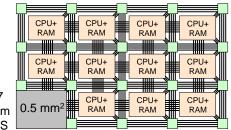


Mike Butts

mike@ambric.com

20th Century Reconfigurable Computing



1987 2 μm CMOS

- In 1987, a great new way to spend 0.5 mm² of silicon was:
 - A 4-LUT, a flip-flop, and reconfigurable wires
- But the FPGA was never an ideal computing platform:
 - RTL productivity is not scaling with Moore's Law
 - High-level synthesis has had limited success
 - Developer must be mindful of HW issues such as timing closure
- RC developer must be application expert, SW and HW engineer

Ambrio

21st Century Reconfigurable Computing

- 2007 130 nm CMOS
- What is the best way to use 0.5 mm² of silicon today?
 - 32-bit CPU, several KB of RAM, and reconfigurable buses
- So just fab a chip with CPUs and buses, and throw it over the wall at the programmers. Not likely to succeed!
- Pick a good programming model for reconfigurable computing first.
 Then build silicon and tools to implement that model.

Copyright © 2003-2007 Ambric, Inc.

_

Ambric Introduction

- Fabless Semiconductor Company
- Founded in 2003 in Beaverton, Oregon
- Veteran team 60+ employees and growing
- Production silicon August 2007
- Product releases: Chip, IDE, applications, board January 2008

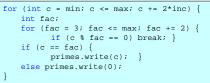
Ambric

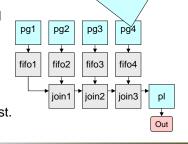
Ambric Objectives

- Maximum possible performance and performance/watt for embedded and accelerated applications
 - streaming media, image processing, networking, software radio
 - superior to FPGAs, DSPs, multicores, even approaching ASICs
- Reasonable and reliable application development
 - write software not hardware, with reliable reuse
- Hardware and software scalability to track Moore's Law
 - future silicon processes
 - development productivity

Copyright © 2003-2007 Ambric, Inc.

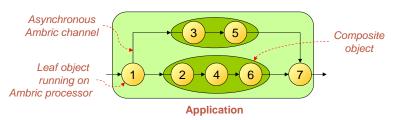
_


A Structural Object Programming Model, Architecture, Chip and Tools for Reconfigurable Computing


- Structural Object Programming Model
- Architecture
- Chip
- Tools
- Applications
- University Program

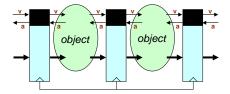
Ambric

- What should be in a programming model?
 - What is familiar, productive, scalable to any size and speed?
- Software languages (C, Java, ...) are familiar and productive
 - Array of sequential processors
- Block diagrams are familiar, scalable, encapsulated and hierarchical
 - Reconfigurable interconnect
- Strict encapsulation and hierarchy with standard interfaces enables strong design reuse, necessary for scalable development cost.



Ambric

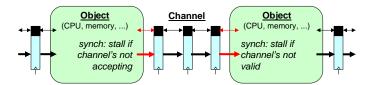
Copyright © 2003-2007 Ambric, Inc.


Structural Object Programming Model

- Objects are software programs running concurrently on an asynchronous array of Ambric processors and memories
- Objects exchange data and control through a structure of self-synchronizing asynchronous Ambric channels
- Objects are mixed and matched hierarchically to create new objects, snapped together through a simple common interface
- Easier development, high performance and scalability

Ambric

Ambric Channels


- Chains of Ambric registers form Ambric channels
 - Word-wide, unidirectional, point-to-point, strictly ordered
 - Inter-stage object throttles its channels with Ambric protocol
 - v downstream, a upstream
 - Fully encapsulated, fully scalable for control and data between objects
- Objects linked through channels are asynchronous to each other
 - Each operates when it can, on its own, according to its channels
 - Objects are synchronized with one another only through channels
- Globally Asynchronous Local Synchronous (GALS) clocking
 - Physically scalable, no low-skew long wires

Copyright © 2003-2007 Ambric, Inc.

_

SOPM Realized in Silicon

- Objects exchange data and control thru a structure of Ambric channels
 - Each stage has forward and backward flow control, and buffering
- Standard interface between objects
 - Encapsulation, reuse
- Self-synchronizing on each transfer
 - Asynchronous system
- Channels can be any length or speed: no scheduling, no timing closure
 - Easier on tools, easier to program, easier to debug, reliable

Ambrio

Copyright © 2003-2007 Ambric, Inc.

