
endpoint number, interface number, configuration number, alternate setting number, Max
Packet Size, and direction.

The USB Specification, Version 1.0 defines the endpoint configuration process:

“Host software should only set configuration and interface values that match a device
descriptor returned by the device in response to a GET_DESCRIPTOR command.
However, the USB hardware accepts as valid any configuration or feature setting in the
range of 0d to 3d, regardless of the available descriptors. To help ensure reliable operation
in any USB environment, device software can define a minimal descriptor (i.e., Endpoint 0
with no bandwidth allocation) for any configuration and interface settings that it does not
define otherwise.”

18.5.12.1 Control Endpoint Definition

The control endpoint features are not programmable as are the other endpoints. This
endpoint is common to, and is required by, all USB device class specifications. Table 18-7
lists the control endpoint parameters.

The control endpoint (endpoint 0) is always considered to be a member of all device
configurations, a member of all interfaces present in a device configuration, and a member
of all alternate settings of any given interface.
18-30 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
18.5.12.2 Interrupt Endpoint Definition

The Am186CC and Am186CU microcontrollers each provide one dedicated interrupt
endpoint. Typically, all of the USB Device Class specifications require that a USB device
contain at least one interrupt endpoint. The USB host uses this endpoint, in conjunction
with the device’s control endpoint, to process class-specific transactions and to generally
service specific device requests when required.

The interrupt endpoint features are highly programmable. Device software can modify these
features at any time in response to the various commands issued to the device’s control
endpoint. The USB host can make these requests during the device enumeration process
or at any other time during the device operation. Table 18-8 lists the interrupt endpoint
features.

Table 18-7 Control Endpoint Definition

Parameter Value

USB Parameters

Number 0

Configuration All

Interface All

Alternate Setting All

Type Control

Maximum Packet Size Eight bytes

System Parameters

Data Handling Polled I/O or interrupt driven

FIFO Depth Eight bytes

Table 18-8 Interrupt Endpoint Definition

Parameter Value

USB Parameters

Number 1–15

Configuration 0–3

Interface 0–3

Direction IN (to host only)

Alternate Setting 0–7

Type Interrupt

Max Packet Size 8 or 16 bytes

System Parameters

Data Handling Polled I/O or interrupt driven

FIFO Depth 16 bytes
Am186™CC/CH/CU Microcontrollers User’s Manual 18-31

Universal Serial Bus (USB)
18.5.12.3 Data Endpoint Definition

The Am186CC and Am186CU microcontrollers each provide four general-purpose data
endpoints. These endpoints transfer large amounts of data between the USB host and
device using either the USB bulk, isochronous, or interrupt transfer protocols. Note that if
the data endpoint is programmed for interrupt transfer, the DMA mode is not applicable.
Typically, all of the USB Device Class specifications require that a USB device contain any
number and type of data endpoints to transfer the various data types required by the device
class.

The data endpoint features are highly programmable. Device software can modify these
features at any time in response to the various commands issued to the device’s control
endpoint. Table 18-9 lists the data endpoint features.

Table 18-9 Data Endpoints A–D Definition

Parameter Values

USB Parameters

Number 1–15

Configuration 0–3

Interface 0–3

Alternate Setting 0–7

Direction
(Endpoints A and C)

IN or OUT

OUT

Direction
(Endpoints B and D)

IN

Type
Interrupt,
Bulk, or

Isochronous
Bulk Isochronous Bulk Isochronous

Max. Packet Size
(Endpoints A and B)

1–16 bytes
(8 or 16 for

bulk)

8, 16, 32, or
64 bytes

1–1023

bytes1

Notes:
1. A 24-MHz processor clock is not fast enough for software to keep up with 1023-byte isochronous
IN or OUT packets using only an 8, 16, or 32-byte FIFO. If a 24-MHz processor clock is used and a
Max Packet Size of 1023 bytes is required for isochronous data, use endpoint C or D and set the
FIFO size to 64 bytes.

8, 16, 32, or
64 bytes

1–1023

bytes1

Max. Packet Size
(Endpoints C and D)

1–64 bytes
(8 16, 32, or
64 for bulk)

8, 16, 32, or
64 bytes

1–1023
bytes

8, 16, 32, or
64 bytes

1–1023
bytes

System Parameters

Data Handling
Polled I/O
or Interrupt

Driven
General-Purpose DMA SmartDMA Channel

FIFO Depth
(Endpoints A and B)

8 or 16 bytes

FIFO Depth
(Endpoints C and D)

8, 16, 32, or 64 bytes
18-32 Am186™CC/CH/CU Microcontrollers User’s Manual

Universal Serial Bus (USB)
18.5.13 Software-Related Considerations
■ A data endpoint must be configured with the xEPDEFx register before enabling it with

the EP_EN bit in the xEPCTL register.

■ When the MODE bit field in the xEPDEF3 register is set to 101b (SmartDMA channel,
status stored in the buffer descriptor), a bulk OUT transfer that results in a retransmission
of data by the host due to handshake packet errors produces the following buffer
descriptor field values: STP = 1, ENP = 1, and CRC = 1. The MCNT value in the buffer
descriptor is invalid because setting the CRC bit causes the ERR bit to be set as well.

Also, when the MODE bit field is set to 101b, a bulk or isochronous OUT transfer with a
message size that is an integer multiple of the maximum packet size results in the
following buffer descriptor field values: STP = 1, ENP = 1, and MCNT = 0.

18.6 INITIALIZATION
On both an external and internal reset, the following occurs:

■ All USB interrupts are cleared and masked.

■ The USB peripheral controller reports that it is self-powered (S_POWER bit of the
USBMFR register is set).

■ The interrupt endpoint number is set to 1.

■ The interrupt endpoint FIFO defaults to 16 bytes deep.

■ The interrupt endpoint maximum packet size is set to 16d.

■ The A, B, C, and D endpoints default to OUT direction, bulk type, with a maximum packet
size of 8 bytes.

■ The A and B endpoint FIFOs default to 16 bytes deep.

■ The C and D endpoint FIFOs default to 64 bytes deep.

■ The Isochronous Missed Packet and Full Data Packet interrupts are unmasked.
Am186™CC/CH/CU Microcontrollers User’s Manual 18-33

Universal Serial Bus (USB)
18-34 Am186™CC/CH/CU Microcontrollers User’s Manual

APPENDIX
A
 REGISTER SUMMARY
Table A-1 on page A-2 provides a summary of all the Am186CC/CH/CU microcontrollers’
peripheral control block (PCB) registers, listed in offset order. The table includes the
following information for each register:

■ Abbreviated name

■ Register description page number

■ Relative offset from the PCB base (set in RELOC)

■ Default location in I/O space (equal to the default PCB base of FC00h plus the register’s
relative offset)

■ Default value at reset

■ Bit and field names and layout

An “x” in the default value column denotes a digit for which the default value is not defined.
A “?” indicates that the digit’s value depends on external inputs. If a digit contains both
undefined and external input bits, a “?” is used.

If more than one default value is given for a register, it contains one or more bits with
undefined defaults. In this case either value might be present.

If a group of registers is not supported on all the Am186CC/CH/CU microcontrollers, the
group heading indicates the controllers that support that group of registers. An exclamation
point (!) following a specific bit or register name indicates that additional controller-specific
information can be found in the individual register or bit description.
Am186™CC/CH/CU Microcontrollers User’s Manual A-1

R
eg

ister S
u

m
m

ary

A
-2

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual

3 2 1 0

SM LOOPR LOOPL CRCTYPE

EN IMSTART CRCDIS LBREAD LBNOW

TDELAY

EN MINRL

RS ABORTS MARKIS FLAGS FRAMES

RST CTSLST TUFLO TGOODF TSTOP

RST CTSLST TUFLO TGOODF TSTOP

LO ABORTE MARKIE FLAGE FRAMEE

LO ABORTE MARKIE FLAGE FRAMEE

TDATA

RDATA

BCNT[7–0]

BCNT[15–8]

MTCH FABORT FLONG FSHORT

RDATA

3 2 1 0

for controller-specific details.
Table A-1 Am186CC/CH/CU Microcontrollers Register Summary

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

HDLC Channel A Registers

HACON 00h FC00h 0000h Res HRESET Res NRZI TRAN

HATCON0 02h FC02h 0000h Res TTHRSH Res TFIFOEN FORABR HT

HATCON1 04h FC04h 0000h Res FLAGIDL MLTDRP AUTOCTS TMSBF TXCINV GCIDEN ODRV

HARCON0 06h FC06h 0000h Res RTHRSH RCPST RMSBF RXCINV RREJECT RSTOP HR

HARCON1 08h FC08h 0000h MAXRL

HASTATE 0Ah FC0Ah 0010h
0030h

Res CTSS RT

HAISTAT0 0Ch FC0Ch 0000h Res REOF RTHRES RDATA1 TTHRES TDATA1 Res FAB

HAIMSK0 0Eh FC0Eh 0000h Res REOF RTHRES RDATA1 TTHRES TDATA1 Res FAB

HAISTAT1 10h FC10h 0000h Res MAMC SFMC SHORT VSHORT RTRDES ROF

HAIMSK1 12h FC12h 0000h Res MAMC SFMC SHORT VSHORT RTRDES ROF

HATD 14h FC14h 00xxh Res

HARD 16h FC16h 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1

HARFS1 (16h) (FC16h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 F

HARFS2 (16h) (FC16h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 F

HARFS3 (16h) (FC16h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 FRAM FOFLO CRCE

HARDP 18h FC18h 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1

HASFCNT 1Ah FC1Ah 0000h HSFCNT

HASFCNTP 1Ch FC1Ch 0000h HSFCNTP

HAMACNT 1Eh FC1Eh 0000h HMACNT

HAMACNTP 20h FC20h 0000h HMACNTP

HAA0 22h FC22h 0000h HA

HAA0MSK 24h FC24h 0000h HAMSK

HAA1 26h FC26h 0000h HA

HAA1MSK 28h FC28h 0000h HAMSK

HAA2 2Ah FC2Ah 0000h HA

HAA2MSK 2Ch FC2Ch 0000h HAMSK

HAA3 2Eh FC2Eh 0000h HA

HAA3MSK 30h FC30h 0000h HAMSK

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

CC CH

R
eg

ister S
u

m
m

ary

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual
A

-3

SM LOOPR LOOPL CRCTYPE

EN IMSTART CRCDIS LBREAD LBNOW

TDELAY

EN MINRL

RS ABORTS MARKIS FLAGS FRAMES

RST CTSLST TUFLO TGOODF TSTOP

RST CTSLST TUFLO TGOODF TSTOP

LO ABORTE MARKIE FLAGE FRAMEE

LO ABORTE MARKIE FLAGE FRAMEE

TDATA

RDATA

BCNT[7–0]

BCNT[15–8]

MTCH FABORT FLONG FSHORT

RDATA

3 2 1 0

3 2 1 0

for controller-specific details.
HDLC Channel B Registers

HBCON 40h FC40h 0000h Res HRESET Res NRZI TRAN

HBTCON0 42h FC42h 0000h Res TTHRSH Res TFIFOEN FORABR HT

HBTCON1 44h FC44h 0000h Res FLAGIDL MLTDRP AUTOCTS TMSBF TXCINV GCIDEN ODRV

HBRCON0 46h FC46h 0000h Res RTHRSH RCPST RMSBF RXCINV RREJECT RSTOP HR

HBRCON1 48h FC48h 0000h MAXRL

HBSTATE 4Ah FC4Ah 0010h
0030h

Res CTSS RT

HBISTAT0 4Ch FC4Ch 0000h Res REOF RTHRES RDATA1 TTHRES TDATA1 Res FAB

HBIMSK0 4Eh FC4Eh 0000h Res REOF RTHRES RDATA1 TTHRES TDATA1 Res FAB

HBISTAT1 50h FC50h 0000h Res MAMC SFMC SHORT VSHORT RTRDES ROF

HBIMSK1 52h FC52h 0000h Res MAMC SFMC SHORT VSHORT RTRDES ROF

HBTD 54h FC54h 00xxh Res

HBRD 56h FC56h 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1

HBRFS1 (56h) (FC56h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 F

HBRFS2 (56h) (FC56h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 F

HBRFS3 (56h) (FC56h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 FRAM FOFLO CRCE

HBRDP 58h FC58h 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1

HBSFCNT 5Ah FC5Ah 0000h HSFCNT

HBSFCNTP 5Ch FC5Ch 0000h HSFCNTP

HBMACNT 5Eh FC5Eh 0000h HMACNT

HBMACNTP 60h FC60h 0000h HMACNTP

HBA0 62h FC62h 0000h HA

HBA0MSK 64h FC64h 0000h HAMSK

HBA1 66h FC66h 0000h HA

HBA1MSK 68h FC68h 0000h HAMSK

HBA2 6Ah FC6Ah 0000h HA

HBA2MSK 6Ch FC6Ch 0000h HAMSK

HBA3 6Eh FC6Eh 0000h HA

HBA3MSK 70h FC70h 0000h HAMSK

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

CC CH

R
eg

ister S
u

m
m

ary

A
-4

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual

SM LOOPR LOOPL CRCTYPE

EN IMSTART CRCDIS LBREAD LBNOW

TDELAY

EN MINRL

RS ABORTS MARKIS FLAGS FRAMES

RST CTSLST TUFLO TGOODF TSTOP

RST CTSLST TUFLO TGOODF TSTOP

LO ABORTE MARKIE FLAGE FRAMEE

LO ABORTE MARKIE FLAGE FRAMEE

TDATA

RDATA

BCNT[7–0]

BCNT[15–8]

MTCH FABORT FLONG FSHORT

RDATA

3 2 1 0

3 2 1 0

for controller-specific details.
HDLC Channel C Registers

HCCON 80h FC80h 0000h Res HRESET Res NRZI TRAN

HCTCON0 82h FC82h 0000h Res TTHRSH Res TFIFOEN FORABR HT

HCTCON1 84h FC84h 0000h Res FLAGIDL MLTDRP AUTOCTS TMSBF TXCINV GCIDEN ODRV

HCRCON0 86h FC86h 0000h Res RTHRSH RCPST RMSBF RXCINV RREJECT RSTOP HR

HCRCON1 88h FC88h 0000h MAXRL

HCSTATE 8Ah FC8Ah 0010h
0030h

Res CTSS RT

HCISTAT0 8Ch FC8Ch 0000h Res REOF RTHRES RDATA1 TTHRES TDATA1 Res FAB

HCIMSK0 8Eh FC8Eh 0000h Res REOF RTHRES RDATA1 TTHRES TDATA1 Res FAB

HCISTAT1 90h FC90h 0000h Res MAMC SFMC SHORT VSHORT RTRDES ROF

HCIMSK1 92h FC92h 0000h Res MAMC SFMC SHORT VSHORT RTRDES ROF

HCTD 94h FC94h 00xxh Res

HCRD 96h FC96h 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1

HCRFS1 (96h) (FC96h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 F

HCRFS2 (96h) (FC96h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 F

HCRFS3 (96h) (FC96h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 FRAM FOFLO CRCE

HCRDP 98h FC98h 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1

HCSFCNT 9Ah FC9Ah 0000h HSFCNT

HCSFCNTP 9Ch FC9Ch 0000h HSFCNTP

HCMACNT 9Eh FC9Eh 0000h HMACNT

HCMACNTP A0h FCA0h 0000h HMACNTP

HCA0 A2h FCA2h 0000h HA

HCA0MSK A4h FCA4h 0000h HAMSK

HCA1 A6h FCA6h 0000h HA

HCA1MSK A8h FCA8h 0000h HAMSK

HCA2 AAh FCAAh 0000h HA

HCA2MSK ACh FCACh 0000h HAMSK

HCA3 AEh FCAEh 0000h HA

HCA3MSK B0h FCB0h 0000h HAMSK

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

CC

R
eg

ister S
u

m
m

ary

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual
A

-5

SM LOOPR LOOPL CRCTYPE

EN IMSTART CRCDIS LBREAD LBNOW

TDELAY

EN MINRL

RS ABORTS MARKIS FLAGS FRAMES

RST CTSLST TUFLO TGOODF TSTOP

RST CTSLST TUFLO TGOODF TSTOP

LO ABORTE MARKIE FLAGE FRAMEE

LO ABORTE MARKIE FLAGE FRAMEE

TDATA

RDATA

BCNT[7–0]

BCNT[15–8]

MTCH FABORT FLONG FSHORT

RDATA

3 2 1 0

3 2 1 0

for controller-specific details.
HDLC Channel D Registers

HDCON C0h FCC0h 0000h Res HRESET Res NRZI TRAN

HDTCON0 C2h FCC2h 0000h Res TTHRSH Res TFIFOEN FORABR HT

HDTCON1 C4h FCC4h 0000h Res FLAGIDL MLTDRP AUTOCTS TMSBF TXCINV GCIDEN ODRV

HDRCON0 C6h FCC6h 0000h Res RTHRSH RCPST RMSBF RXCINV RREJECT RSTOP HR

HDRCON1 C8h FCC8h 0000h MAXRL

HDSTATE CAh FCCAh 0010h
0030h

Res CTSS RT

HDISTAT0 CCh FCCCh 0000h Res REOF RTHRES RDATA1 TTHRES TDATA1 Res FAB

HDIMSK0 CEh FCCEh 0000h Res REOF RTHRES RDATA1 TTHRES TDATA1 Res FAB

HDISTAT1 D0h FCD0h 0000h Res MAMC SFMC SHORT VSHORT RTRDES ROF

HDIMSK1 D2h FCD2h 0000h Res MAMC SFMC SHORT VSHORT RTRDES ROF

HDTD D4h FCD4h 00xxh Res

HDRD D6h FCD6h 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1

HDRFS1 (D6h) (FCD6h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 F

HDRFS2 (D6h) (FCD6h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 F

HDRFS3 (D6h) (FCD6h) 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1 FRAM FOFLO CRCE

HDRDP D8h FCD8h 00xxh STAT1A STAT0A STATNUM RTHRES RDATA1 TTHRES TDATA1

HDSFCNT DAh FCDAh 0000h HSFCNT

HDSFCNTP DCh FCDCh 0000h HSFCNTP

HDMACNT DEh FCDEh 0000h HMACNT

HDMACNTP E0h FCE0h 0000h HMACNTP

HDA0 E2h FCE2h 0000h HA

HDA0MSK E4h FCE4h 0000h HAMSK

HDA1 E6h FCE6h 0000h HA

HDA1MSK E8h FCE8h 0000h HAMSK

HDA2 EAh FCEAh 0000h HA

HDA2MSK ECh FCECh 0000h HAMSK

HDA3 EEh FCEEh 0000h HA

HDA3MSK F0h FCF0h 0000h HAMSK

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

CC

R
eg

ister S
u

m
m

ary

A
-6

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual

DSEL !

DINC

DSA[19–16]

DDA[19–16]

DSEL !

DINC

DSA[19–16]

DDA[19–16]

DSEL !

DINC

DSA[19–16]

DDA[19–16]

DSEL !

