

Ushering in a New Era

Argonne National Laboratory's Aurora System

April 2015

ANL Selects Intel for World's Biggest Supercomputer 2-system CORAL award extends IA leadership in extreme scale HPC

Cori
>30PFTrinity
NNSA†
>40PFArgonne National Laboratory
>1001115Kenset
>30PFJuly'14Argonne National Laboratory
>1001115

Argonne National Laboratory >8.5PF

>\$200M

‡ Cray* XC* Series at National Energy Research Scientific Computing Center (NERSC). † Cray XC Series at National Nuclear Security Administration (NNSA).

April '14

inte

The Most Advanced Supercomputer Ever Built An Intel-led collaboration with ANL and Cray to accelerate discovery & innovation

>180 PFLOPS

(option to increase up to 450 PF)

>50,000 nodes 13MW 2018 _{delivery} 18X higher performance[†]

>6X more energy efficient[†]

Argonne

Prime Contractor

Subcontractor

Source: Argonne National Laboratory and Intel. [†]Comparison of theoretical peak double precision FLOPS and power consumption to ANL's largest current system, MIRA (10PFs and 4.8MW)

inte

Aurora | Science From Day One! Extreme performance for a broad range of compute and data-centric workloads

⁻ocus Areas

(in

Aurora | Built on a Powerful Foundation Breakthrough technologies that deliver massive benefits

Compute

>17X performance[†]

FLOPS per node

>12X memory bandwidth[†]

in-package memory bandwidth

Integrated Intel[®] Omni-Path Architecture

>30PB/s aggregate

3rd Generation

Intel[®] Xeon Phi™

Interconnect

2nd Generation Intel[®] Omni-Path Architecture

>20X faster[†]

>500 TB/s bi-section bandwidth

>2.5 PB/s aggregate node link bandwidth

Intel[®] Lustre*

Software

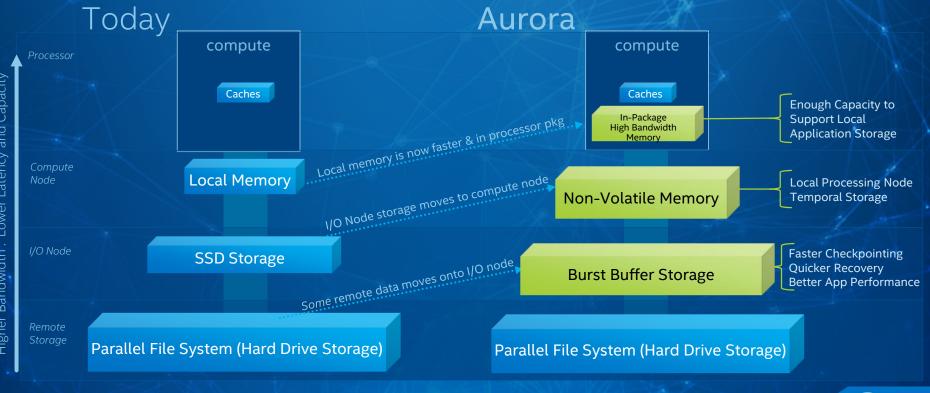
>3X faster[†] >1 TB/s file system throughput

File System

>5X capacity[†]

>150TB file system capacity

Processor code name: Knights Hill


Source: Argonne National Laboratory and Intel. [†] Comparison to ANL's largest current system, MIRA. See the Aurora Fact Sheet for further details.

intel

inside™

XEON PHI

Aurora | Uses New Intel Memory-Storage Hierarchy Keeping data closer to compute -> better data-intensive app performance and energy efficiency

Cray: A Strategic Subcontracting Role Working with Intel to create a state of the art system

Cray assists Intel by providing:

- Next-generation "Shasta" supercomputer using new technologies from Intel and Cray
- Scalable software stack with new capabilities from Intel and Cray
- Proven system manufacturing capability

Compute

Store

On-site system support

"Cray is honored and proud to be a part of this partnership with Argonne and Intel to build and deliver one of the world's most innovative supercomputers" – Peter Ungaro President and Chief Executive