10

Model of Computation: not quite CSP

Process Domains

- CSP
 - · C.A.R. Hoare, "Communicating Sequential Processes", Communications of the ACM, vol. 21, no. 8, August
- · Components are sequential processes that run concurrently
- X Synchronous message passing
 - · Good for resource management problems
 - · Dining Philosophers
 - Hardware bus contention
 - Nondeterminism
 - Liveness
- Fairness Deadlock

slides from "A Brief Tutorial on Models of Computation" The MFSCAL Team. UC Berkeley,

- Ambric MoC was inspired by CSP, but is not quite CSP.
 - Message passing is buffered, not strictly synchronous.

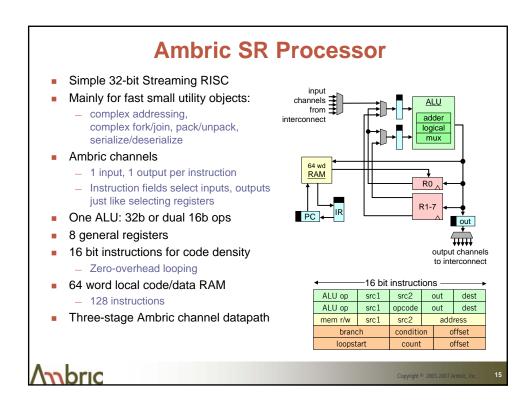
Model of Computation: Process Network

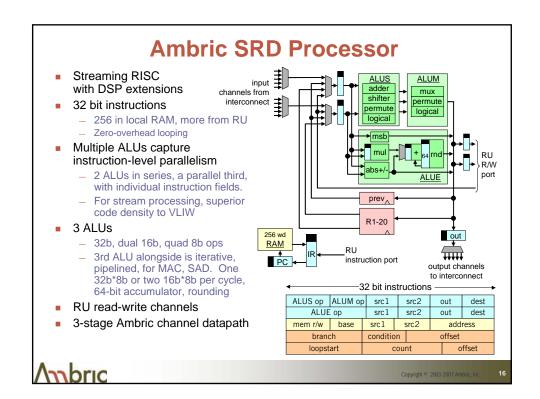
Process Domains

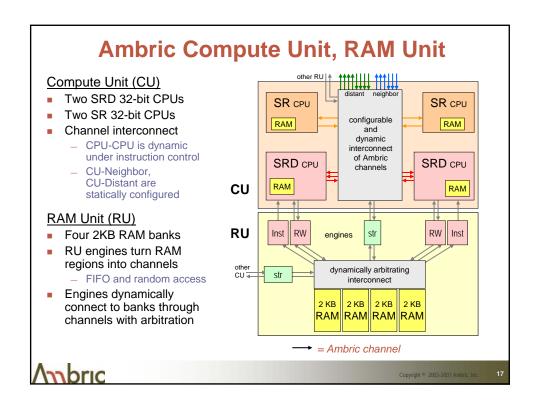
- PN
 - Kahn-MacQueen Process Network
 - G. Kahn, "The Semantics of a Simple Language for Parallel Programming", Prof. of the IFIP Congress
- · Components are sequential processes that run concurrently
- Communication channels are whounded FIFOs Get operation blocks until data is available.