DINC

DSA[19–16]

DDA[19–16]

3 2 1 0

3 2 1 0

for controller-specific details.
General-Purpose DMA Channel 0 Registers

GD0CON0 100h FD00h 0000h ST AST TC INT Res P Res TS Res

GD0CON1 102h FD02h 0000h SM/IO SAW SINC DM/IO DAW

GD0SRCL 104h FD04h 0000h DSA[15–0]

GD0SRCH 106h FD06h 0000h Res

GD0DSTL 108h FD08h 0000h DDA[15–0]

GD0DSTH 10Ah FD0Ah 0000h Res

GD0TC 10Ch FD0Ch 0000h TC

General-Purpose DMA Channel 1 Registers

GD1CON0 110h FD10h 0000h ST AST TC INT Res P Res TS Res

GD1CON1 112h FD12h 0000h SM/IO SAW SINC DM/IO DAW

GD1SRCL 114h FD14h 0000h DSA[15–0]

GD1SRCH 116h FD16h 0000h Res

GD1DSTL 118h FD18h 0000h DDA[15–0]

GD1DSTH 11Ah FD1Ah 0000h Res

GD1TC 11Ch FD1Ch 0000h TC

General-Purpose DMA Channel 2 Registers

GD2CON0 120h FD20h 0000h ST AST TC INT Res P Res TS Res

GD2CON1 122h FD22h 0000h SM/IO SAW SINC DM/IO DAW

GD2SRCL 124h FD24h 0000h DSA[15–0]

GD2SRCH 126h FD26h 0000h Res

GD2DSTL 128h FD28h 0000h DDA[15–0]

GD2DSTH 12Ah FD2Ah 0000h Res

GD2TC 12Ch FD2Ch 0000h TC

General-Purpose DMA Channel 3 Registers

GD3CON0 130h FD30h 0000h ST AST TC INT Res P Res TS Res

GD3CON1 132h FD32h 0000h SM/IO SAW SINC DM/IO DAW

GD3SRCL 134h FD34h 0000h DSA[15–0]

GD3SRCH 136h FD36h 0000h Res

GD3DSTL 138h FD38h 0000h DDA[15–0]

GD3DSTH 13Ah FD3Ah 0000h Res

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

R
eg

ister S
u

m
m

ary

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual
A

-7

POLL Res TXST RXST

Res TRC

TRA[19–16]

Res RRC

RRA[19–16]

Res

CTBD

POLL Res TXST RXST

Res TRC

TRA[19–16]

Res RRC

RRA[19–16]

Res

CTBD

POLL DSEL ! TXST RXST

Res TRC

TRA[19–16]

Res RRC

RRA[19–16]

Res

CTBD

3 2 1 0

3 2 1 0

for controller-specific details.
GD3TC 13Ch FD3Ch 0000h TC

SmartDMA Channel Pair 0 Registers

SD0CON 140h FD40h 0000h Res TEPI TBUI TTCI REPI RBUI RTCI TXSO RXSO P

SD0TRCAL 142h FD42h 0000h TRA[15–4]

SD0TRAH 144h FD44h 0000h Res

SD0RRCAL 146h FD46h 0000h RRA[15–4]

SD0RRAH 148h FD48h 0000h Res

SD0STAT 14Ah FD4Ah 0000h Res TEP TBU TTC REP RBU RTC

SD0CBD 14Ch FD4Ch 0000h Res CRBD Res

SD0CTAD 14Eh FD4Eh 0000h CTAD

SD0CRAD 150h FD50h 0000h CRAD

SmartDMA Channel Pair 1 Registers

SD1CON 158h FD58h 0000h Res TEPI TBUI TTCI REPI RBUI RTCI TXSO RXSO P

SD1TRCAL 15Ah FD5Ah 0000h TRA[15–4]

SD1TRAH 15Ch FD5Ch 0000h Res

SD1RRCAL 15Eh FD5Eh 0000h RRA[15–4]

SD1RRAH 160h FD60h 0000h Res

SD1STAT 162h FD62h 0000h Res TEP TBU TTC REP RBU RTC

SD1CBD 164h FD64h 0000h Res CRBD Res

SD1CTAD 166h FD66h 0000h CTAD

SD1CRAD 168h FD68h 0000h CRAD

SmartDMA Channel Pair 2 Registers

SD2CON 170h FD70h 0000h Res TEPI TBUI TTCI REPI RBUI RTCI TXSO RXSO P

SD2TRCAL 172h FD72h 0000h TRA[15–4]

SD2TRAH 174h FD74h 0000h Res

SD2RRCAL 176h FD76h 0000h RRA[15–4]

SD2RRAH 178h FD78h 0000h Res

SD2STAT 17Ah FD7Ah 0000h Res TEP TBU TTC REP RBU RTC

SD2CBD 17Ch FD7Ch 0000h Res CRBD Res

SD2CTAD 17Eh FD7Eh 0000h CTAD

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

CC CH

CC CH

CC CU

R
eg

ister S
u

m
m

ary

A
-8

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual

POLL DSEL ! TXST RXST

Res TRC

TRA[19–16]

Res RRC

RRA[19–16]

Res

CTBD

P_
T

OTHER_
INT

INT_EP_
ACT

CNT_EP_
NEW

CNT_EP_
ACT

P_
T

OI_UNM
INT_EP_

ACT
CNT_EP_

NEW
CNT_EP_

ACT

TSTMP_M POS_UP SOF_GEN MS_SOF

TSTMP_M POS_UP SOF_GEN MS_SOF

ES S_POWER DIS_XCVER RWAKE RWAKE_EN

BCNT_LRATE SAM_CLK_SEL !

RCV_PKT_SIZE

D

D

SET EP_DIR EP_TYPE

T

3 2 1 0

3 2 1 0

for controller-specific details.
SD2CRAD 180h FD80h 0000h CRAD

SmartDMA Channel Pair 3 Registers

SD3CON 188h FD88h 0000h Res TEPI TBUI TTCI REPI RBUI RTCI TXSO RXSO P

SD3TRCAL 18Ah FD8Ah 0000h TRA[15–4]

SD3TRAH 18Ch FD8Ch 0000h Res

SD3RRCAL 18Eh FD8Eh 0000h RRA[15–4]

SD3RRAH 190h FD90h 0000h Res

SD3STAT 192h FD92h 0000h Res TEP TBU TTC REP RBU RTC

SD3CBD 194h FD94h 0000h Res CRBD Res

SD3CTAD 196h FD96h 0000h CTAD

SD3CRAD 198h FD98h 0000h CRAD

Universal Serial Bus (USB) General Configuration Registers

UISTAT1 1E0h FDE0h 0000h Res D_EP_
STATINT

D_EP_
ACT

C_EP_
STATINT

C_EP_
ACT

B_EP_
STATINT

B_EP_
ACT

A_EP_
STATINT

A_E
AC

UIMASK1 1E2h FDE2h 0008h Res
D_EP_

STATINT
D_EP_

ACT
C_EP_

STATINT
C_EP_

ACT
B_EP_

STATINT
B_EP_

ACT
A_EP_

STATINT
A_E

AC

UISTAT2 1E4h FDE4h 0000h USB_RST USB_SUS USB_RES Res

UIMASK2 1E6h FDE6h 0000h USB_RST USB_SUS USB_RES Res

USBMFR 1E8h FDE8h 0008h Res PUP_XCVER SUSP S_R

RTFMCNT 1EAh FDEAh 0000h Res RTFCNT

TSTMP 1ECh FDECh 0000h Res TSTMP

TSTMPM 1EEh FDEEh 0000h Res TSTMPM

ISCTL 1F0h FDF0h 0000h ESOF_EN Res BYTES_SAM Res

FPMCNT 1F2h FDF2h 0000h Res FPM_CNT

USB Control Endpoint Registers

CNTCTL 200h FE00h 0000h EP_EN
EP_NOT_

STALLED
NOT_

FLUSH
ACT_REQ NEW_

COMMAND
COMMAND_

BUSY
Res

CNTSIZ 202h FE02h 0000h Res

CNTDAT 206h FE06h 00xxh Res

CNTRPK 208h FE08h 00xxh Res

CNTDEF1 20Ah FE0Ah 0000h EP_NUM EP_CFG Res EP_INT Res EP_A

CNTDEF2 20Ch FE0Ch 0008h Res FIFO_SIZE EP_MX_PC

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

CC CU

CC CU

CC CU

R
eg

ister S
u

m
m

ary

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual
A

-9

D

SET EP_DIR EP_TYPE

MS
FULL_

PKT
SHORT_

PKT
BUF_ERR

OTHER_

ERR

BUF_STAT

D

D

SET EP_DIR EP_TYPE

T

MS_
SK

FULL_PKT_
SMSK

SHRT_PKT_
SMSK

BUF_ERR_
SMSK

OTH_ERR_
SMSK

MS
FULL_

PKT
SHORT_

PKT
BUF_ERR

OTHER_

ERR

BUF_STAT

D

D

SET EP_DIR EP_TYPE

T

MS_
SK

FULL_PKT_
SMSK

SHRT_PKT_
SMSK

BUF_ERR_
SMSK

OTH_ERR_
SMSK

3 2 1 0

3 2 1 0

for controller-specific details.
USB Interrupt Endpoint Registers

IEPCTL 210h FE10h 0000h EP_EN
EP_NOT_
STALLED

NOT_
FLUSH

ACT_
REQ Res

IEPDAT 216h FE16h 00xxh Res

IEPDEF1 21Ah FE1Ah 1003h EP_NUM EP_CFG Res EP_INT Res EP_A

IEPDEF2 21Ch FE1Ch 0410h Res FIFO_SIZE EP_MX_PCT

USB Data A Endpoint Registers

AEPCTL 220h FE20h 0000h EP_EN
EP_NOT_

STALLED
NOT_

FLUSH
ACT_REQ STAT_INT Res NOT_

ZERO

NOT_

LAST_

BYTE
Res ISO_

START
ISO_

STOP
ISO_

AEPSIZ 222h FE22h 0000h Res RPS

AEPBUFS 224h FE24h 0000h Res

AEPDAT 226h FE26h 00xxh Res

ARCVPK 228h FE28h 00xxh Res

AEPDEF1 22Ah FE2Ah 2006h EP_NUM EP_CFG Res EP_INT Res EP_A

AEPDEF2 22Ch FE2Ch 0408h Res FIFO_
SIZE EP_MX_PC

AEPDEF3 22Eh FE2Eh 0018h Res AUTO_
RATE_EN

ISO_MS_
IMSK

FULL_PKT_
IMSK

SHRT_PKT_
IMSK

BUF_ERR_
IMSK

OTH_ERR_
IMSK MODE ISO_

SM

USB Data B Endpoint Registers

BEPCTL 230h FE30h 0000h EP_EN
EP_NOT_

STALLED
NOT_

FLUSH
ACT_REQ STAT_INT Res

NOT_

ZERO

NOT_

LAST_

BYTE
Res

ISO_

START
ISO_

STOP
ISO_

BEPSIZ 232h FE32h 0000h Res RPS

BEPBUFS 234h FE34h 0000h Res

BEPDAT 236h FE36h 00xxh Res

BRCVPK 238h FE38h 00xxh Res

BEPDEF1 23Ah FE3Ah 3006h EP_NUM EP_CFG Res EP_INT Res EP_A

BEPDEF2 23Ch FE3Ch 0408h Res FIFO_
SIZE EP_MX_PC

BEPDEF3 23Eh FE3Eh 0018h Res AUTO_
RATE_EN

ISO_MS_
IMSK

FULL_PKT_
IMSK

SHRT_PKT_
IMSK

BUF_ERR_
IMSK

OTH_ERR_
IMSK MODE ISO_

SM

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

CC CU

CC CU

CC CU

R
eg

ister S
u

m
m

ary

A
-10

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual

MS
FULL_

PKT
SHORT_

PKT
BUF_ERR

OTHER_

ERR

BUF_STAT

D

D

SET EP_DIR EP_TYPE

T

MS_
SK

FULL_PKT_
SMSK

SHRT_PKT_
SMSK

BUF_ERR_
SMSK

OTH_ERR_
SMSK

MS
FULL_

PKT
SHORT_

PKT
BUF_ERR

OTHER_

ERR

BUF_STAT

D

D

SET EP_DIR EP_TYPE

T

MS_
SK

FULL_PKT_
SMSK

SHRT_PKT_
SMSK

BUF_ERR_
SMSK

OTH_ERR_
SMSK

3 2 1 0

3 2 1 0

for controller-specific details.
USB Data C Endpoint Registers

CEPCTL 240h FE40h 0000h EP_EN
EP_NOT_

STALLED
NOT_

FLUSH
ACT_REQ STAT_INT Res NOT_

ZERO

NOT_

LAST_

BYTE
Res ISO_

START
ISO_

STOP
ISO_

CEPSIZ 242h FE42h 0000h Res RPS

CEPBUFS 244h FE44h 0000h Res

CEPDAT 246h FE46h 00xxh Res

CRCVPK 248h FE48h 00xxh Res

CEPDEF1 24Ah FE4Ah 4006h EP_NUM EP_CFG Res EP_INT Res EP_A

CEPDEF2 24Ch FE4Ch 0C08h Res FIFO_SIZE EP_MX_PC

CEPDEF3 24Eh FE4Eh 0018h Res AUTO_
RATE_EN

ISO_MS_
IMSK

FULL_PKT_
IMSK

SHRT_PKT_
IMSK

BUF_ERR_
IMSK

OTH_ERR_
IMSK MODE ISO_

SM

USB Data D Endpoint Registers

DEPCTL 250h FE50h 0000h EP_EN
EP_NOT_

STALLED
NOT_

FLUSH
ACT_REQ STAT_INT Res NOT_

ZERO

NOT_

LAST_

BYTE
Res ISO_

START
ISO_

STOP
ISO_

DEPSIZ 252h FE52h 0000h Res RPS

DEPBUFS 254h FE54h 0000h Res

DEPDAT 256h FE56h 00xxh Res

DRCVPK 258h FE58h 00xxh Res

DEPDEF1 25Ah FE5Ah 5006h EP_NUM EP_CFG Res EP_INT Res EP_A

DEPDEF2 25Ch FE5Ch 0C08h Res FIFO_SIZE EP_MX_PC

DEPDEF3 25Eh FE5Eh 0018h Res AUTO_
RATE_EN

ISO_MS_
IMSK

FULL_PKT_
IMSK

SHRT_PKT_
IMSK

BUF_ERR_
IMSK

OTH_ERR_
IMSK MODE ISO_

SM

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

CC CU

CC CU

R
eg

ister S
u

m
m

ary

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual
A

-11

N PEN ABEN D7 STP2

B0 BRKVAL EXDWR EXDRD XTRN !

R PER TEMT IDLED IDLE

R PER TEMT IDLED IDLE

TDATA

RDATA

RDATA

MCHR0

MCHR2

MCHR4

BTHRSH0

BTHRSH1

BTHRSH2

BTHRSH3

N PEN ABEN D7 STP2

BRKVAL EXDWR EXDRD XTRN !

R PER TEMT IDLED IDLE

R PER TEMT IDLED IDLE

TDATA

RDATA

RDATA

3 2 1 0

3 2 1 0

for controller-specific details.
High-Speed Asynchronous Serial Port (High-Speed UART) Registers

HSPCON0 260h FE60h 0000h Res RSIE BRK AB FC TXIE RXIE TMODE RMODE EV

HSPCON1 262h FE62h 0000h TFEN RFEN TFLUSH RFLUSH ABAUD Res MEN MAB2 MAB1 MA

HSPSTAT 264h FE64h 0000h RTHRSH TTHRSH Res OERIM Res MATCH BRK AB RDR THRE FER OE

HSPIMSK 266h FE66h 02F8h RTHRSH TTHRSH Res OERIM Res MATCH BRK AB RDR THRE FER OE

HSPTXD 268h FE68h 0000h Res AB

HSPRXD 26Ah FE6Ah 0000h RDR THRE FER OER PER MATCH BRK AB

HSPRXDP 26Ch FE6Ch 0000h RDR THRE FER OER PER MATCH BRK AB

HSPBDV 26Eh FE6Eh 0000h BAUDDIV

HSPM0 270h FE70h 0000h MCHR1

HSPM1 272h FE72h 0000h MCHR3

HSPM2 274h FE74h 0000h MCHR5

HSPAB0 276h FE76h 0000h ABDIV0 A

HSPAB1 278h FE78h 0000h ABDIV1 A

HSPAB2 27Ah FE7Ah 0000h ABDIV2 A

HSPAB3 27Ch FE7Ch 0000h ABDIV3 A

Asynchronous Serial Port (UART) Registers

SPCON0 280h FE80h 0000h Res RSIE BRK AB FC TXIE RXIE TMODE RMODE EV

SPCON1 282h FE82h 0000h Res

SPSTAT 284h FE84h 0000h Res BRK AB RDR THRE FER OE

SPIMSK 286h FE86h 02F8h Res BRK AB RDR THRE FER OE

SPTXD 288h FE88h 0000h Res AB

SPRXD 28Ah FE8Ah 0000h RDR THRE FER OER PER Res BRK AB

SPRXDP 28Ch FE8Ch 0000h RDR THRE FER OER PER Res BRK AB

SPBDV 28Eh FE8Eh 0000h BAUDDIV

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

R
eg

ister S
u

m
m

ary

A
-12

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual

SEL MEOMRQ ICSEL GCIACT BRDIS

D MTARD MEOMRD MXBA MRDA

D MTARD MEOMRD MXBA MRDA

s TICAD

IC12T

IC12R

IC12P

CI0T

CI0R

CI0P

CI1T

CI1R

CI1P

MON01T

MON01R

MON01P

LVL Res ESADJ

LVL Res ESADJ

LVL Res ESADJ

3 2 1 0

3 2 1 0

for controller-specific details.
General Circuit Interface (GCI) Registers

GPCON 2A0h FEA0h 0000h Res PCMFSC MCARV MARQ MCHEN MCH

GISTAT 2A2h FEA2h
0002h
0102h

Res IC DCLST CHGCI1 CHGCI0 MRAD MC

GIMSK 2A4h FEA4h 0000h Res IC DCLST CHGCI1 CHGCI0 MRAD MC

GTIC 2A6h FEA6h 0007h Res TICEN ECHOEN Re

GICTD 2A8h FEA8h 00FFh Res

GICRD 2AAh FEAAh 0000h Res

GICRDP 2ACh FEACh 0000h Res

GCITD0 2AEh FEAEh 000Fh Res BAR Res

GCIRD0 2B0h FEB0h 000Fh Res

GCIRD0P 2B2h FEB2h 000Fh Res

GCITD1 2B4h FEB4h 003Fh Res

GCIRD1 2B6h FEB6h 003Fh Res

GCIRD1P 2B8h FEB8h 003Fh Res

GMTD 2BAh FEBAh 00FFh Res

GMRD 2BCh FEBCh 0000h Res

GMRDP 2BEh FEBEh 0000h Res

Time Slot Assigner (TSA) Channel A Registers

TSACON 2C0h FEC0h 0000h EN Res MODE ! Res FSCP DRV

TSASTART 2C2h FEC2h 0000h Res BPSTART

TSASTOP 2C4h FEC4h 0000h Res BPSTOP

Time Slot Assigner (TSA) Channel B Registers

TSBCON 2C8h FEC8h 0000h EN Res MODE ! Res FSCP DRV

TSBSTART 2CAh FECAh 0000h Res BPSTART

TSBSTOP 2CCh FECCh 0000h Res BPSTOP

Time Slot Assigner (TSA) Channel C Registers

TSCCON 2D0h FED0h 0000h EN Res MODE ! Res FSCP DRV

TSCSTART 2D2h FED2h 0000h Res BPSTART

TSCSTOP 2D4h FED4h 0000h Res BPSTOP

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

CC

CC CH

CC CH

CC

R
eg

ister S
u

m
m

ary

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual
A

-13

LVL Res ESADJ

RE/TE DR/DT PB

Res DE1 DE0

TXDATA

TXDATA

RXDATA

MSK PR

M MSK PR

M MSK PR

M MSK PR

MSK PR

MSK PR

MSK PR

MSK PR

M MSK PR

M MSK PR

M MSK PR

M MSK PR

M MSK PR

M MSK PR

MSK PR

S

S

S

4 CH3 CH2 CH1 CH0

PRM

3 2 1 0

3 2 1 0

for controller-specific details.
Time Slot Assigner (TSA) Channel D Registers

TSDCON 2D8h FED8h 0000h EN Res MODE ! Res FSCP DRV

TSDSTART 2DAh FEDAh 0000h Res BPSTART

TSDSTOP 2DCh FEDCh 0000h Res BPSTOP

Synchronous Serial Interface (SSI) Registers

SSSTAT 2F0h FEF0h 0000h ENHCTL Res

SSCON 2F2h FEF2h 0400h Res CLKP DENP Res MSBF Res CLKEXP

SSTXD1 2F4h FEF4h 0000h Res

SSTXD0 2F6h FEF6h 0000h Res

SSRXD 2F8h FEF8h 0000h Res

Interrupt Controller Registers

CH0CON 300h FF00h 003Fh Res

CH1CON 302h FF02h 000Fh Res LT

CH2CON 304h FF04h 000Fh Res SRC ! LT

CH3CON 306h FF06h 000Fh Res SRC LT

CH4CON ! 308h FF08h 003Fh Res

CH5CON ! 30Ah FF0Ah 003Fh Res

CH6CON ! 30Ch FF0Ch 003Fh Res

CH7CON ! 30Eh FF0Eh 003Fh Res

CH8CON 310h FF10h 000Fh Res SRC ! LT

CH9CON 312h FF12h 000Fh Res SRC LT

CH10CON 314h FF14h 000Fh Res SRC LT

CH11CON 316h FF16h 000Fh Res SRC LT

CH12CON 318h FF18h 000Fh Res LT

CH13CON 31Ah FF1Ah 000Fh Res LT

CH14CON 31Ch FF1Ch 001Fh Res

EOI 320h FF20h 0000h NSPEC Res

POLL 322h FF22h 0000h IREQ Res

POLLST 324h FF24h 0000h IREQ Res

IMASK 326h FF26h FFFFh Res CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH

PRIMSK 328h FF28h 0007h Res

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

CC

R
eg

ister S
u

m
m

ary

A
-14

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual

4 CH3 CH2 CH1 CH0

4 CH3 CH2 CH1 CH0

A1 DMA0 TIM2 TIM1 TIM0

4 INT3 INT2 INT1 Res

4 INT3 INT2 INT1 Res

4 INT3 INT2 INT1 INT0

Res

G P EXT ALT CONT

G P EXT ALT CONT

Res CONT

Res R2 R1 R0

Res R2 R1 R0

R3 R2 R1 R0

Res R2 R1 R0

IZ R3 R2 R1 R0

3 2 1 0

3 2 1 0

for controller-specific details.
INSERV 32Ah FF2Ah 0000h Res CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH

REQST 32Ch FF2Ch 0000h Res CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH

INTSTS 32Eh FF2Eh 0000h Res DMA3 DMA2 DM

DMAHLT 330h FF30h 0000h DHLT Res

SHREQ 332h FF32h 0000h PIO35 PIO34 PIO33 PIO30 PIO29 PIO27 PIO15 PIO5 INT7 INT6 INT5 INT

SHMASK 334h FF34h FFFFh PIO35 PIO34 PIO33 PIO30 PIO29 PIO27 PIO15 PIO5 INT7 INT6 INT5 INT

INTPOL 336h FF36h FFFFh Res INT8 INT7 INT6 INT5 INT

PIOPOL 338h FF38h FFFFh PIO35 PIO34 PIO33 PIO30 PIO29 PIO27 PIO15 PIO5

Timer Registers

T0CON 340h FF40h 0000h EN INH INT RIU Res MC RT

T0CNT 342h FF42h 0000h TC

T0CMPA 344h FF44h 0000h TC

T0CMPB 346h FF46h 0000h TC

T1CON 348h FF48h 0000h EN INH INT RIU Res MC RT

T1CNT 34Ah FF4Ah 0000h TC

T1CMPA 34Ch FF4Ch 0000h TC

T1CMPB 34Eh FF4Eh 0000h TC

T2CON 350h FF50h 0000h EN INH INT Res MC

T2CNT 352h FF52h 0000h TC

T2CMPA 354h FF54h 0000h TC

Chip Select Registers

UMCS 3A0h FFA0h F01Bh
F03Bh Res LB Res DA UDEN USIZ

LMCS 3A2h FFA2h 0F1Bh Res UB Res DA LDEN LSIZ

PACS 3A4h FFA4h 0073h BA[19–11] Res

MMCS 3A6h FFA6h 7FDBh BA[19–13] Res MCS0_
ONLY

MPCS 3A8h FFA8h 8183h Res M[6–0] Res MS OMSIZ IOS

DRAM Controller Registers

CDRAM 3AAh FFAAh 0000h Res RC

EDRAM 3ACh FFACh 0000h EN Res T

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

R
eg

ister S
u

m
m

ary

A
m

186™
C

C
/C

H
/C

U
 M

icrocontrollers U
ser’s M

anual
A

-15

DE PMODE
3

PMODE
2

PMODE
1

PMODE
0

R4 PDIR3 PDIR2 PDIR1 PDIR0

TA4 PDATA3 PDATA2 PDATA1 PDATA0

T4 PSET3 PSET2 PSET1 PSET0

R4 PCLR3 PCLR2 PCLR1 PCLR0

DE
0

PMODE
19

PMODE
18

PMODE
17

PMODE
16

20 PDIR19 PDIR18 PDIR17 PDIR16

A20 PDATA19 PDATA18 PDATA17 PDATA16

T20 PSET19 PSET18 PSET17 PSET16

R20 PCLR19 PCLR18 PCLR17 PCLR16

DE
6

PMODE
35

PMODE
34

PMODE
33

PMODE
32

36 PDIR35 PDIR34 PDIR33 PDIR32

A36 PDATA35 PDATA34 PDATA33 PDATA32

T36 PSET35 PSET34 PSET33 PSET32

R36 PCLR35 PCLR34 PCLR33 PCLR32

D4 RCD3 RCD2 RCD1 RCD0

ES

DISCLK Res

Res

3 2 1 0

3 2 1 0

for controller-specific details.
Programmable I/O (PIO) Registers

PIOMODE0 3C0h FFC0h 0000h
PMODE

15
PMODE

14
PMODE

13
PMODE

12
PMODE

11
PMODE

10
PMODE

9
PMODE

8
PMODE

7
PMODE

6
PMODE

5
PMO

4

PIODIR0 3C2h FFC2h 1EFFh PDIR15 PDIR14 PDIR13 PDIR12 PDIR11 PDIR10 PDIR9 PDIR8 PDIR7 PDIR6 PDIR5 PDI

PIODATA0 3C4h FFC4h ????h PDATA15 PDATA14 PDATA13 PDATA12 PDATA11 PDATA10 PDATA9 PDATA8 PDATA7 PDATA6 PDATA5 PDA

PIOSET0 3C6h FFC6h 0000h PSET15 PSET14 PSET13 PSET12 PSET11 PSET10 PSET9 PSET8 PSET7 PSET6 PSET5 PSE

PIOCLR0 3C8h FFC8h 0000h PCLR15 PCLR14 PCLR13 PCLR12 PCLR11 PCLR10 PCLR9 PCLR8 PCLR7 PCLR6 PCLR5 PCL

PIOMODE1 3CAh FFCAh 0000h
PMODE

31
PMODE

30
PMODE

29
PMODE

28
PMODE

27
PMODE

26
PMODE

25
PMODE

24
PMODE

23
PMODE

22
PMODE

21
PMO

2

PIODIR1 3CCh FFCCh 9FFFh PDIR31 PDIR30 PDIR29 PDIR28 PDIR27 PDIR26 PDIR25 PDIR24 PDIR23 PDIR22 PDIR21 PDIR

PIODATA1 3CEh FFCEh ????h PDATA31 PDATA30 PDATA29 PDATA28 PDATA27 PDATA26 PDATA25 PDATA24 PDATA23 PDATA22 PDATA21 PDAT

PIOSET1 3D0h FFD0h 0000h PSET31 PSET30 PSET29 PSET28 PSET27 PSET26 PSET25 PSET24 PSET23 PSET22 PSET21 PSE

PIOCLR1 3D2h FFD2h 0000h PCLR31 PCLR30 PCLR29 PCLR28 PCLR27 PCLR26 PCLR25 PCLR24 PCLR23 PCLR22 PCLR21 PCL

PIOMODE2 3D4h FFD4h 0000h
PMODE

47
PMODE

46
PMODE

45
PMODE

44
PMODE

43
PMODE

42
PMODE

41
PMODE

40
PMODE

39
PMODE

38
PMODE

37
PMO

3

PIODIR2 3D6h FFD6h FFF1h PDIR47 PDIR46 PDIR45 PDIR44 PDIR43 PDIR42 PDIR41 PDIR40 PDIR39 PDIR38 PDIR37 PDIR

PIODATA2 3D8h FFD8h ????h PDATA47 PDATA46 PDATA45 PDATA44 PDATA43 PDATA42 PDATA41 PDATA40 PDATA39 PDATA38 PDATA37 PDAT

PIOSET2 3DAh FFDAh 0000h PSET47 PSET46 PSET45 PSET44 PSET43 PSET42 PSET41 PSET40 PSET39 PSET38 PSET37 PSE

PIOCLR2 3DCh FFDCh 0000h PCLR47 PCLR46 PCLR45 PCLR44 PCLR43 PCLR42 PCLR41 PCLR40 PCLR39 PCLR38 PCLR37 PCL

Reset Configuration Register

RESCON 3DEh FFDEh ????h RCD15 RCD14 RCD13 RCD12 RCD11 RCD10 RCD9 RCD8 RCD7 RCD6 RCD5 RC

Watchdog Timer Register

WDTCON 3E0h FFE0h C180h ENA WRST RSTFLAG NMIFLAG Res EXRST

Miscellaneous Registers

SYSCON 3F0h FFF0h 0000h Res DSDEN PWD DISMEM DISIO ITF4 ! EXSYNC ! Res

PRL 3F4h FFF4h 4001h PRL

RELOC 3FEh FFFEh 20FCh DUAL Res M/IO R[19–10]

Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

NAME OFFSET DEFAULT
LOCATION

DEFAULT
VALUE 15 14 13 12 11 10 9 8 7 6 5 4

! = See the register or bit description in the Am186™CC/CH/CU Microcontrollers Register Set Manual, order #21916,

Register Summary
A-16 Am186™CC/CH/CU Microcontrollers User’s Manual

GLOSSARY
A
A bus
Nonmultiplexed address bus.

ACK
Acknowledgment.

AD bus
Multiplexed address and data bus.

ADCCP
Advanced data communication control procedures.

ADSL
Asymmetrical digital subscriber line. See DSL.

ANSI
American national standards institute.

asynchronous
Pertaining to two or more processes that do not depend
on the occurrence of specific events such as common
timing signals.

asynchronous transmission
Data transmission in which each information character
is individually synchronized (usually by the use of start
and stop elements). Compare to synchronous transmis-
sion and isochronous transmission.

AT interface
A method of communicating with and controlling
modems. Developed by Hayes Microcomputer Prod-
ucts, the AT Command Set has become a de facto
standard most modems are designed to use.

B
bit stuffing
Adding bits to a transmitted message to round out a
fixed frame or to break up a pattern of data bits that
could be misconstrued as control codes. Also called
zero-bit insertion. Compare to bit unstuffing.

bit unstuffing
Deleting bits from a received message to remove any
bits added to round out a fixed frame or to break up a
pattern of data bits that could be misconstrued as con-
trol codes. Also called zero-bit deletion. Compare to bit
stuffing.

break
During serial communications, a constant Low signal on
the receive data line for one frame time or greater. In the
Am186CC/CH/CU microcontrollers, this is reported as a
zero character with the framing error (FER) and break
(BRK) status bits set in the (H)SPSTAT register.

BRI
Basic rate interface.

buffer
(1) A routine or storage space used to compensate for
a difference in rate of data flow, or time of occurrence of
events, when transferring data from one device to
another. (2) A portion of storage space used to tempo-
rarily hold input or output data.

buffer queue
A block of memory to which data is written or from which
data is read during a DMA transfer. Software specifies
the length and base address of the buffer queue. The
DMA transfer writes data to each byte or word of the
buffer queue until it reaches the end of the transfer or
the end of the buffer queue. Compare to circular buffer.

buffer descriptor ring
See descriptor ring.

bulk transfer
A nonperiodic data transmission process that typically
consists of large bursts of information. Bulk transmis-
sion is typically used for a transfer that can use any
available bandwidth and also can be delayed until band-
width is available.

byte
A group of eight adjacent binary digits (bits).

C
CCIT
International telegraph and telephone consultative
committee.

circular buffer
A block of memory to which data is written or from which
data is read during a DMA transfer. Software specifies
the length and base address of the circular buffer. The
DMA transfer writes data to or reads data from each
byte or word of the circular buffer. If the transfer reaches
the end of the buffer, the DMA control hardware points
Am186™CC/CH/CU Microcontrollers User’s Manual Glossary-1

Glossary
back to the beginning of the buffer and continues writing
or reading data. Sometimes called a ring buffer. Com-
pare to buffer queue.

CO
Central office.

codec
Coder-decoder. Also referred to as a compressor-
decompressor. Any technology used to encode (or com-
press) and decode (or decompress) data, which can be
done with hardware, software, or any combination of the
two. Typically used for digital audio or video data
streams.

control endpoint
A USB endpoint used to transfer USB commands and
device configuration data between the host and device.
The control endpoint is common to, and is required by,
all USB device class specifications. The control end-
point features are not programmable. Compare to
interrupt endpoint and data endpoint.

CPU
Central processing unit. The control unit or micropro-
cessor of a computer system.

CRC
Cyclic redundancy check. A check performed on data to
see if an error has occurred in transmitting, reading, or
writing the data. The result of a CRC is typically stored
or transmitted with the checked data. The stored or
transmitted result is compared to a CRC value calcu-
lated for the data to determine if an error has occurred.

CTR
Clear to receive.

CTS/RTR
Clear-to-send/ready-to-receive. A symmetrical interface
between two serial ports that provides hardware flow
control when both ports are sending and receiving data.
The CTS signal of each port is connected to the RTR
signal of the other port. When the transmitter sends a
CTS signal and the receiver sends a RTR signal, data
can be transferred from the transmitter to the receiver
between the ports.

D
data endpoint
A USB endpoint used to transfer data from the host to
the device, or vice versa. Each data endpoint is individ-
ually programmable as to direction (IN or OUT relative
to the host), transfer type (bulk, isochronous, or inter-
rupt), and maximum packet size. Compare to control
endpoint and interrupt endpoint.

data transparency
A data stream that happens to contain a data sequence
that is the same as a flag, mark, or abort sequence is
disguised during transmission so it is not misconstrued
as an actual flag, mark, or abort. See also bit stuffing
and bit unstuffing.

DCE
Data communications equipment. Any device that con-
nects a computer to a network, such as a modem. See
also raw DCE.

default address
An address defined by the USB specification and used
by a USB device when it is first powered on or reset. The
default address is 00h.

descriptor ring
A block of memory that the CPU and software use to
control and describe data buffers.

destination-synchronized transfer
See synchronized transfer.

device
See USB device.

device address
The address of a device on the USB. The device
address is the default address when the USB device is
first powered on or reset. Hubs and functions are
assigned a unique device address by USB software.

DMA
Direct memory access. A means of transferring data
from a source (a device or block of memory) directly to
a destination (also a device or block of memory) without
passing the information through the processor. See also
general-purpose DMA and SmartDMA channel.

DMA latency
The time period between the DMA request generation
and the actual running of the bus cycles associated with
the DMA transfer. See also latency, interrupt latency,
and HOLD latency.

DMA mode
One of three modes supported by the Am186CC/CH/
CU microcontrollers for serial communications. In DMA
mode, software programs the DMA transfer registers,
then the DMA hardware performs the entire transfer
with no software intervention except for error-handling.
Compare to polled mode and interrupt mode.

DMA transfer
A unit of work involving the transferring of data into or
out of memory using DMA capabilities.
Glossary-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Glossary
DRAM
Dynamic random access memory. A type of computer
memory that employs a system of transistors and
capacitors to retain data. DRAM is slower and less
dependable than static RAM because the capacitors
cannot maintain an electrical charge and need to be
refreshed every millisecond, but it is cheaper, takes up
less space, and uses less power. Compare to SRAM.

DSL
Digital subscriber line. A modem technology that
increases the digital speed of ordinary telephone lines
by a substantial factor over common V.34 (33600 bps)
modems. DSL modems may provide symmetrical or
asymmetrical (ADSL) operation. Asymmetrical provides
faster downstream speeds and is suited for internet
usage and video on demand, where the heaviest trans-
mission requirement is from the provider to the
customer.

DSL uses packet switching technology that operates
independently from the voice telephone system. This
allows the telephone companies to provide digital ser-
vice and not lock up voice circuits for long calls.
Because of this, DSL is not as well suited to videocon-
ferencing as is ISDN. ISDN is circuit switched, which
keeps the line open and connected throughout the
session.

DTE
Data terminal equipment. A hardware component con-
nected to some type of communications device. A PC is
a piece of data terminal equipment; a modem is a com-
munications device.

duplex
The ability of a serial communications connection to
transmit data in both directions. See also half duplex
and full duplex. Compare to simplex.

E
EDO
Extended data out.

endpoint
See USB endpoint.

endpoint address
The combination of a device address and an endpoint
number on a USB device.

endpoint number
A unique pipe endpoint on a USB device.

EOM
End of message.

even parity
See parity.

external reset
The reset of the Am186CC/CH/CU microcontrollers ini-
tiated by asserting the RES signal. Also called a power-
on reset. Compare to internal reset and system reset.

F
FCS
Frame check sequence. The FCS contains the gener-
ated CRC code for the frame being transmitted. All data
transmitted between the opening and closing flags
(excluding inserted 0s) is included in the CRC calcula-
tion. The transmitter appends the calculated CRC to the
end of the frame just before the closing flag.

FIFO
First in first out. (1) Describes a method of processing
data in the order in which it is received. (2) A block of
memory or other storage used as a first-in-first-out
buffer.

FIFO high-water mark
See FIFO threshold.

FIFO threshold
A system-dependent, software threshold value that indi-
cates action should be taken so data is not lost from the
FIFO buffer.

fly-by-transfer
During a SmartDMA channel transfer, the read and
write operations execute in a single bus cycle, instead of
the two cycles required during a general-purpose DMA
transfer.

frame
The unit of information transferred across a data link.
Typically, there are control frames for link management
and information frames for the transfer of message
data.

frame synchronization (frame sync)
During an HDLC transfer, the process of signaling the
beginning of the frame with a start flag and the end of
the frame with a stop flag.

framing error
In asynchronous serial communication, a condition
resulting from the receiver losing bit count alignment
with the transmitter. In this situation, if the last bit of a
unit (a frame) is a zero, the receiver may read that bit as
the start bit of the next frame, thus the term framing
error.

full duplex
The ability of a serial communications connection to
transmit data in both directions at the same time. See
also duplex and simplex. Compare to half duplex.
Am186™CC/CH/CU Microcontrollers User’s Manual Glossary-3

Glossary
G
GCI
General circuit interface, also called IOM-2. One of the
external interfaces supported by the Am186CC commu-
nications controller HDLC channels. GCI is an interface
specification developed jointly by Alcatel, Italtel, GPT,
and Siemens. This specification defines an industry
standard serial bus for interconnecting telecommunica-
tions integrated circuits. The standard covers linecard,
NT1, and terminal architectures for Integrated Services
Digital Network (ISDN) applications. The Am186CC
communications controller supports the terminal ver-
sion of GCI. GCI on the Am186CC communications
controller supports polled and interrupt modes, but does
not support DMA mode. See IOM-2.

general-purpose DMA
The term used to describe standard or typical DMA pro-
cessing as opposed to DMA processing using the
SmartDMA channels in the Am186CC/CH/CU micro-
controllers. See also DMA and SmartDMA.