Analyze

Itel

Officer, Cray

Implications Beyond Aurora...*HPC is Entering New Era* Current and future Intel innovations aim at overcoming architectural challenges

Breaking Down "The Walls"

Memory | I/O | Storage Energy Efficient Performance Space | Resiliency | Unoptimized Software

Fast and Efficient Data Mobility

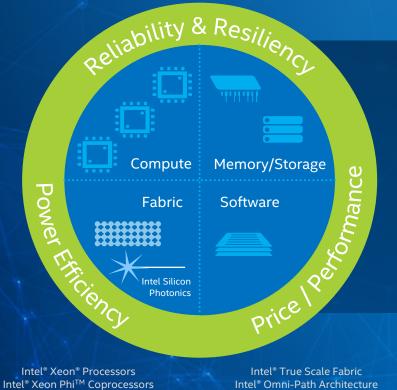
> Rapidly Growing Big Data Analytics

Extending HPC's Reach

Democratization at Every Scale Cloud Access | Exploration of New Parallel Programming Models

8

Intel-led Collaboration: Unprecedented Breakthroughs Brings innovations, holistic designs, and the means to deliver the full benefits to users


Users System **Builders** Software Community

Expanding portfolio of game changing technologies in a scalable system design framework

Co-design approach that optimizes for overall workload performance, efficiency and reliability

Thriving, open, enabled, and innovating ecosystem

Intel's HPC Scalable System Framework A design foundation enabling wide range of highly workload-optimized solutions

Aurora Small clusters through Supercomputers

Compute and Data-Centric Computing

Standards-Based Programmability

Intel[®] Xeon Phi[™] Processors

Intel[®] Ethernet

Intel[®] SSDs Intel[®] Lustre-based Solutions Intel[®] Silicon Photonics Technology

Intel[®] Sofware Tools Intel[®] Cluster Ready Program

Aurora..... It's one more landmark. It's the next one we have to reach. But the journey does not stop there.

Legal Disclaimers

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at https://www-ssl.intel.com/content/www/us/en/high-performance-computing/path-to-aurora.html.

Intel, the Intel logo, Xeon, Intel Xeon Phi and Intel Inside are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries.

*Other names and brands may be claimed as the property of others.

© 2015 Intel Corporation

Aurora Fact Sheet

System Feature	AURORA	MIRA (Argonne)
Peak System Performance	180 - 450 PetaFLOP/s	10 PetaFLOP/s
Processor	Future Generation Intel® Xeon Phi™ Processor (Code name: Knights Hill)	IBM* PowerPC* A2 1600 MHz processor
Number of Nodes	>50,000	49,152
Compute Platform	Intel system based on Cray* Shasta next generation supercomputing platform	IBM Blue Gene/Q*
Aggregate High Bandwidth On-Package Memory, local Memory and Persistent Memory	>7,000 Terabytes	768 Terabytes
Aggregate High Bandwidth On-Package Memory Bandwidth	>30 Petabytes/s	2.5 Petabytes/s
System Interconnect	2 nd Generation Intel [®] Omni-Path Architecture with silicon photonics	IBM 5D torus interconnect with VCSEL photonics
Interconnect Aggregate Node Link Bandwidth	>2.5 Petabytes/s	2 Petabytes/s
Interconnect Bisection Bandwidth	>500 Terabytes/s	24 Terabytes/s
Interconnect Interface	Integrated	Integrated
Burst Buffer Storage	Intel [®] SSDs, using both 1 st and 2 nd Generation Intel [®] Omni-Path Architecture	None
File System	Intel® Lustre* File System	IBM GPFS* File System
File System Capacity	>150 Petabytes	26 Petabytes
File System Throughput	>1 Terabyte/s	300 Gigabyte/s
Intel Architecture (Intel® 64) Compatibility	Yes	No
Peak Power Consumption	13 Megawatts	4.8 Megawatts
FLOP/s Per Watt	>13 GigaFLOP/s per watt	>2 GigaFLOP/s per watt
Delivery Timeline	2018	2012
Facility Area for Compute Clusters	~3,000 sq. ft.	~1,536 sq. ft.
Other names and brands may be claimed as the property of others		