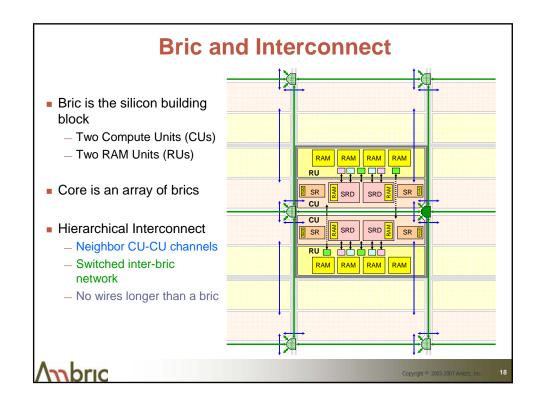
 Processes cannot poll for data

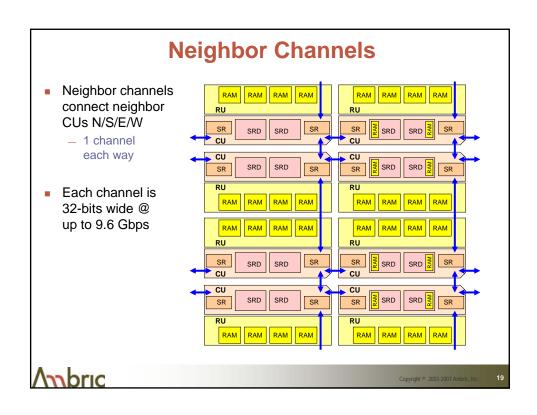
 - Deterministic execution

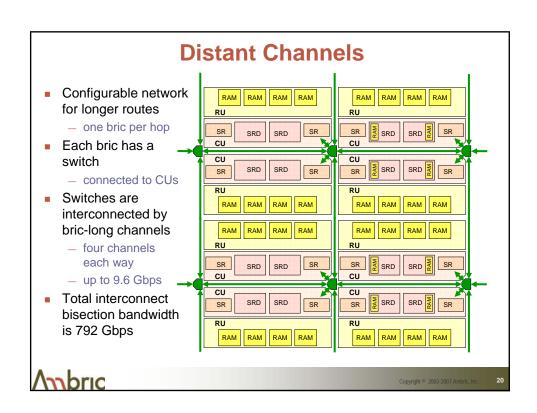

 Bounded memory with blocking writes Good for streaming signal processing applications slides from "A Brief Tutorial on Models of Computation^a The MESCAL Team, UC Berkeley, Fall 2001


- Ambric MoC is a Process Network with bounded FIFOs.
 - FIFO-like primitive register, streaming RAMs for bigger FIFOs.
 - Channels carry data and control, and strictly preserve sequence.




- Structural Object Programming Model
- Architecture
- Chip
- Tools
- Applications
- University Program


Ambrio



- Structural Object Programming Model
- Architecture
- Chip
- Tools
- Applications
- University Program

Convight © 2002 2007 Ambrie Inc

Am2045 Chip 130nm standard-cell ASIC 180 million transistors 45 brics, 1.03 teraOPS 336 32-bit processors - 7.1 Mbits dist. SRAM 8 μ–engine VLIW accelerators High-bandwidth I/O PCI Express DDR2-400 x 2 - 128 bits GPIO Serial flash, JTAG, μP I/O Package _ 31 x 31 mm 896-balls DDR2 DDR2 Flip-Chip Ctlr Ctlr CU CU Compute Unit RAM Unit habric

Performance Metrics

Am2045 @ 300 MHz:

- 1.03 trillion operations per second (8-bit, 16-bit Sum of Abs. Diff.)
 - 60 GMACS (16x16, 32 bit sum)
- 792 Gbps interconnect bisection bandwidth
- 26 Gbps DRAM + 16 Gbps high-speed serial + 13 Gbps parallel

<u>Kernel</u>	Instances @ Rate Each	
32-tap FIR filters	168 @ 4.7 Msps 5 @ 223 Msps	16 bit data
Dot Product	168 @ 200 Msps	16 bits in, 32 bit sum
Maximum Value	168 @ 343 Msps	n=100, 16 bits, 2 wide
Saturators	168 @ 600 Msps	signed 16 to unsigned 8, 2 wide
Viterbi ACS	336 @ 600 Mbps	16-bit
1K point FFT	84 @ 8.8 Msps	complex 16-bit radix-2
AES	56 @ 181 Mbps 7 @ 1.1 Gbps	feedback modes non-feedback modes

Ambric

Copyright © 2003-2007 Ambric, Inc.

23

Ambric Development Boards

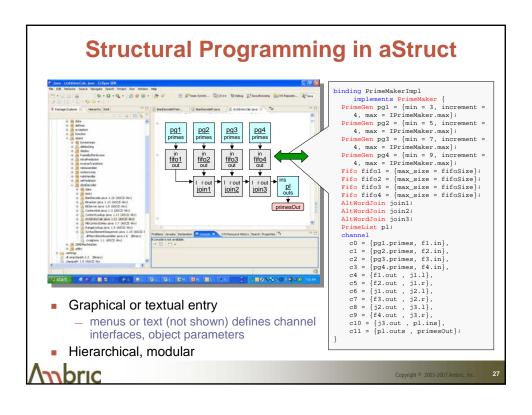
Am2045 Software Development Board

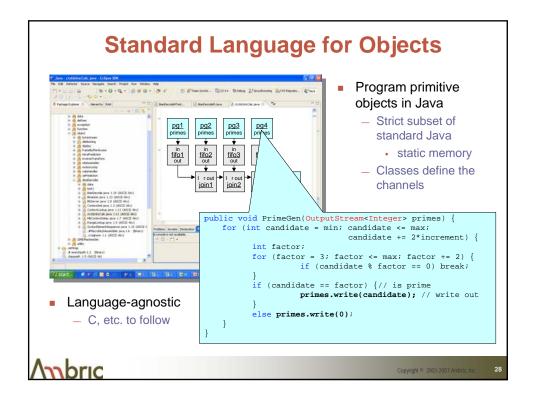
- 1 production Am2045 + SDRAM
- PCI Express interface to host
- For rapid software development and application acceleration