H
half duplex
The ability of a serial communications connection to
transmit data in both directions, but not at the same
time. Compare to full duplex.

hardware interrupt
Any one of the maskable interrupts, or an NMI or watch-
dog timer interrupt. When a hardware interrupt is
generated, the IF flag is cleared unless in polled mode.
Compare to software interrupt.

HDLC
High-level data link control. A very common bit-oriented
data link protocol (OSI layer 2) issued by ISO. Similar
protocols are ADCCP, LAP-B, and SDLC. The
Am186CC communications controller provides four
HDLC channels. The HDLC channels support full-
duplex transfers in polled, interrupt, and DMA modes.

HOLD latency
The time between a HOLD request and the HOLD
acknowledge.

host
The host computer system where the USB host control-
ler is installed. This includes the host hardware platform
(CPU, bus, etc.) and the operating system in use.

I
ICE
In-circuit emulator. A device for testing and program-
ming an integrated circuit outside of any actual system
in which the device will be used.

internal peripherals
Components on a microcontroller integrated circuit
other than the embedded CPU that provide control over
some specific function. On the Am186CC/CH/CU
microcontrollers, internal peripherals would include but
not be limited to the HDLC controller, the DMA control-
ler, the USB peripheral controller, and the DRAM
controller. For lists of the internal peripherals in the
Am186CC/CH/CU microcontrollers, see “Features” on
page 1-1.

internal reset
The reset of the Am186CC communications controller
initiated by the watchdog timer. Compare to external
reset and system reset.

interrupt
A command or signal that tells the processor to stop
what it is doing and wait for further instruction. The inter-
rupt may require the processor to suspend its current
job and perform another function that is more pressing.

interrupt channel
The group of logic that is comprised of a control register,
an in-service bit, a request bit, and a mask bit. The inter-
rupt channel controls the behavior of a maskable
interrupt.

interrupt endpoint
A USB endpoint used for small data transfers that in the
past have been interrupt-driven. The interrupt endpoint
is polled at a regular programmable interval to allow the
device to transfer interrupt data such as event notifica-
tion, keyboard characters, and pointing device
coordinates to the host. Compare to control endpoint
and data endpoint.

interrupt latency
The time period between an interrupt request and the
servicing of the interrupt. See also latency, DMA
latency, and HOLD latency.

interrupt mode
One of three modes supported by the Am186CC com-
munications controller for serial communications. In
interrupt mode, software performs other tasks until an
interrupt tells it to service a serial channel. Compare to
DMA mode and polled mode.

interrupt source
Any source (internal or external) that can request an
interrupt. This can be a physical pin, or an on-chip
peripheral.
Glossary-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Glossary
interrupt transfer
One of four USB transfer types. Interrupt transfers have
the following characteristics: small data, nonperiodic,
low frequency, and bounded latency. They are device-
initiated communications typically used to notify the
host of device service needs.

interrupt type
An eight-bit number assigned to each discrete interrupt
(see Table 7-3 on page 7-12). Each interrupt type does
not need a unique interrupt channel; one interrupt chan-
nel can support more than one interrupt type. However,
if two interrupt types are supported by one channel,
then those two types have the same level of program-
mable priority.

interrupt vector address
Equals the interrupt type times four and is the location
in the interrupt vector table that stores the address of
the interrupt service routine for each interrupt type.

interrupt vector table
A memory area of 1 Kbyte beginning at address 00h
that contains up to 256 four-byte interrupt vector
addresses.

IOM-2
ISDN-oriented modular interface, revision 2. See GCI.

ISDN
Integrated services digital network. A telecommunica-
tions network that allows for digital voice, video, and
data transmissions. ISDN replaces the analog tele-
phone system with a fast and efficient digital
communications network. ISDN lines contain two chan-
nels: a B channel, which has a 64-Kbit/s data
transmission rate, and a D channel, which has either a
16-Kbit/s or 64-Kbit/s transmission rate. When the two
lines are used together, transmitted data can travel at
128 Kbit/s.

isochronous transmission
A data transmission process in which there is always an
integral number of unit intervals between any two signif-
icant instants. Compare to synchronous transmission
and asynchronous transmission.

isochronous transfer
One of four USB transfer types. Isochronous transfers
are used when working with isochronous data. Isochro-
nous transfers provide periodic, continuous
communication between host and device.

ISR
Interrupt service routine. The software executed when
the interrupt processing unit receives an interrupt
request. The interrupt vector points to this code.

L
LANCE
Local area network controller for ethernet.

LAP-B
Link access procedure, balanced.

LAP-D
Link access procedure, D channel.

latency
A time period for an event to cause another event. See
also interrupt latency, DMA latency, and HOLD latency.

LSB
Least significant bit.

M
maskable interrupt
An interrupt that can be enabled (unmasked) or dis-
abled (masked) by setting or clearing a bit in the
appropriate mask register. Maskable interrupts as a
group are enabled and disabled by setting or clearing
the Interrupt-Enable Flag (IF) in the Processor Status
Flags (FLAGS) register. Nonmaskable interrupts are not
affected by this bit setting.

message pipe
A pipe that transfers data using a request/data/status
paradigm. The data has an imposed structure that
allows requests to be reliably identified and
communicated.

MSB
Most significant bit.

multidrop
A communication configuration in which more than two
stations share a transmission path. A typical multidrop
configuration has a number of secondary devices (e.g.,
terminals) and a primary device (e.g., host computer) on
the same path or line.

multiplexed mode
The connection of an HDLC channel to an external
interface through a TSA. In multiplexed mode, an HDLC
channel can be connected to a PCM highway or GCI
interface. Compare to nonmultiplexed mode.

multiplexed signal
A signal that shares a pin with at least one other signal.

multipoint
See multidrop.

mux
Abbreviation for multiplexer.
Am186™CC/CH/CU Microcontrollers User’s Manual Glossary-5

Glossary
N
NACK
Negative acknowledgment.

nibble
Half a byte (four bits).

NMI
Nonmaskable interrupt. An interrupt that cannot be dis-
abled (masked).

nonmultiplexed mode
The connection of an HDLC channel directly to an exter-
nal interface without going through a TSA. In
nonmultiplexed mode, an HDLC channel can be con-
nected to a raw DCE interface. Compare to multiplexed
mode.

NRZ
Non-return to zero.

NRZI
Non-return to zero, inverted.

O
odd parity
See parity.

ONCE
On-circuit emulation.

OSI
Open systems interconnection. An ISO standard for
worldwide communications that defines a framework for
implementing protocols in seven layers. Control is
passed from one layer to the next.

overall priority
Each interrupt source has an overall priority number
that is used only to arbitrate between two interrupt
sources that have priority requests pending with the
same programmable priority level. Overall priority is not
used if the programmable priority is sufficient to resolve
the pending highest-priority request.

P
PABX
Private automatic branch exchange.

packet
A self-contained message unit transmitted through a
communications network. Typically, the transmitter
breaks a longer message into packets to avoid the net-
work performance degradation caused by long
messages. A packet contains three parts: control infor-

mation (source, destination address, length), the data to
be transmitted, and error detection and correction bits.
A packet may be made up of one or more frames.

packet buffer
The logical buffer used by a USB device for sending or
receiving a single packet. This determines the maxi-
mum packet size the device can send or receive.

packet ID
A field in a USB packet that indicates the type of packet,
and by inference the format of the packet and the type
of error detection applied to the packet.

parity
An error-checking procedure for checking the accuracy
of serial data streams based on whether the number of
1 bits is even or odd. A parity bit is added to each group
of data bits in a transmission. In even parity, the parity
bit is set to 1 whenever it is needed to bring the total
number of 1 bits to an even number. In odd parity, the
parity bit is set to 1 whenever it is needed to bring the
total number of 1 bits to an odd number.

PCB
Peripheral control block. Each 16-bit read/write periph-
eral register is in the internal 1-Kbyte peripheral control
block (PCB). Registers are physically located in the
peripheral devices they control, but they are addressed
as a single 1-Kbyte block. This block is located in either
memory or I/O space, at the location pointed to by the
Peripheral Control Block Relocation (RELOC) register.
Because the base address of the block can change, the
address of each register is specified as an offset from
the RELOC register, rather than as an absolute
address. The register address is found by adding the
offset to the base address to determine the physical
location in memory or I/O space.

The PCB base address can be set to any even 1-Kbyte
boundary in memory or I/O space (i.e., the lower 10 bits
of the base address must be 0). The RELOC register
resides in the last register address of the PCB, at offset
03FEh. At reset, the base of the PCB is set to FC00h in
I/O space. This places the RELOC register at FFFEh.

PCM
Pulse code modulation. A technique for converting ana-
log signals into digital form that is widely used by the
telephone companies in their T1 circuits. In North Amer-
ica and Japan, PCM samples the analog waves 8,000
times per second and converts each sample into an 8-
bit number, resulting in a 64-Kbit/s data stream. The
sampling rate is twice the 4-KHz bandwidth required for
a toll-quality conversation.

PCM highway
Pulse code modulation highway. One of the external
interfaces supported by the Am186CC communications
controller HDLC channels.
Glossary-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Glossary
pin
Refers to a physical wire on a chip which is available
externally. Compare to signal.

pinstrap
A pinstrap is used to enable or disable features based
on the state of the pin during an external reset. The pin-
strap must be held in its desired state for at least
4.5 clock cycles after the deassertion of the RES signal.
Note that the pinstraps are sampled in an external reset
only (when the RES signal is asserted) not during an
internal watchdog-timer generated reset.

PIO
Programmable input/output. Physical pins on the
Am186CC communications controller that can be used
for any purpose the system designer requires. The sig-
nal on a PIO pin can be sampled through a register and
can be driven High or Low by setting or clearing the
associated bit in the appropriate register.

pipe
A logical abstraction representing the association
between an endpoint on a USB device and software on
the host. A pipe has several attributes; for example, a
pipe may transfer data as streams (stream pipe) or mes-
sages (message pipe).

polled mode
One of three modes supported by the Am186CC com-
munications controller for serial communications. In
polled mode, software reads a status register in a loop,
and reads received data or transmits data depending on
the status register indicator bits. Compare to interrupt
mode and DMA mode.

port
Point of access to or from a system or circuit. For USB,
the point where a USB device is attached.

POTS
Plain old telephone service.

power-on reset
See external reset.

PPP
Point to point protocol.

PRI
Primary rate interface.

programmable priority
Each interrupt channel has eight levels of programma-
ble priority that are set in the channel’s control register.
Programmable priority determines which interrupt to
service when two interrupts are requested at the same
time. An interrupt service routine is interrupted by
another interrupt request of equal or higher programma-
ble priority, as long as the Interrupt-enable Flag (IF) in
the Processor Status Flags (FLAGS) register is set. For

more information about setting the FLAGS register, see
the Am186™CC/CH/CU Microcontrollers Register Set
Manual, order #21916. If the programmable priority lev-
els are equal, the overall priority number is used.

PWD
Pulse width demodulation.

R
raw DCE
One of the external interfaces supported by the
Am186CC communications controller HDLC channels.
Raw DCE is a synchronous serial bus generally used in
modem and other high-speed serial applications. Raw
DCE runs at up to 10 Mbit/s. The Am186CC communi-
cations controller implementation requires transmit
(TCLK) and receive (RCLK) clock inputs, and has
receive data (RXD), transmit data (TXD), and the Clear-
To-Send (CTS) and Ready-To-Receive (RTR) flow con-
trol signals.

receiver
The portion of logic for an HDLC channel, SmartDMA
channel, or UART that processes information coming
into the Am186CC communications controller.

reset
See external reset, internal reset, and system reset.

ring buffer
See circular buffer.

router
The part of a communications network that receives
transmissions and forwards them to their destinations
using the shortest route available. Data may travel
through multiple routers on the way to their destination.

RTR
Ready-to-receive. See CTS/RTR.

RTS
Ready-to-send.

S
SCIT
Special circuit interface for terminals.

SDLC
Synchronous data link control. A data transmission pro-
tocol used by networks using Systems Network
Architecture (a communications format, advanced by
IBM, used on local-area networks to allow multiple sys-
tems access to centralized data). SDLC defines the
format used to transmit the data traveling over network
lines.
Am186™CC/CH/CU Microcontrollers User’s Manual Glossary-7

Glossary
short frame
During an HDLC transfer, a frame containing a number
of bytes between the start and stop flags that is less
than the minimum length specified in the MINRL bit field
of the HxRCON0 register.

signal
Refers to the electrical signal that flows across a pin.
Compare to pin.

simplex
The ability of a serial communications connection to
transmit data in one direction only. Compare to duplex.

SLIC
Subscriber line interface circuit.

SLAC™
Subscriber line audio-processing circuit.

SmartDMA™ channel
An AMD proprietary technique for increasing the perfor-
mance of DMA transfers. SmartDMA channels provide
a method for the transmission and reception of data
across multiple memory buffers and a sophisticated
buffer-chaining mechanism. These channels are always
used in pairs: transmitter and receiver. The transmit
channels can only transfer data from memory to a
peripheral; the receive channels can only transfer data
from a peripheral to memory. See also DMA and gen-
eral-purpose DMA.

SOHO
Small office/home office.

SRAM
Static random access memory. A type of semiconductor
memory that preserves stored information as long as
there is enough power flow to keep the device running.
SRAM does not need refreshing like DRAM. SRAM is
faster and more dependable, but also is more expen-
sive, takes up more space, and uses more power than
DRAM.

software exception
A software interrupt that occurs when an instruction
causes a particular condition in the processor.

software interrupt
An interrupt initiated by the INT or INTO software
instruction, or by a software exception. A software inter-
rupt does not affect the IF flag in the FLAGS register.
Compare to hardware interrupt.

source-synchronized transfer
See synchronized transfer.

SSI
Synchronous serial interface. An AMD proprietary tech-
nology for providing half-duplex, bidirectional data
transfers at transfer rates of up to 25 Mbit/s with a
50-MHz CPU clock. The SSI supports only polled mode,
not interrupt or DMA modes.

stream pipe
A pipe that transfers data as a stream of samples with
no defined USB structure.

synchronization type
A classification that characterizes an isochronous end-
point’s capability to connect to other isochronous
endpoints.

synchronized transfer
A transfer of information in which the transmitter and
receiver coordinate their operations with a clock signal
or some other technique so the receiver knows when
the next piece of information is available from the trans-
mitter. In DMA operations, a synchronized transfer
takes place when either the source of the data (source-
synchronized) or the destination of the data (destina-
tion-synchronized) generates a DRQ to request the
transfer. Compare to unsynchronized transfer.

synchronous transmission
Data transmission in which the time of occurrence of
each signal representing a bit is related to a fixed time
frame. Typically, the transmitter sends a clock signal
along with the data so the receiver knows when to
receive each bit. Compare to asynchronous transmis-
sion and isochronous transmission.

system reset
The reset of the Am186CC/CH/CU microcontrollers (the
CPU plus the internal peripherals) as well as any exter-
nal peripherals connected to the RESOUT pin. An
external reset always causes a system reset; an internal
reset can optionally cause a system reset. Compare to
internal reset and external reset.

T
TDM
Time-division multiplex. A method of transmitting multi-
ple signals (data, voice, and/or video) simultaneously
over one communications medium by interleaving a
piece of each signal one after another.

TIC
Terminal interchip communication.

top of FIFO
The memory address or register where the next item in
a first-in-first-out buffer can be read.
Glossary-8 Am186™CC/CH/CU Microcontrollers User’s Manual

Glossary
trace interrupt
The trace interrupt is the highest priority interrupt. It is a
software interrupt in that it is initiated by software, but
unlike other software interrupts, it does clears the IF
flag.

transparency
See data transparency.

transparent mode
A mode of operation for an HDLC transmit channel that
transmits the data exactly as it appears in the FIFO.
Transparent mode does no bit stuffing, no framing with
flags, and does not support CRC. Transparent mode is
useful for transmitting raw data streams such as audio
data (for use with a codec or DSP).

transaction
The delivery of service to an endpoint. A transaction
consists of a token packet, an optional data packet, and
an optional handshake packet. Specific packets are
allowed or required based on the transaction type.

transceiver
A transmitter/receiver that can send and accept
information.

transfer
One or more bus transactions to move information
between a software client and its function.

transfer type
Determines the characteristics of the data flow between
a software client and its function. Four USB transfer
types are defined: control, interrupt, bulk, and
isochronous.

transmitter
The portion of logic for an HDLC channel or SmartDMA
channel that sends information out from the Am186CC/
CH/CU microcontrollers.

TSA
Time-slot assigner. The portion of logic in an HDLC
channel that directs data from the HDLC channel to an
external communication interface or vice versa. A TSA’s
main function is to allow the transmission and reception
of data to and from an individual HDLC by providing the
appropriate HDLC clock and clock enable signals dur-
ing its programmed time slot within an 8-KHz frame. The
Am186CC/CH/CU microcontrollers support the follow-
ing external interfaces: raw DCE and PCM Highway. In
addition, the Am186CC communications controller sup-
ports GCI.

U
UART
Universal asynchronous receiver/transmitter. A device
that provides full-duplex, bidirectional data transfer in
RS-232 format. The Am186CC/CH/CU microcontrollers
have a UART that supports speeds up to 115.2 Kbaud
and a High-Speed UART that supports speeds up to
460 Kbaud. The UARTs support full-duplex transfers in
polled, interrupt, and DMA modes.

unsynchronized transfer
A transfer of information in which the transmitter sends
data without regard for any signal or other indication
from the receiver. During an unsynchronized transfer in
DMA operations, DRQ is always asserted; and the
transfer takes place continually until the correct number
of transfers occur. Compare to synchronized transfer.

USB
Universal serial bus. USB is an industry standard exten-
sion to the PC architecture that provides an easy-to-use
port for connecting up to 127 peripheral devices at
transfer rates up to 12 Mbit/s. The USB specification
supports isochronous (real-time) data transfers for
voice, audio, and compressed video; bulk data transfers
for devices such as printers and terminal adapters; and
interrupt data transfers for event-driven devices such as
pointing devices and keyboards.

The USB portion of the Am186CC and Am186CU
microcontrollers supports half-duplex transfers in
polled, interrupt, and DMA modes.

USB device
A logical or physical entity that performs a function. The
actual entity described depends on the context of the
reference. At the lowest level, the term device may refer
to a single hardware component, as in a memory
device. At a higher level, it may refer to a collection of
hardware components that perform a particular func-
tion, such as a USB interface device. At an even higher
level, the term device may refer to the function per-
formed by an entity attached to the USB; for example, a
data/FAX modem device. Devices may be physical,
electrical, addressable, and logical.

USB endpoint
A uniquely identifiable portion of a USB device that is
the source or sink of information in a communication
flow between the host and device. Each endpoint is sup-
ported by a first-in-first-out buffer (FIFO). The FIFO is a
temporary storage location for the data that is passed
between the microcontroller’s CPU or memory bus and
the integrated USB peripheral controller. See also con-
trol endpoint, data endpoint, and interrupt endpoint.
Am186™CC/CH/CU Microcontrollers User’s Manual Glossary-9

Glossary
V
very short frame
During an HDLC transfer, a frame containing less than
two bytes (zero or one) between the start and stop flags.

W
wait state
A pause in a microprocessor’s clock cycles that allows
for differences in speed between one component and
others in a computer (such as input/output devices or
RAM). Wait states are common in systems where the
microprocessor has a much higher clock speed than
other components, requiring the latter to play catch up.
During a wait state, the microprocessor idles for one or
more cycles while data comes in from RAM or other
components. Wait states also are not uncommon
between buses and devices connected to the bus.

WAN
Wide area network.

word
In the x86 environment, a group of 16 adjacent binary
digits (bits) or two bytes.