Aurora's High Performance Software Stack

System and Infrastructure: focused on scalability and reliability

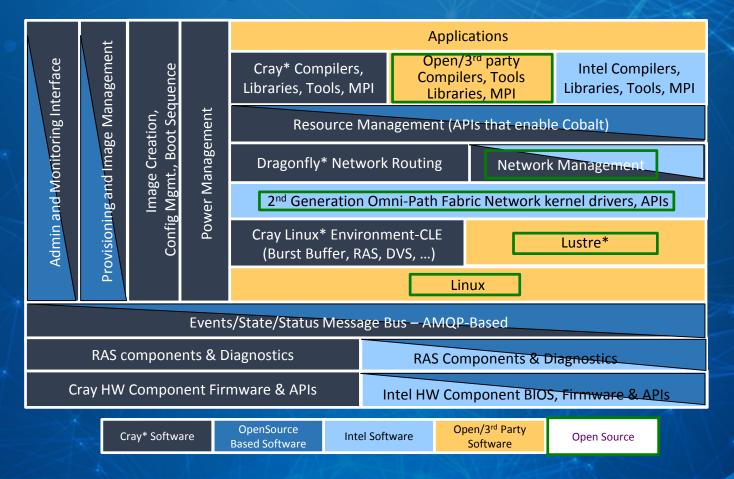
- Low-jitter, high scalability Linux environment
- Integrated RAS and system management, with centralized system database
- Lustre*& distributed file system with efficient user-space I/O offload
- Resource management: Cobalt

Communication: optimized for high performance and scalability

Multiple MPI options: MPICH3, Intel[®] MPI, Cray MPI

Standards-based Development Environment:

- Compilers: Intel, Cray, and GNU
- Languages: C, C++, Fortran, Coarray Fortran, UPC, Chapel
- Programming Models: MPI, OpenMP*, SHMEM


Performance libraries:

- Intel[®] Math Kernel Library
- Cray Scientific & Math Libraries
- BLAS, ScaLAPACK, FFTW, PETSc, Trilinos

Application analysis tools:

- Intel[®] Parallel Studio XE
- Cray Performance Analysis Suite
- GDB, Open|SpeedShop, TAU, HPCToolkit, VampirTrace, and Darshan

Aurora's High Performance Software Stack

′inte

Theta System Fact Sheet

System Feature	Theta Details	
Peak System Performance	>8.5 PetaFLOP/s	
Compute Node CPU	Next Generation Intel® Xeon Phi™ processors (Code name: Knights Landing) https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing	
Compute Node Count	>2,500	
Compute Platform	Intel system based on Cray* XC* supercomputing platform	
Compute Node Peak Performance	>3 TeraFLOP/s per compute node	
Cores Per Node	>60 cores with four hardware threads per core	
High Bandwidth On-Package Memory	Up to 16 Gigabytes per compute node	
High Bandwidth On-Package Memory Bandwidth	projected to be 5X the bandwidth of DDR4 DRAM memory, >400 Gigabytes/sec	
DDR4 Memory	192 Gigabytes using 6 channels per compute node	
Lustre* File System	10 Petabytes	
Lustre* File System throughput	210 Gigabytes/s	
System Interconnect	Cray Aries* high speed Dragonfly* topology interconnect	
Peak Power Consumption	1.7 Megawatts	
Delivery Timeline	Mid-2016	
Programming Environments	Intel, Cray, and GNU	
Programming models	MPI + OpenMP	

(intel

Legal Disclaimers

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at https://www-ssl.intel.com/content/www/us/en/high-performance-computing/path-to-aurora.html.

Intel, the Intel logo, Xeon, Intel Xeon Phi and Intel Inside are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries.

*Other names and brands may be claimed as the property of others.

© 2015 Intel Corporation