Z
zero-bit deletion
See bit unstuffing.

zero-bit insertion
See bit stuffing.
Glossary-10 Am186™CC/CH/CU Microcontrollers User’s Manual

INDEX
Numerics
32-channel linecard application, 1-15

A
A bus, definition, Glossary-1
A19–A0 signals

description, 3-10
emulator support, 4-2

ACK, definition, Glossary-1
acknowledge

DMA, 8-10
interrupt, 7-10

activation, GCI, 17-10
AD bus, definition, Glossary-1
AD15–AD0 signals

description, 3-10
emulator support, 4-2

ADCCP, definition, Glossary-1
adding data buffers, 8-32, 8-34
address

generation, 2-5, 2-6
multiplexing, DRAM, 6-4

address and data bus (AD15–AD0)
description, 3-10

address bit, UART, 13-9, 13-10
address bus

configuring chip select, 5-9
description, 3-10, 3-13
overview, 3-30

addressing mode, 2-9, 2-10
ADEN signal

description, 3-7
emulator support, 4-2

ADSL, definition, Glossary-1
AEPBUFS register, 18-8
AEPCTL register, 18-8
AEPDAT register, 18-8
AEPDEF1 register, 18-8
AEPDEF2 register, 18-9
AEPDEF3 register, 18-9
AEPSIZ register, 18-8

ALE signal
description, 3-10
emulator support, 4-3

Am186CC microcontroller, block diagram, 1-5
Am186CC/CH/CC microcontroller

block diagrams, 1-4
clocks, 3-33
DMA channel use, 8-8, 8-9
embedded CPU overview, 1-6
signal description table, 3-10

Am186CH HDLC microcontroller, block diagram, 1-5
Am186CU USB microcontroller, block diagram, 1-5
ANSI, definition, Glossary-1
application

basic-rate GCI with ISDN, 16-10
GCI, 17-8
GCI-PCM highway conversion, 12-5
ISDN, 12-5
ISDN-to-ethernet low-end router, 1-14
linecard, 1-15, 12-4
overview, 1-13
PCM highway, 16-11
serial communication overview, 12-3
synchronous serial interface, 14-3

arbitration, GCI D-channel, 17-17
architectural overview, 1-6
ARCVPK register, 18-8
ARDY signal

description, 3-10
emulator support, 4-3

array BOUNDS exception interrupt, 7-20
asynchronous communications

High-Speed UART signal descriptions, 3-22
overview, 12-6
UART signal descriptions, 3-22

asynchronous serial interface. See UART.
asynchronous transmission, definition, Glossary-1
asynchronous, definition, Glossary-1
AT interface, definition, Glossary-1
autobaud. See baud rate, detection.
Am186™CC/CH/CU Microcontrollers User’s Manual Index-1

Index
B
basic-rate GCI, 16-10
baud rate

detection
description, 13-16
enhancement, 13-18
error, 13-17
procedure, 13-7
range, 13-17

programming, 13-15
setting, 13-6
table, UART, 13-15

BEPBUFS register, 18-9
BEPCTL register, 18-9
BEPDAT register, 18-9
BEPDEF1 register, 18-9
BEPDEF2 register, 18-9
BEPDEF3 register, 18-9
BEPSIZ register, 18-9
BHE signal

description, 3-11
emulator support, 4-2, 4-3

bit sampling, UART, 13-16
bit stuffing, definition, Glossary-1
bit unstuffing, definition, Glossary-1
block diagram

Am186CC microcontroller, 1-5
Am186CC/CH/CU microcontrollers, 1-4
Am186CH HDLC microcontroller, 1-5
Am186CU USB microcontroller, 1-5
chip select, 5-2
DMA, 8-3
DRAM, 6-2
GCI, 17-1
HDLC, 15-2
HDLC receiver, 15-15
HDLC transmitter, 15-10
interrupt, 7-2
interrupt (partial), 7-15
maskable interrupt, 7-15
programmable I/O, 9-1
synchronous serial interface, 14-1
TSA, 16-3
typical system, 3-29
UART, 13-2
USB, 18-2
watchdog timer, 11-1

BOUNDS exception interrupt, 7-20
BRCVPK register, 18-9
break detection and generation, UART, 13-20
break, definition, Glossary-1
breakpoint interrupt, 7-19
BRI, definition, Glossary-1

BSIZE8 signal
description, 3-11
emulator support, 4-3

buffer
adding, 8-32, 8-34
descriptor ring, creating, 8-31, 8-33
descriptor ring, definition, Glossary-1
queues, using, 8-20
replacing, 8-35

buffer queue, definition, Glossary-1
buffer, definition, Glossary-1
bulk transfer, definition, Glossary-1
bus

address bus description, 3-10, 3-13
bus status pins, 3-13
data. See data bus.
GCI. See GCI bus.
system. See system bus.

bus interface, signal list, 3-10
byte transfers, DMA, 8-15
byte write enables, 3-31
byte, definition, Glossary-1

C
C/I channel, GCI, 17-15
C/I0 arbitration, GCI, 17-18
CAS1–CAS0 signals

description, 3-19
emulator support, 4-3

CCIT, definition, Glossary-1
CDRAM register, 6-3
CEPBUFS register, 18-9
CEPCTL register, 18-9
CEPDAT register, 18-9
CEPDEF1 register, 18-9
CEPDEF2 register, 18-9
CEPDEF3 register, 18-9
CEPSIZ register, 18-9
chip select

block diagram, 5-2
comparison to other devices, 5-11
configuring address and data buses, 5-9
DRAM signal functions, 5-7
hardware considerations, 5-10
I/O space, 5-7
I/O, selecting, 5-5
initialization, 5-11
LCS signal, 5-5
MCS3–MCS0 signals, 5-5
memory space, 5-6
memory, selecting, 5-5
multiplexed signals, 5-3
Index-2 Am186™CC/CH/CU Microcontrollers User’s Manual

Index
operation, 5-4
overlapping, 5-8
overlapping PCS with DRAM, 6-5
overview, 1-12
PCS, 5-9
PCS7–PCS0 signals, 5-6
ranges and DRAM configuration, 3-10, 3-19
ready signal programming, 5-10
registers, 5-3
selecting DRAM, 5-7
signal descriptions, 3-17
software considerations, 5-10
system design, 5-2
timing, 5-10
UCS signal, 5-5
usage, 5-4
wait state programming, 5-10

CHxCON register, 7-5
circular buffer

definition, Glossary-1
small or misaligned, 8-25
using, 8-20, 8-23

clearing PIO data, 9-6
CLKOUT signal

description, 3-14
emulator support, 4-3

CLKSEL1 signal, 3-7
CLKSEL2 signal, 3-7
clock

CLKOUT signal description, 3-14
control, 3-32
overview, 1-11
source, UART, 13-14
UART, 13-15
USB, 18-5

CNTCTL register, 18-8
CNTDAT register, 18-8
CNTDEF1 register, 18-8
CNTDEF2 register, 18-8
CNTRPK register, 18-8
CNTSIZ register, 18-8
CO, definition, Glossary-2
codec

definition, Glossary-2
timing parameters, 16-14

collision detection
GCI D-channel, 17-17
GCI monitor channel, 17-14

command, USB
handled by hardware, 18-27
handled by software, 18-26
handling, 18-26
protocol, 18-28

configuration
of maskable interrupts, 7-7
register, 3-4
summary, 2-4

connect, USB, 18-3
control endpoint

definition, 18-30, 18-31, Glossary-2
interrupts, 18-29
programming, 18-11

controller-specific information, xxiii
conventions, documentation, xxii
converted GCI signals, 17-14
CPU

addressing mode example, 2-10
addressing modes, 2-9
CPU PLL modes, 3-7
data types, 2-8, 2-9
definition, Glossary-2
I/O space, 2-6
instruction set, 2-7
memory and I/O space, 2-7
memory operands, 2-9
memory organization and address generation, 2-5
overview, 1-6
processor registers, 2-1
register and immediate operands, 2-9
register set, 2-1, 2-2
segment register, 2-7, 2-8
states, following power-on reset, 3-6

CRC, definition, Glossary-2
CRCVPK register, 18-9
create buffer descriptor ring, 8-31, 8-33
CTR, definition, Glossary-2
CTS

HDLC
end of transmit control, 15-14
inactive at end of frame, 15-14
start of transmit control, 15-14

protocol overview, 12-7
UART flow control, 13-13

CTS/RTR, definition, Glossary-2
CTS_HU signal, 3-23
CTS_U signal, 3-22

D
data

buffers, adding, 8-32, 8-34
DMA transfers, 8-11
GCI, receiving, 17-7
handling USB data, 18-18
programmable I/O, 9-6
replacing used data buffers, 8-35
transparency, definition, Glossary-2
Am186™CC/CH/CU Microcontrollers User’s Manual Index-3

Index
types, 2-8, 2-9
UART

data overflow, 13-8
description, 13-8
receiving, 13-7, 13-10

USB
control endpoint, 18-29
interrupt endpoint, 18-30
transmission types, 18-16

data bus
configuring chip select, 5-9
overview, 3-30

data endpoint
defining, 18-32
definition, Glossary-2

DCE (data communications equipment)
definition, Glossary-2
signal descriptions, 3-23

DCE_CTS_A signal, 3-24
DCE_CTS_B signal, 3-24
DCE_CTS_C signal, 3-24
DCE_CTS_D signal, 3-25
DCE_RCLK_A signal, 3-23
DCE_RCLK_B signal, 3-24
DCE_RCLK_C signal, 3-24
DCE_RCLK_D signal, 3-25
DCE_RTR_A signal, 3-24
DCE_RTR_B signal, 3-24
DCE_RTR_C signal, 3-25
DCE_RTR_D signal, 3-25
DCE_RXD_A signal, 3-23
DCE_RXD_B signal, 3-24
DCE_RXD_C signal, 3-24
DCE_RXD_D signal, 3-25
DCE_TCLK_A signal, 3-23
DCE_TCLK_B signal, 3-24
DCE_TCLK_C signal, 3-24
DCE_TCLK_D signal, 3-25
DCE_TXD_A signal, 3-23
DCE_TXD_B signal, 3-24
DCE_TXD_C signal, 3-24
DCE_TXD_D signal, 3-25
D-channel, GCI, 17-17
deactivation, GCI, 17-10
debug support signals, 3-17
decrementing DMA address, 8-15
default address, definition, Glossary-2
DEN signal, 3-11
DEPBUFS register, 18-9
DEPCTL register, 18-9
DEPDAT register, 18-9

DEPDEF1 register, 18-9
DEPDEF2 register, 18-9
DEPDEF3 register, 18-9
DEPSIZ register, 18-9
descriptor format, 8-38
descriptor ring

creating, 8-31, 8-33
definition, Glossary-2
transmit, 8-30, 8-31

destination
address, 8-13
synchronization, 8-10

destination-synchronized transfer
definition, Glossary-2
description, 8-18

detectable baud ranges, 13-17
device address, definition, Glossary-2
device, definition, Glossary-2
differences, controller, xxiii
disconnect, USB, 18-3
divide error exception interrupt, 7-19
DMA

See also SmartDMA channel.
acknowledge, 8-10
adding data buffers, 8-32, 8-34
availability, 18-19
block diagram, 8-3
byte or word transfers, 8-15
channel use, 8-8, 8-9
circular buffers, 8-23
comparison to other devices, 8-43
create descriptor ring, 8-31, 8-33
deasserting DRQ, 8-19
decrementing address, 8-15
definition, Glossary-2
destination synchronization, 8-10, 8-18
enabling

peripheral device, 8-35
receive channel, 8-33, 8-35
transmit channel, 8-31, 8-33

FIFO interaction, 18-20
general-purpose

channels, 8-11
cycle, 8-12
data transfers, 8-11
interrupts, 8-13
operations, 8-14
request source, 8-17
source and destination addresses, 8-13
synchronization, 8-17
terminal count, 8-14
usage, 8-12

generating interrupts, 8-15
hardware flow control, 8-24
incrementing address, 8-15
Index-4 Am186™CC/CH/CU Microcontrollers User’s Manual

Index
initialization, 8-44
interface to UART, 13-21
latency, definition, Glossary-2
maximum transfer rates, 8-19
mode, definition, Glossary-2
mode, UART, 13-12
multiplexed signals, 8-4
operation, 8-7
overview, 1-10
priority, 8-9
receive descriptor ring, 8-31
receive errors, 8-25
receive multitasking, 8-25
receive XON/XOFF flow control, 8-24
registers, 8-4
replacing used data buffers, 8-35
request signals, 3-11
request sources, 8-15, 8-16
request synchronization, 8-10
serial communication overview, 12-7
setting synchronization, 8-17
setting up for USB, 18-21
small or misaligned circular buffer, 8-25
software considerations, 8-43
source synchronization, 8-10, 8-17
system design, 8-4
trade-offs, 18-6
transfer, definition, Glossary-2
transmit descriptor ring, 8-30
UART example, 8-21
UART FIFO, 13-12
unsynchronized transfers, 8-17
USB endpoints, 18-20
using buffer queues, 8-20
using circular buffers, 8-20
using with USB, 18-19
with interrupts, 8-10
with timer 2, 8-16
with UART, 8-16
with USB, 8-17, 8-43

DMAHLT register, 7-5
documentation conventions, xxii
downstream GCI

monitor channel data reception, 17-15
versus upstream, 17-11, 17-12

DRAM
address multiplexing, 6-4
block diagram, 6-2
chip select, 5-7
chip selects and DRAM configuration, 3-10
comparison to other devices, 6-7
definition, Glossary-3
hardware considerations, 6-6
initialization, 6-7
interface, 6-4
multiplexed signals, 6-2
operation, 6-3

overlapping PCS, 6-5
overview, 1-11, 3-32
refresh, 6-5
refresh interval, 6-6
refreshing, 6-1
register summary, 6-3
signal descriptions, 3-19
signal functions, 5-7
software considerations, 6-6
speeds and wait states, 6-4
supported devices, 6-3
system design, 6-2
usage, 6-3

DRCVPK register, 18-9
DRQ1–DRQ0 signals

deassertion, 8-19
description, 3-11

DS signal, 3-12
DSL, definition, Glossary-3
DT/R signal, 3-12
DTE, definition, Glossary-3
duplex, definition, Glossary-3
dynamic random access memory. See DRAM.

E
EDO, definition, Glossary-3
EDRAM register, 6-3
emulator support

A19–A0 signals, 4-2
AD15–AD0 signals, 4-2
ADEN, 4-2
ALE signal, 4-3
ARDY signal, 4-3
BHE signal, 4-2, 4-3
BSIZE8 signal, 4-3
CAS1–CAS0 signals, 4-3
CLKOUT signal, 4-3
comparison to other devices, 4-5
connection, 4-1
hardware considerations, 4-5
initialization, 4-5
LCS signal, 4-3
MCS3–MCS0 signals, 4-4
multiplexed signals, 4-1
ONCE signal, 4-4
operation, 4-2
overview, 1-12
QS1–QS0 signals, 4-4
RAS1–RAS0 signals, 4-3, 4-4
RD signal, 4-4
related signals, 4-2
RES signal, 4-4
RESOUT signal, 4-4
S2–S0 signals, 4-5
Am186™CC/CH/CU Microcontrollers User’s Manual Index-5

Index
S6 signal, 4-5
signals used by emulators, 3-17
SRDY signal, 4-3, 4-5
system design, 4-1
UCS signal, 4-5
UCSX8 signal, 4-5
usage, 4-2
WHB signal, 4-5
WLB signal, 4-5
WR signal, 4-5

end of HDLC transmit, CTS control, 15-14
end-of-interrupt (EOI), 7-10
endpoint

address, definition, Glossary-3
control endpoint, defining, 18-30, 18-31
control endpoint, interrupts, 18-29
defining, 18-30
definition, Glossary-3
number, definition, Glossary-3

EOI register, 7-5
EOM, definition, Glossary-3
error recovery

DMA receive, 8-25
USB endpoints, 18-22, 18-23

ESC opcode exception interrupt, 7-20
ethernet-to-ISDN application, 1-14
even parity, definition, Glossary-3
example

automatic baud rate detection, 13-18
DMA register settings, 8-22
DMA with UART, 8-21
memory addressing mode, 2-10
UART break character, 13-20

extended reads and writes, 13-10
external interface. See TSA.
external reset, definition, Glossary-3
external transceiver, USB, 18-5

F
FCS, definition, Glossary-3
features

Am186CC microcontroller, 1-1
Am186CH HDLC microcontroller, 1-2
Am186CU USB microcontroller, 1-3
comparison, 1-4
overview, 1-1
system, 3-32

FIFO
definition, Glossary-3
DMA, 18-20
high-water mark, definition, Glossary-3
serial communications overview, 12-7
UART, 13-11
UART receive, 13-12

FLAGS register, 2-2, 2-3
flow control

DMA, 8-24
overview, 12-6
UART, 13-13

fly-by-transfer, definition, Glossary-3
four-pin interface, GCI, 17-13
FPMCNT register, 18-7
frame

definition, Glossary-3
HLDC, 15-1
UART, 13-8

frame synchronization (frame sync)
definition, Glossary-3
TSA, 16-13

framing error, definition, Glossary-3
full duplex

definition, Glossary-3
description, 12-8

G
GCI

activation, 17-10
applications, 17-8
basic-rate GCI with ISDN, 16-10
block diagram, 17-1
bus

deactivation and activation, 17-9, 17-10
description, 17-9
reversal, 17-11, 17-12, 17-13

C/I channel, 17-15
C/I0 arbitration, 17-18
channels, 17-14
codec timing parameters, 16-14
comparison to other devices, 17-20
D-channel, 17-17
deactivation, 17-10
definition, Glossary-4
downstream monitor channel data reception, 17-15
downstream TIC format, 17-16
downstream versus upstream, 17-11, 17-12
four-pin interface, 17-13
frame sync and clock conversion, 16-12
frequencies, 17-14
GCI-to-PCM conversion, 17-14
HDLC channel steering, 17-14
IC channel operation, 17-19
Index-6 Am186™CC/CH/CU Microcontrollers User’s Manual

Index
initialization, 17-20
interface signals, 17-13
interrupts, 17-19
monitor channel, 17-14
operation, 17-5
overview, 1-8
PCM highway conversion with ISDN, 12-5
receiving data, 17-7
registers, 17-5
signal conversion, 17-14
signal descriptions, 3-27
signals, 17-13
software considerations, 17-20
structure, 17-8
TIC bus, 17-16
transmitting data, 17-6
upstream monitor channel transmission, 17-15
upstream TIC format, 17-16
usage, 17-5
with TSA, 16-14

GCI_DCL_A signal, 3-27
GCI_DD_A signal, 3-27
GCI_DU_A signal, 3-27
GCI_FSC_A signal, 3-27
GCIRD0 register, 17-5
GCIRD0P register, 17-5
GCIRD1 register, 17-5
GCIRD1P register, 17-5
GCITD0 register, 17-5
GCITD1 register, 17-5
GDxCON0 register, 8-4, 8-5
GDxCON1 register, 8-4, 8-5
GDxDSTH register, 8-5
GDxDSTL register, 8-4, 8-5
GDxSRCH register, 8-4, 8-5
GDxSRCL register, 8-4, 8-5
GDxTC register, 8-5
general circuit interface. See GCI.
general-purpose DMA

See also DMA, general-purpose.
definition, Glossary-4

GICRD register, 17-5
GICRDP register, 17-5
GICTD register, 17-5
GIMSK register, 17-5
GISTAT register, 17-5
GMRD register, 17-5
GMRDP register, 17-5
GMTD register, 17-5
GPCON register, 17-5
ground pins, 3-16
GTIC register, 17-5

H
half duplex

definition, Glossary-4
description, 12-8

handling USB data, 18-18
hardware considerations

chip select, 5-10
DRAM, 6-6
emulator support, 4-5
HDLC, 15-20
programmable I/O (PIO), 9-7
system, 3-34
UART, 13-22
watchdog timer, 11-4

hardware flow control
DMA, 8-24
overview, 12-6
UART, 13-13

hardware interrupt, definition, Glossary-4
HDLC

block diagram, 15-2
comparison to other devices, 15-21
control application, 12-4
CTS control, 15-14
definition, Glossary-4
frame, 15-1
general options, 15-9
hardware considerations, 15-20
initialization, 15-21
interface, 15-7
interrupts, 15-20
operation, 15-7
overview, 1-7
programmed I/O, 15-8
receive interrupt, 15-20
receiver, 15-14, 15-19
receiver block diagram, 15-15
register summary, 15-6
RTR timing, 15-18
signal descriptions, 3-23
software considerations, 15-21
transmit interrupt, 15-20
transmitter, 15-10, 15-18
transmitter block diagram, 15-10
usage, 15-7
with SmartDMA channel, 15-18

High-Speed UART. See UART.
HLDA signal, 3-12
HOLD latency, definition, Glossary-4
HOLD signal, 3-13
host, definition, Glossary-4
HSPAB0 register, 13-4
HSPAB1 register, 13-4
HSPAB2 register, 13-4
Am186™CC/CH/CU Microcontrollers User’s Manual Index-7

Index
HSPAB3 register, 13-4
HSPBDV register, 13-4
HSPCON0 register, 13-4
HSPCON1 register, 13-4
HSPIMSK register, 13-4
HSPM0 register, 13-4
HSPM1 register, 13-4
HSPM2 register, 13-4
HSPRXD register, 13-4
HSPRXDP register, 13-4
HSPSTAT register, 13-4
HSPTXD register, 13-4
HxA0 register, 15-7
HxA0MSK register, 15-7
HxA1 register, 15-7
HxA1MSK register, 15-7
HxA2 register, 15-7
HxA2MSK register, 15-7
HxA3 register, 15-7
HxA3MSK register, 15-7
HxCON register, 15-6
HxIMSK0 register, 15-6
HxIMSK1 register, 15-6
HxISTAT0 register, 15-6
HxISTAT1 register, 15-6
HxMACNT register, 15-6
HxMACNTP register, 15-7
HxRCON0 register, 15-6
HxRCON1 register, 15-6
HxRD register, 15-6
HxRDP register, 15-6
HxRFS1 register, 15-6
HxRFS2 register, 15-6
HxRFS3 register, 15-6
HxSFCNT register, 15-6
HxSFCNTP register, 15-6
HxSTATE register, 15-6
HxTCON0 register, 15-6
HxTCON1 register, 15-6
HxTD register, 15-6

I
I/O space

and memory, 2-7
chip select, 5-5
description, 2-6
PCS, 5-9

IC channel, GCI, 17-19
ICE, definition, Glossary-4

IEPCTL register, 18-8
IEPDAT register, 18-8
IEPDEF1 register, 18-8
IEPDEF2 register, 18-8
IMASK register, 7-5
immediate operands, CPU, 2-9
in-circuit emulator (ICE) support, 1-12
incrementing DMA address, 8-15
initialization

chip select, 5-11
DMA, 8-44
DRAM, 6-7
emulator support, 4-5
GCI, 17-20
HDLC, 15-21
interrupt, 7-20
programmable I/O (PIO), 9-7
synchronous serial interface (SSI), 14-9
system, 3-5, 3-34
TSA, 16-14
UART, 13-23
UART receiver, 13-6
UART transmitter, 13-5
USB, 18-33
watchdog timer, 11-5

INSERV register, 7-5
instruction set, CPU, 2-7
INT0 detected overflow exception interrupt, 7-19
INT8–INT0 signals, 3-19
interface, HDLC, 15-7
internal peripherals

definition, Glossary-4
state following power-on reset, 3-6

internal reset, definition, Glossary-4
internal transceiver, USB, 18-4
interrupt

acknowledge, 7-10
array BOUNDS exception, 7-20
block diagram, 7-2
breakpoint, 7-19
channel map, 7-16
channel sources, 7-17
channel, definition, Glossary-4
comparison to other devices, 7-20
conditions, 7-9
definition, Glossary-4
divide error exception, 7-19
DMA, 8-13, 8-15
end-of-interrupt (EOI), 7-10
endpoint, definition, Glossary-4
ESC opcode exception, 7-20
GCI interrupts, 17-19
HDLC interrupts, 15-20
initialization, 7-20
Index-8 Am186™CC/CH/CU Microcontrollers User’s Manual

Index
INT0 detected overflow exception, 7-19
INT0 overflow detected, 7-19
IRET instruction, 7-10
latency, definition, Glossary-4
maskable

block diagram, 7-15
configuring, 7-7
cycle, 7-13
overview, 7-14
priority, 7-11
processing, 7-13

mode, definition, Glossary-4
multiplexed signals, 7-4
NMI considerations, 7-14
nonmaskable

considerations, 7-14
description, 7-18, 7-19

nonmaskable (NMI), 7-11, 7-18, 7-19
operation, 7-6
overview, 1-9
partial block diagram, 7-15
polled mode, 7-14
priority, 7-11
register summary, 7-5
registers, 7-4, 7-18
requesting, 7-9
return, 7-10
sequence, 7-9
serial communication overview, 12-7
servicing, 7-10
signal descriptions, 3-19
SmartDMA channel, 8-42
software considerations, 7-20
software interrupt, 7-14, 7-19
source, definition, Glossary-4
system design, 7-3
terminology, 7-8
trace, 7-19
transfer, definition, Glossary-5
trap considerations, 7-14
type, definition, Glossary-5
types, 7-12
UART FIFO, 13-12
UART sources, 13-19
unused opcode exception, 7-20
usage, 7-6
USB interrupt endpoint, 18-30, 18-31
USB interrupts, 18-19
vector address, definition, Glossary-5
vector table, definition, Glossary-5
vector translation, 7-9
with DMA, 8-10
with UART, 13-12

interrupt endpoint programming, 18-11
INTPOL register, 7-6
INTSTS register, 7-5

IOM-2
See also GCI.
definition, Glossary-5

IRET instruction, 7-10
ISCTL register, 18-7
ISDN application

basic-rate GCI, 16-10
GCI-PCM highway conversion, 12-5
ISDN-to-ethernet, 1-14
low-end router, 1-14
serial communications overview, 12-5
terminal adapter overview, 1-14

ISDN, definition, Glossary-5
isochronous transfer

definition, Glossary-5
features, 18-24
synchronization, 18-6, 18-23

isochronous transmission, definition, Glossary-5
ISR, definition, Glossary-5

L
LANCE, definition, Glossary-5
LAP-B, definition, Glossary-5
LAP-D, definition, Glossary-5
latency, definition, Glossary-5
LCS signal

chip select, 5-5, 5-9
description, 3-17
emulator support, 4-3

linecard application, 1-15, 12-4
LMCS register, 5-3
low-end router application, 1-14
LSB, definition, Glossary-5

M
maskable interrupt

See also interrupt, maskable.
definition, Glossary-5

mastering, bus, 3-31
maximum DMA transfer rates, 8-19
MCS3–MCS0 signals

chip select, 5-5
description, 3-17
emulator support, 4-4

memory
addressing mode example, 2-10
and I/O space, 2-7
chip select, 5-5
interface overview, 1-11
lower chip select, 5-5, 5-9
midrange chip select, 5-5
Am186™CC/CH/CU Microcontrollers User’s Manual Index-9

Index
operands, 2-9
organization and address generation, 2-5
refresh cycle, 6-1
upper chip select, 4-5, 5-5

message pipe, definition, Glossary-5
misaligned circular buffer, 8-25
MMCS register, 5-3
monitor channel, GCI, 17-14, 17-15
MPCS register, 5-3
MSB, definition, Glossary-5
multidrop, definition, Glossary-5
multiplexed mode, definition, Glossary-5
multiplexed signal

chip select, 5-3
definition, Glossary-5
DMA, 8-4
DRAM, 6-2
emulator support, 4-1
interrupt, 7-4
list, 9-3
serial communication, 12-2
synchronous serial interface, 14-2
system, 3-1, 12-2
TSA muxing logic, 16-8
UART, 13-3
USB, 18-3
watchdog timer, 11-2

multipoint, definition, Glossary-5
multitasking, DMA receive, 8-25
mux, definition, Glossary-5

N
NACK, definition, Glossary-6
nibble, definition, Glossary-6
NMI

See also interrupt, nonmaskable.
definition, Glossary-6
signal, 3-20

nonmaskable interrupt. See interrupt.
nonmultiplexed mode, definition, Glossary-6
non-UCS and non-LCS bus width, 5-9
NRZ, definition, Glossary-6
NRZI, definition, Glossary-6

O
odd parity, definition, Glossary-6
ONCE signal

description, 3-7
emulator support, 4-4

ONCE, definition, Glossary-6
open-drain output, PIO, 9-6

operands, register and immediate, 2-9
operation

chip select, 5-4
DMA, 8-7
DRAM, 6-3
emulator support, 4-2
GCI, 17-5
HDLC, 15-7
interrupt, 7-6
programmable I/O (PIO), 9-5
synchronous serial interface (SSI), 14-4
system, 3-30
TSA, 16-7
UART, 13-4
USB, 18-10
watchdog timer, 11-3

OSI, definition, Glossary-6
output enable, 3-31
overall priority, definition, Glossary-6
overflow exception interrupt, 7-19
overlapping

chip selects, 5-8
PCS with DRAM, 6-5

P
PABX, definition, Glossary-6
packet buffer, definition, Glossary-6
packet ID, definition, Glossary-6
packet, definition, Glossary-6
PACS register, 5-3
parity, definition, Glossary-6
PCB, definition, Glossary-6
PCM highway

conversion application, 12-5
definition, Glossary-6
description, 16-11
signal descriptions, 3-25

PCM, definition, Glossary-6
PCM_CLK_A signal, 3-25
PCM_CLK_B signal, 3-26
PCM_CLK_C signal, 3-26
PCM_CLK_D signal, 3-26
PCM_FSC_A signal, 3-25
PCM_FSC_B signal, 3-26
PCM_FSC_C signal, 3-26
PCM_FSC_D signal, 3-27
PCM_RXD_A signal, 3-25
PCM_RXD_B signal, 3-26
PCM_RXD_C signal, 3-26
PCM_RXD_D signal, 3-26
PCM_TSC_A signal, 3-25
Index-10 Am186™CC/CH/CU Microcontrollers User’s Manual

Index
PCM_TSC_B signal, 3-26
PCM_TSC_C signal, 3-26
PCM_TSC_D signal, 3-27
PCM_TXD_A signal, 3-25
PCM_TXD_B signal, 3-26
PCM_TXD_C signal, 3-26
PCM_TXD_D signal, 3-26
PCS I/O space, 5-9
PCS7–PCS0 signals, description, 3-18, 5-6
peripheral

interface, overview, 1-11
on-chip, overview, 1-9
PCS chip select, 5-9
registers, 2-4, 2-5

physical address generation, 2-6
pin

definition, Glossary-7
reserved, 3-16

pinstrap
definition, Glossary-7
pinstraps table, 3-7

PIO multiplexed signals, 9-3
PIO, definition, Glossary-7
PIO47–PIO0 signals, 3-21
PIOCLR0 register, 9-5
PIOCLR1 register, 9-5
PIOCLR2 register, 9-5
PIODATA0 register, 9-5
PIODATA1 register, 9-5
PIODATA2 register, 9-5
PIODIR0 register, 9-5
PIODIR1 register, 9-5
PIODIR2 register, 9-5
PIOMODE0 register, 9-5
PIOMODE1 register, 9-5
PIOMODE2 register, 9-5
PIOPOL register, 7-6
PIOSET0 register, 9-5
PIOSET1 register, 9-5
PIOSET2 register, 9-5
pipe, definition, Glossary-7
PLL (phase-locked loop)

mode, USB, 18-6
modes, 3-7
PLL bypass (CPU), 3-7

POLL register, 7-5
polled mode

definition, Glossary-7
serial communication overview, 12-7
UART, 13-12
USB, 18-18

POLLST register, 7-5
port, definition, Glossary-7
POTS

definition, Glossary-7
linecard application, 12-4

power
ground pins, 3-16
power pins, 3-16

power-on reset, definition, Glossary-7
PPP, definition, Glossary-7
PRI, definition, Glossary-7
PRIMSK register, 7-5
priority

DMA, 8-9
interrupt, 7-11

PRL register, 3-4
processor registers, 2-1
processor status flags register, 2-2, 2-3
programmable bus sizing, 3-30
programmable I/O (PIO)

as interrupt source, 7-18
block diagram, 9-1
comparison to other devices, 9-7
defining input or output, 9-5
driving data, 9-6
hardware considerations, 9-7
initialization, 9-7
mode and direction, 9-6
operation, 9-5
overview, 1-10
register summary, 9-5
registers, 9-5
set and clear registers, 9-6
setting and clearing data, 9-6
signal descriptions, 3-21
software considerations, 9-7
system design, 9-2
usage, 9-5
using as open-drain output, 9-6

programmable priority, definition, Glossary-7
programmed I/O, HDLC, 15-8
protocol, USB, 18-17
PWD signal, 3-21
PWD, definition, Glossary-7

Q
QS1–QS0 signals

description, 3-17
emulator support, 4-4
Am186™CC/CH/CU Microcontrollers User’s Manual Index-11

Index
R
RAS1–RAS0 signals

description, 3-19
emulator support, 4-3, 4-4

raw DCE
definition, Glossary-7
description, 16-11

RD signal
description, 3-13
emulator support, 4-4

ready signal, chip select, 5-10
receive

DMA
circular buffers, 8-23
descriptor ring, 8-31
errors, 8-25
hardware flow control, 8-24
multitasking, 8-25
XON/XOFF flow control, 8-24

GCI, data, 17-7
HDLC interrupt, 15-20
programmed I/O, HDLC, 15-8
UART

address bit, 13-10
bit sampling, 13-16
data, 13-7
description, 13-6
FIFO, 13-12
special character matching, 13-21
status and data, 13-10

receiver
definition, Glossary-7
HDLC, 15-14, 15-19

refresh, 6-1
refresh, DRAM, 6-5, 6-6
register operands, CPU, 2-9
registers

chip select, 5-3
configuration, 2-4
CPU, 2-1, 2-2
DMA, 8-4
GCI, 17-5
interrupt, 7-4, 7-18
processor, 2-1
programmable I/O (PIO), 9-5
synchronous serial interface (SSI), 14-3
TSA, 16-7
UART, 13-3
USB, 18-7
watchdog timer, 11-3

remote wakeup, USB, 18-16
REQST register, 7-5
request, DMA, 8-17

RES signal
description, 3-15
emulator support, 4-4

RESCON register, 3-4
reserved pins, 3-16
reset

definition, Glossary-7
definition of types, 3-9
system, 3-5
USB, 18-17

reset configuration pins
See pinstraps, 3-7

RESOUT signal
description, 3-15
emulator support, 4-4

resume, USB, 18-16
reversal, GCI bus, 17-12
ring

adding buffers, 8-32, 8-34
buffer, definition, Glossary-7
create, 8-31, 8-33

router, definition, Glossary-7
RSVD_x pins, 3-16
RTFMCNT register, 18-7
RTR

definition, Glossary-7
protocol overview, 12-7
timing, 15-18
UART flow control, 13-13

RTR_HU signal
behavior, 13-14
description, 3-23

RTR_U signal
behavior, 13-14
description, 3-22

RTS, definition, Glossary-7
RXD_HU signal, 3-22
RXD_U signal, 3-22

S
S2–S0 signals

description, 3-13
emulator support, 4-5

S6 signal
description, 3-13
emulator support, 4-5

sample applications, 12-3
SCIT, definition, Glossary-7
SCLK signal, 3-23
SDATA signal, 3-23
SDEN signal, 3-23
SDLC, definition, Glossary-7
Index-12 Am186™CC/CH/CU Microcontrollers User’s Manual

Index
SDxCBD register, 8-6, 8-7
SDxCON register, 8-6, 8-7
SDxCRAD register, 8-6, 8-7
SDxCTAD register, 8-6, 8-7
SDxRRAH register, 8-6, 8-7
SDxRRCAL register, 8-6, 8-7
SDxSTAT register, 8-6, 8-7
SDxTRAH register, 8-6, 8-7
SDxTRCAL register, 8-6, 8-7
segment register, CPU, 2-7, 2-8
selecting DRAM, 5-7
serial communication

CTS/RTR protocol, 12-7
hardware flow control, 12-6
HDLC control application, 12-4
introduction, 12-6
ISDN application, 12-5
multiplexed signals, 12-2
overview, 12-7
polled, interrupt, and DMA mode, 12-7
support overview, 1-6

setting PIO data, 9-6
SHMASK register, 7-6
short frame, definition, Glossary-8
short packet, USB, 18-21
SHREQ register, 7-6
signal

descriptions, 3-8, 3-10
signal multiplexing, 9-3
signal, definition, Glossary-8
simplex

definition, Glossary-8
description, 12-8

SLAC, definition, Glossary-8
SLIC, definition, Glossary-8
small circular buffer, 8-25
SmartDMA channel

See also DMA.
cycle, 8-35
definition, Glossary-8
descriptor format, 8-38
descriptor polling, 8-41
descriptor ring, 8-29
interface, 15-8
interrupts, 8-42
introduction, 8-26
memory management, 8-30
memory overview, 8-28
overview, 1-8
receive cycle, 8-37
receive descriptor format, 8-40
receive flow diagram, 8-38
request source and synchronization, 8-27, 8-28

transmit cycle, 8-35
transmit descriptor format, 8-39
transmit flow diagram, 8-37
usage, 8-31
using without CPU intervention, 8-42
with HDLC, 15-18

software considerations
chip select, 5-10
DMA, 8-43
DRAM, 6-6
GCI, 17-20
HDLC, 15-21
interrupt, 7-20
programmable I/O (PIO), 9-7
synchronous serial interface (SSI), 14-8
TSA, 16-14
UART, 13-22
USB, 18-33
watchdog timer, 11-5

software exception, definition, Glossary-8
software interrupt

considerations, 7-14
definition, Glossary-8
nonmaskable, 7-19
See interrupt.

SOHO, definition, Glossary-8
source address, DMA, 8-13
source synchronization, 8-10, 8-17
source-synchronized transfer, definition, Glossary-8
SPBDV register, 13-4
SPCON0 register, 13-4
SPCON1 register, 13-4
special-character matching, UART, 13-21
SPIMSK register, 13-4
SPRXD register, 13-4
SPRXDP register, 13-4
SPSTAT register, 13-4
SPTXD register, 13-4
SRAM

definition, Glossary-8
example system, 3-29

SRDY signal
description, 3-14
emulator support, 4-3, 4-5

SSCON register, 14-3
SSI

See also synchronous serial interface.
definition, Glossary-8

SSRXD register, 14-3
SSSTAT register, 14-3
SSTXD0 register, 14-3
SSTXD1 register, 14-3
start of HDLC transmit, CTS control, 15-14
Am186™CC/CH/CU Microcontrollers User’s Manual Index-13

Index
status, UART receive, 13-10
stream pipe, definition, Glossary-8
suspend, USB, 18-16
synchronization

DMA, 8-17
isochronous, 18-6, 18-23

synchronization type, definition, Glossary-8
synchronized transfer, definition, Glossary-8
synchronous communication overview, 12-6
synchronous serial interface (SSI)

application example, 14-3
block diagram, 14-1
comparison to other devices, 14-8
initialization, 14-9
master/slave configuration, 14-4
multiple transmit with PIO, 14-7
multiple transmit with SDEN, 14-7
multiplexed signals, 14-2
operation, 14-4
overview, 1-9
register summary, 14-3
registers, 14-3
signal descriptions, 3-23
signal interface, 14-4
single transmit, multiple receive with SDEN, 14-8
software considerations, 14-8
system design, 14-2
usage, 14-4

synchronous transmission, definition, Glossary-8
SYSCON register, 3-4
system

byte write enables, 3-31
clock control, 3-32
clock overview, 1-11
clocks, 3-33
comparison to other devices, 3-34
configuration register, 3-4
hardware considerations, 3-34
initialization, 3-5, 3-34
interface overview, 1-11
multiplexed signals, 3-1, 12-2
operation, 3-30
output enable, 3-31
reset, 3-5, Glossary-8
signal descriptions, 3-8
SRAM example, 3-29
system design, 3-1
typical block diagram, 3-29

system bus
address bus overview, 3-30
data bus overview, 3-30
interface, 3-28
mastering, 3-31
programmable bus sizing, 3-30
width, 3-31, 5-9

system reset, definition, Glossary-8

T
TDM, definition, Glossary-8
terminal adapter, ISDN, overview, 1-14
terminal count, DMA, 8-14
terminology, interrupt, 7-8
TIC bus

bits, 17-16
downstream format, 17-16
support, 17-16
upstream format, 17-16

TIC, definition, Glossary-8
time slots, TSA, 16-8
timer

overview, 1-10
signal descriptions, 3-21
with DMA, 8-16

timing parameters, TSA, 16-14
TMRIN1–TMRIN0 signals, 3-22
TMROUT1–TMROUT0 signals, 3-22
top of FIFO, definition, Glossary-8
trace interrupt, 7-19
trade-offs

DMA, 18-6
USB, 18-2

transaction, definition, Glossary-9
transceiver

definition, Glossary-9
USB, 18-3

transfer type, definition, Glossary-9
transfer, definition, Glossary-9
transmitter

definition, Glossary-9
HDLC, 15-10, 15-18

transparency, definition, Glossary-9
transparent mode, definition, Glossary-9
trap considerations, 7-14
TSA

block diagram, 16-3
comparison to other devices, 16-14
definition, Glossary-9
external interfaces, 16-11
frame sync, 16-13
GCI clock and frame sync conversion, 16-13
GCI conversion, 16-12
GCI timing parameters, 16-14
initialization, 16-14
muxing logic, 16-8
operation, 16-7
overview, 1-7
PCM highway, 16-11
raw DCE, 16-11
register summary, 16-7
registers, 16-7
Index-14 Am186™CC/CH/CU Microcontrollers User’s Manual

Index
simplified block diagram, 16-3
software considerations, 16-14
time slots, 16-8
usage, 16-7
with GCI, 16-14

TSTMP register, 18-7
TSTMPM register, 18-7
TSxCON register, 16-7
TSxSTART register, 16-7
TSxSTOP register, 16-7
TXD_HU signal, 3-22
TXD_U signal, 3-22

U
UART

address bits, 13-9, 13-10
automatic baud rate detection, 13-7, 13-16, 13-18
baud rate, 13-14, 13-15
block diagram, 13-2
break detection and generation, 13-20
clock, 13-14, 13-15
comparison to other devices, 13-23
CTS flow control, 13-13
data, 13-8
data overflow, 13-8
definition, Glossary-9
detectable baud ranges, 13-17
DMA example, 8-21
extended reads and writes, 13-10
FIFO, 13-11
frame, 13-8
hardware considerations, 13-22
High-Speed UART signal descriptions, 3-22
initialization, 13-23
interface to DMA, 13-21
interrupt sources, 13-19
multiplexed signals, 13-3
operation, 13-4
overview, 1-9
receive FIFO, 13-12
receive status and data, 13-10
receiver bit sampling, 13-16
receiving data, 13-6, 13-7
registers, 13-3
registers , 13-4
RTR flow control, 13-13
RTR_HU signal, 13-14
RTR_U signal, 13-14
setting the baud rate, 13-6
signal descriptions, 3-22
software considerations, 13-22
special-character matching, 13-21
system design, 13-3
timing, 13-8
transmit FIFO, 13-11

transmitting address bit, 13-9
transmitting data, 13-5
usage, 13-4
using FIFO, 13-12
with DMA, 8-16
worst case autobaud error, 13-17

UCLK signal, 3-15
UCS signal

chip select, 5-5, 5-9
description, 3-18
emulator support, 4-5

UCSX8 signal
description, 3-7
emulator support, 4-5

UDMNS signal, 3-27
UDPLS signal, 3-27
UIMASK1 register, 18-7
UIMASK2 register, 18-7
UISTAT1 register, 18-7
UISTAT2 register, 18-7
UMCS register, 5-3
unsynchronized transfer

definition, Glossary-9
description, 8-17

unused opcode exception interrupt, 7-20
upstream GCI versus downstream, 17-11, 17-12
upstream monitor channel transmission, 17-15
usage

chip select, 5-4
DRAM, 6-3
emulator support, 4-2
GCI, 17-5
HDLC, 15-7
interrupt, 7-6
programmable I/O (PIO), 9-5
synchronous serial interface (SSI), 14-4
TSA, 16-7
UART, 13-4
USB, 18-10
watchdog timer, 11-3

USB
block diagram, 18-2
clock source, 18-5
command

handled by hardware, 18-27, 18-28
handled by software, 18-26, 18-27
handling, 18-26
processing, 18-30
protocol, 18-28

connect and disconnect, 18-3
control endpoint

definition, 18-30, 18-31
interrupts, 18-29
programming, 18-11

data endpoint definition, 18-32
Am186™CC/CH/CU Microcontrollers User’s Manual Index-15

Index
data transfer via control endpoint, 18-29
data transfer via interrupt endpoint, 18-30
data transmission types, 18-16
definition, Glossary-9
device, definition, Glossary-9
endpoint definitions, 18-30
endpoint programming, 18-12
endpoint, definition, Glossary-9
endpoints used with DMA, 18-20
error recovery

bulk endpoints, 18-22
interrupt endpoints, 18-22
isochronous endpoints, 18-23

example
bulk IN, non-DMA, 18-14
bulk OUT, general-purpose DMA, 18-15
bulk OUT, non-DMA, 18-14

external transceiver, 18-5
external transceiver signals, 3-27
general programming issues, 18-10
handling data, 18-18
initialization, 18-33
internal transceiver, 18-4
interrupt endpoint

commands, 18-30
definition, 18-31
description, 18-29
interrupts, 18-30
programming, 18-11

interrupt-driven I/O, 18-19
isochronous features, 18-24
isochronous synchronization, 18-6, 18-23
multiplexed signals, 18-3
operation, 18-10
overview, 1-6
PLL mode, 18-6
PLL modes, 3-7
polled I/O, 18-18
protocol handling, 18-17
registers, 18-7
remote wakeup, 18-16
reset, 18-17
resume, 18-16
setting up DMA, 18-21
short packet, 18-21
signal descriptions, 3-27
signal trade-offs, 18-2
software considerations, 18-33
suspend, 18-16
system design, 18-2
transceiver, 18-3
usage, 18-10
with DMA, 8-17, 8-43, 18-19

USBD– signal, 3-27
USBD+ signal, 3-27
USBMFR register, 18-7
USBSCI signal, 3-27

USBSEL1 signal, 3-7
USBSEL2 signal, 3-7
USBSOF signal, 3-27
USBXCVR signal, 3-7
UTXDMNS signal, 3-27
UTXDPLS signal, 3-28
UXVOE signal, 3-28
UXVRCV signal, 3-28

V
VCC description, 3-16
VCC_A description, 3-16
VCC_USB description, 3-16
vector, interrupt, 7-9
very short frame, definition, Glossary-10
VSS description, 3-16
VSS_A description, 3-16
VSS_USB description, 3-16

W
wait state

chip select, 5-10
definition, Glossary-10

wakeup, USB, 18-16
WAN, definition, Glossary-10
watchdog timer

block diagram, 11-1
comparison to other devices, 11-5
hardware considerations, 11-4
initialization, 11-5
multiplexed signals, 11-2
operation, 11-3
overview, 1-11
register, 11-3, 11-3, 11-3
RES and watchdog timer reset, 3-15
software considerations, 11-5
system design, 11-2
usage, 11-3

WDTCON register, 11-3, 11-3
WHB signal

description, 3-14
emulator support, 4-5

width, bus, 5-9
Index-16 Am186™CC/CH/CU Microcontrollers User’s Manual

Index
WLB signal
description, 3-14
emulator support, 4-5

word transfers, DMA, 8-15
word, definition, Glossary-10
worst-case error, autobaud, 13-17
WR signal

description, 3-14
emulator support, 4-5

X
X1 signal, 3-15
X2 signal, 3-15
XON/XOFF flow control, DMA receive, 8-24

Z
zero-bit deletion, definition, Glossary-10
zero-bit insertion, definition, Glossary-10
Am186™CC/CH/CU Microcontrollers User’s Manual Index-17

Index
Index-18 Am186™CC/CH/CU Microcontrollers User’s Manual

	Introduction
	Comm86 Family
	Purpose of this Manual
	Intended Audience
	Overview of this Manual
	Related Documents
	AMD Documentation
	Additional Information
	Documentation Conventions
	Table 0�1 Documentation Conventions (Continued)

	Microcontroller-Specific Information

	Architectural Overview
	1.1 Features
	1.2 Am186CC Communications Controller
	1.2.1 Am186CH HDLC Microcontroller
	1.2.2 Am186CU USB Microcontroller
	1.2.3 Feature Comparison
	Table 1�1 Feature Comparison

	1.3 Block Diagrams
	Figure 1�1 Am186CC Communications Controller Block Diagram
	Figure 1�2 Am186CH HDLC Microcontroller Block Diagram
	Figure 1�3 Am186CU USB Microcontroller Block Diagram

	1.4 Architectural Overview
	1.4.1 Am186 Embedded CPU (Chapter�2)
	1.4.2 Serial Communications Support (Chapter�12)
	1.4.2.1 Universal Serial Bus (Chapter�18)
	1.4.2.2 HDLC Channels (Chapter�15) and TSAs (Chapter�16)
	1.4.2.3 General Circuit Interface (Chapter�17)
	1.4.2.4 SmartDMA Channels (Chapter�8)
	1.4.2.5 Asynchronous Serial Ports (Chapter�13)
	1.4.2.6 Synchronous Serial Port (Chapter�14)

	1.4.3 System Peripherals
	1.4.3.1 Interrupt Controller (Chapter�7)
	1.4.3.2 General-Purpose DMA Channels (Chapter�8)
	1.4.3.3 Programmable I/O Signals (Chapter�9)
	1.4.3.4 Programmable Timers (Chapter�10)
	1.4.3.5 Hardware Watchdog Timer (Chapter�11)

	1.4.4 Memory and Peripheral Interface
	1.4.4.1 System Interfaces and Clock Control (Chapter�3)
	1.4.4.2 Dynamic Random Access Memory Support (Chapter�6)
	1.4.4.3 Chip Selects (Chapter�5)

	1.4.5 In-Circuit Emulator Support (Chapter�4)

	1.5 Applications
	Figure 1�4 ISDN Terminal Adapter
	Figure 1�5 ISDN-to-Ethernet Low-End Router
	Figure 1�6 32-Channel Linecard

	Configuration Basics
	2.1 Overview
	2.2 Register Set
	2.2.1 Processor Registers
	Table 2�1 Internal Processor Registers�
	Figure 2�1 Register Set

	2.2.2 Processor Status Flags Register
	Figure 2�2 Processor Status Flags Register

	2.2.3 Peripheral Registers
	Table 2�2 Configuration Register Summary
	Table 2�3 Peripheral Register Summary �

	2.3 Memory Organization and Address Generation
	Figure 2�3 Physical Address Generation

	2.4 I/O Space
	Figure 2�4 Memory and I/O Space

	2.5 Instruction Set
	2.6 Segments
	Table 2�4 Segment Register Selection Rules

	2.7 Data Types
	Figure 2�5 Supported Data Types

	2.8 Addressing Modes
	2.8.1 Register and Immediate Operands
	2.8.2 Memory Operands
	Table 2�5 Memory Addressing Mode Examples

	System Overview
	3.1 Overview
	3.2 System Design
	Table 3�1 Multiplexed Signal Trade-Offs (Continued)
	Table 3�2 Multiplexed Signal Trade-Offs Ordered by PIO (Continued)

	3.3 System Configuration
	Table 3�3 System Configuration Register Summary

	3.4 Initialization and Reset
	Table 3�4 CPU and Internal Peripheral States Immediately Following Power-On Reset
	Table 3�5 Reset Configuration Pins (Pinstraps)�

	3.5 Signal Descriptions
	Table 3�6 Signal Descriptions Table Definitions
	Table 3�7 Signal Descriptions (Continued)

	3.6 Bus Interface
	3.6.1 Overview
	3.6.2 Block Diagrams
	Figure 3�1 Typical Microcontroller Memory System With DRAM
	Figure 3�2 Typical Microcontroller Memory System With SRAM

	3.6.3 Operation
	3.6.3.1 Address and Data Buses
	3.6.3.2 Programmable Bus Sizing
	Table 3�8 Programming Am186CC/CH/CU Microcontrollers Bus Width

	3.6.3.3 Byte Write Enables
	3.6.3.4 Output Enable
	3.6.3.5 Bus Mastering
	3.6.3.6 DRAM Controller

	3.7 Clock Control
	3.7.1 Clock Features
	Figure 3�3 Am186CC/CH/CU Microcontroller Clocks

	3.7.2 PLL Bypass Mode

	3.8 Hardware-Related Considerations
	3.9 Comparison To Other Devices
	3.10 Initialization

	Emulator Support
	4.1 Overview
	4.2 System Design
	4.2.1 Multiplexed Pins
	4.2.2 Emulator Connection

	4.3 Operation
	4.3.1 Usage
	4.3.2 Emulator-Related Signals
	4.3.2.1 A19–A0
	4.3.2.2 AD15–AD0
	4.3.2.3 {ADEN} / BHE
	4.3.2.4 ALE
	4.3.2.5 ARDY and SRDY
	4.3.2.6 BHE
	4.3.2.7 BSIZE8
	4.3.2.8 [CAS1–CAS0] and [RAS1–RAS0]
	4.3.2.9 CLKOUT
	4.3.2.10 LCS
	4.3.2.11 MCS3–MCS0
	4.3.2.12 {ONCE}
	4.3.2.13 QS1–QS0
	4.3.2.14 [RAS1–RAS0]
	4.3.2.15 RD
	4.3.2.16 RES
	4.3.2.17 RESOUT
	4.3.2.18 S2–S0
	4.3.2.19 S6
	4.3.2.20 SRDY
	4.3.2.21 UCS
	4.3.2.22 {UCSX8} and WLB
	4.3.2.23 WHB and WR
	4.3.2.24 WLB
	4.3.2.25 WR

	4.3.3 Hardware-Related Considerations
	4.3.4 Comparison to Other Devices

	4.4 Initialization

	Chip Selects
	5.1 Overview
	5.2 Block Diagram
	Figure 5�1 Chip Selects and DRAM Block Diagram

	5.3 System Design
	Table 5�1 Chip Selects Multiplexed Signals�

	5.4 Registers
	Table 5�2 Chip Select Register Summary

	5.5 Operation
	5.5.1 Usage
	5.5.2 Selecting Memory and I/O Space
	5.5.2.1 UCS
	5.5.2.2 LCS
	5.5.2.3 MCS3–MCS0
	5.5.2.4 PCS7–PCS0
	Figure 5�2 Chip Selectable Memory Space
	Figure 5�3 Chip Selectable I/O Space

	5.5.3 Selecting DRAM Using the Chip Selects
	Table 5�3 Signal Function When UCS or LCS is Configured for DRAM

	5.5.4 Overlapping Chip Selects
	5.5.5 Configuring Address and Data Buses
	5.5.5.1 UCS and LCS
	5.5.5.2 Non-UCS and Non-LCS
	5.5.5.3 PCS I/O Space

	5.5.6 Programming Ready Signals and Wait States
	5.5.7 Chip Select Timing
	5.5.8 Hardware-Related Considerations
	5.5.9 Software-Related Considerations
	5.5.10 Comparison to Other Devices

	5.6 Initialization

	DRAM Controller
	6.1 Overview
	6.2 Block Diagram
	Figure 6�1 Chip Selects and DRAM Block Diagram (Same as Figure 5�1)

	6.3 System Design
	Table 6�1 DRAM Multiplexed Signals

	6.4 Registers
	Table 6�2 DRAM Controller Register Summary

	6.5 Operation
	6.5.1 Usage
	6.5.2 DRAM Supported
	Table 6�3 DRAM Supported by the Am186CC/CH/CU Microcontrollers�

	6.5.3 DRAM Interface
	Table 6�4 Address Multiplexing Reference�

	6.5.4 Option to Overlap DRAM with PCS
	6.5.5 DRAM Refresh
	6.5.5.1 DRAM Refresh Cycle
	6.5.5.2 DRAM Refresh Intervals
	Table 6�5 Refresh Interval Times

	6.5.6 Hardware-Related Considerations
	6.5.7 Software-Related Considerations
	6.5.8 Comparison to Other Devices

	6.6 Initialization

	Interrupts
	7.1 Overview
	7.2 Block Diagram
	Figure 7�1 Interrupts Block Diagram

	7.3 System Design
	Table 7�1 Interrupt Multiplexed Signals

	7.4 Registers
	Table 7�2 Interrupt Controller Register Summary (Continued)

	7.5 Operation
	7.5.1 Usage
	7.5.1.1 Types of Interrupt Channels
	7.5.1.1.1 Timer Interrupt Requests Channel
	7.5.1.1.2 External and Internal Interrupt Request Channels
	7.5.1.1.3 Two Internal Interrupts Request Channels
	7.5.1.1.4 Shared Interrupt Request Channel

	7.5.1.2 Using Maskable Interrupts
	7.5.1.3 Using Nonmaskable Interrupts

	7.5.2 Definitions of Interrupt Terms
	7.5.3 Interrupt Sequence
	7.5.3.1 Requesting the Interrupt
	Figure 7�2 Interrupt Vector Translation

	7.5.3.2 Servicing the Interrupt
	7.5.3.3 Acknowledging the Interrupt
	7.5.3.4 End-of-Interrupt (EOI)
	7.5.3.5 Returning from the Interrupt

	7.5.4 Interrupt Priority
	7.5.4.1 Nonmaskable Interrupt and Software Interrupt Priority
	7.5.4.2 Maskable Hardware Interrupt Priority
	Table 7�3 Interrupt Types�

	7.5.5 Maskable Interrupts
	7.5.5.1 Maskable Interrupt Cycle
	7.5.5.2 Interrupts In Polled Mode
	7.5.5.3 Considerations for NMI, Software Interrupts, and Traps
	7.5.5.4 Maskable Interrupt Overview
	7.5.5.5 Maskable Interrupt Block Diagram
	Figure 7�3 Partial Block Diagram of Interrupt Controller Scheme
	Table 7�4 Interrupt Channel Map �
	Table 7-5 Interrupt Channel Sources

	7.5.5.6 PIOs as Interrupts
	7.5.5.7 Registers Used

	7.5.6 Nonmaskable Interrupts
	7.5.6.1 Software Interrupts
	7.5.6.2 Divide Error Exception (Interrupt Type 00h)
	7.5.6.3 Trace Interrupt (Interrupt Type 01h)
	7.5.6.4 Nonmaskable Interrupt (Interrupt Type 02h)
	7.5.6.5 Breakpoint Interrupt (Interrupt Type 03h)
	7.5.6.6 INT0 Detected Overflow Exception (Interrupt Type 04h)
	7.5.6.7 Array Bounds Exception (Interrupt Type 05h)
	7.5.6.8 Unused Opcode Exception (Interrupt Type 06h)
	7.5.6.9 ESC Opcode Exception (Interrupt Type 07h)

	7.5.7 Software-Related Considerations
	7.5.8 Comparison to Other Devices

	7.6 Initialization

	DMA Controller
	8.1 Overview
	8.2 Block Diagram
	Figure 8�1 DMA Block Diagram

	8.3 System Design
	Table 8�1 DMA Multiplexed Signals

	8.4 Registers
	Table 8�2 DMA Controller Register Summary (Continued)

	8.5 Operation
	Table 8�3 Am186CC Communications Controller DMA Channel Use
	Table 8�4 Am186CH HDLC Microcontroller DMA Channel Use
	Table 8�5 Am186CU USB Microcontroller DMA Channel Use
	8.5.1 When to Use DMA
	8.5.2 DMA Priority
	8.5.3 DMA Request Synchronization
	Figure 8�2 Source Versus Destination Synchronization

	8.5.4 DMA Acknowledge
	8.5.5 DMA and Interrupts
	8.5.6 General-Purpose DMA Channels
	Table 8�6 General-Purpose DMA Data Transfers
	8.5.6.1 General-Purpose DMA Usage
	8.5.6.2 General-Purpose DMA Cycle
	8.5.6.3 General-Purpose DMA Transfer Suspension
	8.5.6.4 General-Purpose DMA Source and Destination Addresses
	8.5.6.5 General-Purpose DMA Terminal Count
	8.5.6.6 General-Purpose DMA Channel Operations
	8.5.6.6.1 Generating Interrupts
	8.5.6.6.2 Transferring Bytes or Words
	8.5.6.6.3 Incrementing or Decrementing Addresses
	8.5.6.6.4 Selecting DMA Request Sources
	Figure 8�3 DMA Request Sources
	8.5.6.6.5 Setting Synchronization
	Table 8�7 General-Purpose DMA Request Source and Synchronization�
	Figure 8�4 Source-Synchronized General-Purpose DMA Transfers
	Figure 8�5 Destination-Synchronized General-Purpose DMA Transfers
	Table 8�8 Maximum DMA Transfer Rates
	8.5.6.6.6 Using Buffer Queues or Circular Buffers
	Table 8�9 Example Register Settings for UARTs and Circular Buffers (Continued)

	8.5.7 SmartDMA Channels
	8.5.7.1 SmartDMA Channels Introduction
	8.5.7.2 SmartDMA Channel Request Source and Synchronization
	Table 8�10 Am186CC SmartDMA Channel Request Source and Synchronization�
	Table 8�11 Am186CH SmartDMA Channel Request Source and Synchronization�
	Table 8�12 Am186CU SmartDMA Channel Request Source and Synchronization�

	8.5.7.3 SmartDMA Channel Memory Overview
	Figure 8�6 SmartDMA Channel Descriptor Ring Example
	Figure 8�7 SmartDMA Channel Memory Management
	8.5.7.3.1 Transmit Descriptor Ring
	8.5.7.3.2 Receive Descriptor Ring

	8.5.7.4 SmartDMA Channel Usage
	8.5.7.4.1 Enabling the Transmit Channel
	8.5.7.4.2 Enabling the Receive Channel
	8.5.7.4.3 Enable the Peripheral Device

	8.5.7.5 SmartDMA Channel Cycle
	8.5.7.5.1 SmartDMA Transmit Channel Cycle
	Figure 8�8 SmartDMA Transmit Channel Flow Diagram
	8.5.7.5.2 SmartDMA Receive Channel Cycle

	8.5.7.6 SmartDMA Channel Descriptor Format
	Figure 8�9 SmartDMA Receive Channel Flow Diagram
	Table 8�13 SmartDMA Transmit Channel Descriptor Format�
	Table 8�14 SmartDMA Receive Channel Descriptor Format (Continued)

	8.5.7.7 SmartDMA Channel Descriptor Polling
	8.5.7.8 SmartDMA Channel Interrupts
	8.5.7.9 SmartDMA Channel Use Without CPU Intervention

	8.5.8 DMA and USB
	8.5.9 Software-Related Considerations
	8.5.10 Comparison to Other Devices

	8.6 Initialization

	Programmable I/O Signals
	9.1 Overview
	9.2 Block Diagram
	Figure 9�1 PIO Operation Block Diagram

	9.3 System Design
	Table 9�1 PIO Multiplexed Signals (Continued)

	9.4 Registers
	Table 9�2 PIO Register Summary

	9.5 Operation
	9.5.1 Usage
	9.5.2 Defining the PIO Signal as Input or Output
	Table 9�3 PIO Mode and PIO Direction Register Bit Settings

	9.5.3 Driving Data on the PIO
	9.5.4 Using PIOs as Open-Drain Outputs
	9.5.5 Setting and Clearing Data
	Table 9�4 PIO Set and PIO Clear Registers’ Effect on PIO Data Register

	9.5.6 Hardware-Related Considerations
	9.5.7 Software-Related Considerations
	9.5.8 Comparison to Other Devices

	9.6 Initialization

	Programmable Timers
	10.1 Overview
	10.2 Block Diagram
	Figure 10�1 Programmable Timers Block Diagram

	10.3 System Design
	Table 10�1 Programmable Timer Multiplexed Signals

	10.4 Registers
	Table 10�2 Programmable Timers Register Summary

	10.5 Operation
	10.5.1 Usage
	10.5.2 Timer 2
	10.5.3 Timer 0 and Timer 1
	Table 10�3 Timer 0 and Timer 1 Behavior

	10.5.4 Requesting Interrupts
	10.5.5 Software Polling
	10.5.6 Generating Waveforms
	10.5.7 Pulse Width Demodulation
	Figure 10�2 Pulse Width Demodulation Example
	10.5.7.1 Handling Short Signal Durations
	10.5.7.2 Handling Long Signal Durations

	10.5.8 Software-Related Considerations
	10.5.9 Comparison to Other Devices

	10.6 Initialization

	Watchdog Timer
	11.1 Overview
	11.2 Block Diagram
	Figure 11�1 Watchdog Timer Block Diagram

	11.3 System Design
	Table 11�1 Watchdog Timer Multiplexed Signals

	11.4 Registers
	Table 11�2 Watchdog Timer Register Summary
	Figure 11�2 Access to the WDTCON Register

	11.5 Operation
	11.5.1 Usage
	11.5.2 Overview
	11.5.3 Hardware-Related Considerations
	11.5.4 Software-Related Considerations
	11.5.5 Comparison to Other Devices

	11.6 Initialization

	Serial Communications Overview
	12.1 Overview
	12.2 System Design
	12.2.1 Multiplexed Signals
	Table 12�1 Multiplexed Signal Trade-Offs for Serial Interfaces (Continued)

	12.2.2 Sample Applications for the Am186CC Communications Controller
	Figure 12�1 HDLC Control Application
	Figure 12�2 POTS Linecard
	Figure 12�3 ISDN Application
	Figure 12�4 ISDN Application with GCI-to-PCM Highway Conversion

	12.3 Serial Communications Introduction
	12.3.1 Asynchronous and Synchronous Communications
	12.3.2 Hardware Flow Control
	Figure 12�5 CTS/RTR Protocol

	12.3.3 FIFOs
	12.3.4 Polled, Interrupt, and DMA Modes
	12.3.5 Simplex, Half-Duplex, and Full-Duplex Systems

	Asynchronous Serial Ports (UARTs)
	13.1 Overview
	13.2 Block Diagram
	Figure 13�1 UARTs Block Diagram

	13.3 System Design
	Table 13�1 UARTs Multiplexed Signals

	13.4 Registers
	Table 13�2 UARTs Register Summary �

	13.5 Operation
	13.5.1 Usage
	13.5.1.1 Transmit
	13.5.1.1.1 Initializing the Transmitter
	13.5.1.1.2 Transmitting Data

	13.5.1.2 Receive
	13.5.1.2.1 Initializing the Receiver
	13.5.1.2.2 Setting the Baud Rate with the (H)SPBDV Register
	13.5.1.2.3 Receiving Data

	13.5.1.3 Autobaud Mode (High-Speed UART Only)

	13.5.2 Data
	Figure 13�2 UARTs Frame
	Figure 13�3 UARTs Timing
	13.5.2.1 Data Overflow
	13.5.2.2 Address Bits
	13.5.2.2.1 Transmitting with Address Bit Set
	13.5.2.2.2 Receiving with Address Bit Set

	13.5.2.3 Receive Status and Data
	13.5.2.4 Extended Reads and Writes

	13.5.3 FIFOs (High-Speed UART Only)
	13.5.3.1 Transmit FIFO
	13.5.3.2 Receive FIFO
	13.5.3.3 Using the FIFOs in Polled, Interrupt, or DMA Mode

	13.5.4 CTS/RTR Hardware Flow Control
	Figure 13�4 RTR_U Signal Behavior
	Figure 13�5 RTR_HU Signal Behavior with Receive FIFOs

	13.5.5 Clock Sources and Baud Rate
	Figure 13�6 UARTs Clock
	13.5.5.1 Programming the Baud Rate
	Table 13�3 Baud Rate Table for UARTs

	13.5.5.2 Receiver Bit Sampling
	13.5.5.3 Detecting the Baud Rate Automatically (High-Speed UART Only)
	Figure 13�7 Worst Case % Error Per Bit vs. Baud Divisor Without Autobaud Enhancement
	Figure 13�8 Detectable Baud Ranges for Various Frequencies
	Figure 13�9 Autobaud Enhancement
	Table 13�4 Examples of Autobaud Enhancement

	13.5.6 Interrupt Sources
	Table 13�5 UARTs Interrupt Sources

	13.5.7 Break Detection and Generation
	Figure 13�10 Break Character Example

	13.5.8 Receive Special-Character Matching (High-Speed UART Only)
	13.5.9 Interface to General-Purpose DMA Channels
	13.5.10 Hardware-Related Considerations
	13.5.11 Software-Related Considerations
	13.5.12 Comparison to Other Devices

	13.6 Initialization

	Synchronous Serial Port (SSI)
	14.1 Overview
	14.2 Block Diagram
	Figure 14�1 SSI Block Diagram

	14.3 System Design
	Table 14�1 SSI Multiplexed Signals
	Figure 14�2 Synchronous Serial Interface System Application Example

	14.4 Registers
	Table 14�2 SSI Register Summary

	14.5 Operation
	14.5.1 Usage
	14.5.2 Master/Slave Configuration
	14.5.3 Signal Interface
	14.5.3.1 SCLK
	14.5.3.2 SDATA
	14.5.3.3 SDEN
	14.5.3.4 SSI Transactions
	Figure 14�3 SSI Multiple Transmit with SDEN as External Device Enable
	Figure 14�4 SSI Multiple Transmit with PIO as External Device Enable
	Figure 14�5 SSI Single-Transmit, Multiple-Receive with SDEN as External Device Enable

	14.5.4 Software-Related Considerations
	14.5.5 Comparison to Other Devices

	14.6 Initialization

	High-Level Data Link Control (HDLC)
	15.1 Overview
	Figure 15�1 HDLC Frame

	15.2 Block Diagram
	Figure 15�2 HDLC, TSA, and GCI Block Diagram

	15.3 System Design
	Table 15�1 HDLC/TSA/GCI Multiplexed Signals (Continued)

	15.4 Registers
	Table 15�2 HDLC Register Summary (Continued)

	15.5 Operation
	15.5.1 Usage
	15.5.2 Interface
	15.5.2.1 SmartDMA Interface
	15.5.2.2 Programmed I/O Interface
	15.5.2.2.1 Transmit Programmed I/O Interface
	15.5.2.2.2 Receive Programmed I/O Interface

	15.5.3 General HDLC Options
	15.5.4 HDLC Transmitter
	Figure 15�3 HDLC Transmitter Block Diagram
	Figure 15�4 CTS Controlled Start of Transmit
	Figure 15�5 CTS Controlled End of Transmit
	Figure 15�6 CTS Inactive at End of Frame

	15.5.5 HDLC Receiver
	Figure 15�7 HDLC Receiver Block Diagram
	Figure 15�8 RTR Timing

	15.5.6 HDLC and SmartDMA
	15.5.6.1 HDLC Transmitter
	15.5.6.2 HDLC Receiver

	15.5.7 Interrupts
	15.5.7.1 Transmit Interrupts
	15.5.7.2 Receive Interrupts

	15.5.8 Hardware-Related Considerations
	15.5.9 Software-Related Considerations
	15.5.10 Comparison to Other Devices

	15.6 Initialization

	HDLC External Serial Interface Configuration (TSAs)
	16.1 Overview
	16.2 Block Diagrams
	Figure 16�1 Block Diagram For TSA Multiplexing (Am186CC Communications Controller)
	Figure 16�2 Block Diagram For TSA Multiplexing (Am186CH HDLC Microcontroller)
	Figure 16�3 HDLC, TSA, and GCI Block Diagram (Same as Figure 15�2)

	16.3 System Design
	Figure 16�4 ISDN PCM System Application Example
	Table 16�1 HDLC/TSA/GCI Multiplexed Signals (Same as Table 15�1) (Continued)

	16.4 Registers
	Table 16�2 TSA Register Summary

	16.5 Operation
	16.5.1 Usage
	16.5.2 Programmable Time Slots
	16.5.3 Muxing Logic
	Figure 16�5 ISDN Basic-Rate GCI Application (Am186CC Communications Controller)

	16.5.4 External Interfaces
	16.5.4.1 Raw DCE
	16.5.4.2 PCM Highway
	16.5.4.2.1 PCM Highway Applications
	16.5.4.2.2 GCI Frame Sync and Clock Conversion
	Figure 16�6 Programmable Frame Sync
	Figure 16�7 Converted GCI Clock and Frame Sync
	Table 16�3 Timing Parameters Per Device (Supported PCM Codecs in GCI Mode)�

	16.5.4.3 GCI

	16.5.5 Software-Related Considerations
	16.5.6 Comparison to Other Devices

	16.6 Initialization

	General Circuit Interface (GCI)
	17.1 Overview
	17.2 Block Diagram
	Figure 17�1 HDLC, TSA, and GCI Block Diagram (Same as Figure 15�2)

	17.3 System Design
	Figure 17�2 ISDN TA GCI-to-PCM Conversion System Application Example
	Table 17�1 HDLC/TSA/GCI Multiplexed Signals (Same as Table 15�1) (Continued)

	17.4 Registers
	Table 17�2 GCI Register Summary �

	17.5 Operation
	17.5.1 Usage
	17.5.1.1 Transmitting Data
	17.5.1.2 Receiving Data

	17.5.2 GCI Structure: Channels and Frames
	Figure 17�3 GCI Terminal Mode Frame Structure

	17.5.3 GCI Applications
	17.5.4 GCI Bus
	17.5.4.1 GCI Bus Deactivation/Activation
	Figure 17�4 Bus Activation/Deactivation
	17.5.4.1.1 Deactivation
	17.5.4.1.2 Activation

	17.5.4.2 GCI Bus Reversal
	17.5.4.2.1 Downstream Versus Upstream
	Figure 17�5 Downstream Versus Upstream
	17.5.4.2.2 Bus Reversal Enabled Versus Disabled
	Figure 17�6 GCI With Bus Reversal Enabled
	Figure 17�7 GCI With Bus Reversal Disabled

	17.5.5 GCI Interface Signals
	17.5.5.1 Four-Pin Interface
	Table 17�3 GCI Signals

	17.5.5.2 GCI-to-PCM Converted Pin Interface
	Table 17�4 Converted GCI Signals

	17.5.6 Operating Frequencies
	17.5.7 GCI Channels
	17.5.7.1 GCI HDLC Channel Steering
	17.5.7.2 Monitor Channel Operation
	17.5.7.3 Monitor Channel Collision Detection
	17.5.7.3.1 Upstream Monitor Channel Data Transmission
	17.5.7.3.2 Downstream Monitor Channel Data Reception

	17.5.7.4 C/I Channel Operation
	17.5.7.5 TIC Bus Support
	Table 17�5 TIC Bus Bits
	Figure 17�8 TIC Bus Downstream Format
	Figure 17�9 TIC Bus Upstream Format
	17.5.7.5.1 D-Channel Arbitration and Collision Detection (Hardware Control)
	17.5.7.5.2 C/I0 Arbitration (Software Control)

	17.5.7.6 IC Channel Operation

	17.5.8 Interrupts
	17.5.9 Software-Related Considerations
	17.5.10 Comparison to Other Devices

	17.6 Initialization

	Universal Serial Bus (USB)
	18.1 Overview
	18.2 Block Diagram
	Figure 18�1 USB Interface Block Diagram

	18.3 System Design
	18.3.1 Signal Trade-Offs
	Table 18�1 USB Multiplexed Signals�
	18.3.1.1 USB Transceiver Interface
	18.3.1.2 Programmable Connect and Disconnect
	Figure 18�2 USB With Internal Transceiver
	Figure 18�3 USB With External Transceiver

	18.3.1.3 USB Clock Source
	Table 18�2 USB PLL Mode Pinstraps

	18.3.1.4 Isochronous Synchronization Signals

	18.3.2 DMA Trade-Offs

	18.4 Registers
	Table 18�3 USB Register Summary (Continued)

	18.5 Operation
	18.5.1 Usage
	18.5.1.1 General USB Peripheral Controller Programming Issues
	18.5.1.2 Programming the Control Endpoint
	18.5.1.3 Programming the Interrupt Endpoint
	18.5.1.4 Programming Data Endpoints
	18.5.1.4.1 Endpoint A Configured as Bulk OUT, Non-DMA Mode
	18.5.1.4.2 Endpoint A Configured as Bulk IN, Non-DMA Mode
	18.5.1.4.3 Endpoint C Configured as Bulk OUT, General-Purpose DMA Mode
	18.5.1.4.4 Endpoint C Configured as Bulk IN, General-Purpose DMA Mode with Terminal Count Not Ign...

	18.5.2 Data Transmission and Data Types
	18.5.2.1 USB Suspend, Resume, and Remote Wakeup
	18.5.2.2 USB Reset
	18.5.2.3 USB Protocol Handling, IN Direction
	18.5.2.4 USB Protocol Handling, OUT Direction

	18.5.3 Handling USB Data
	18.5.4 Polled I/O
	18.5.5 Interrupt-Driven I/O
	18.5.6 Using USB with DMA
	18.5.6.1 DMA Availability
	Table 18�4 USB Endpoints Used with DMA

	18.5.6.2 DMA/FIFO Interaction
	18.5.6.3 Setting Up DMA for USB
	18.5.6.4 Short Packets
	18.5.6.5 Error Recovery on Bulk and Interrupt Endpoints
	18.5.6.6 Error Recovery on Isochronous Endpoints

	18.5.7 Isochronous Transfer Synchronization
	18.5.8 Isochronous Transfer Features
	18.5.9 Command Handling
	18.5.9.1 Commands Handled by Device Software
	Table 18�5 USB Commands Handled by Device Software

	18.5.9.2 Commands Handled by the USB Peripheral Controller Hardware
	Table 18�6 USB Commands Handled by USB Peripheral Controller Hardware

	18.5.10 Command Protocol
	18.5.10.1 Data Transfer Using the Control Endpoint
	18.5.10.2 Control Endpoint Interrupts

	18.5.11 Interrupt Endpoint Programming
	18.5.11.1 USB Command Processing and the Interrupt Endpoint
	18.5.11.2 Data Transfer with the Interrupt Endpoint
	18.5.11.3 Interrupt Endpoint Interrupts

	18.5.12 Endpoint Definitions
	18.5.12.1 Control Endpoint Definition
	Table 18�7 Control Endpoint Definition

	18.5.12.2 Interrupt Endpoint Definition
	Table 18�8 Interrupt Endpoint Definition

	18.5.12.3 Data Endpoint Definition
	Table 18�9 Data Endpoints A–D Definition

	18.5.13 Software-Related Considerations

	18.6 Initialization

	Register Summary
	Table A-1 Am186CC/CH/CU Microcontrollers Register Summary (Continued)

	Glossary
	Index