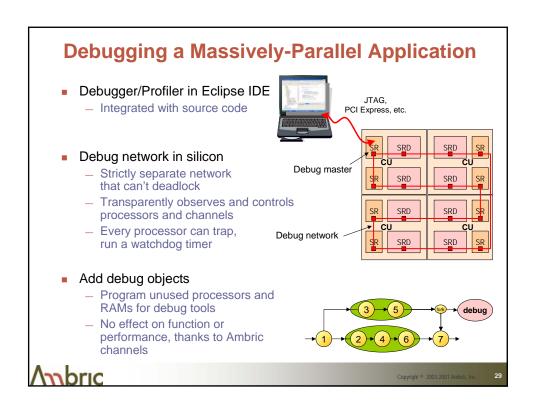
Am2045 Integrated Development Board

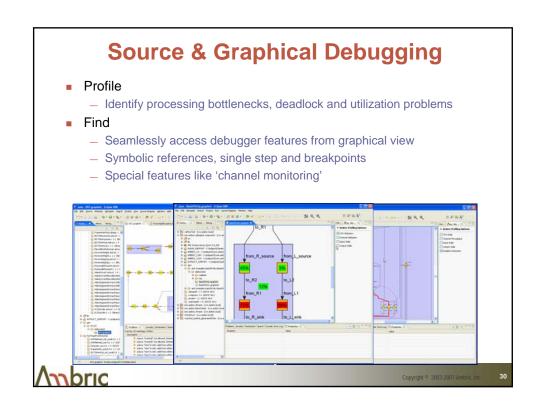
- 1 production Am2045 + SDRAM
- 4 32-bit GPIO connectors, USB
- Stand-alone capable on the benchtop, or in a PCIe slot with PC cover off
- Serial Flash, power connector
- For embedded development

Copyright © 2003-2007 Ambric, Inc.


24


- Structural Object Programming Model
- Architecture
- Chip
- Tools
- Applications
- University Program

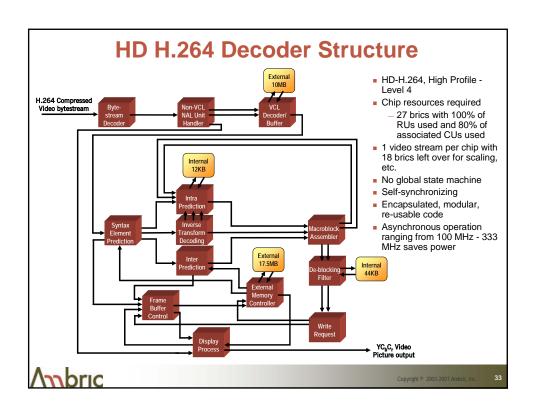


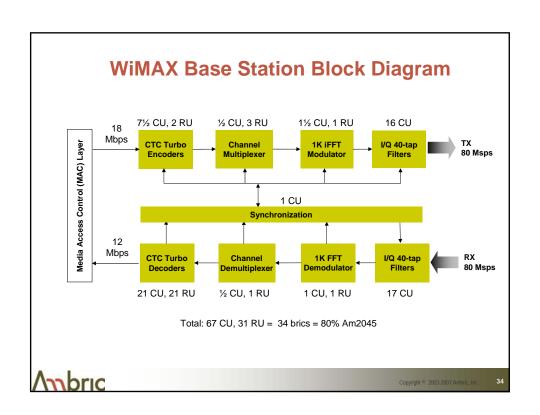

Convight © 2002 2007 Ambrie Inc

Ambric Tool Chain Eclipse IDE (Integrated Design Env.) All tools in the open IDE **5** Structure 7 Conceive your application as a structure of objects and the messages Library 2 4 they exchange Divide-and-conquer using hierarchy Reuse Compile - Encapsulated library objects Each Code and Test - Write your new objects in Java or Assembler Verify with functional simulation Map & Route Realize on HW Compile each object separately Run mapper-router, configure chip Debug, Tune on HW Debug, profile and tune performance **Ambric**

- Structural Object Programming Model
- Architecture
- Chip
- Tools
- Applications
- University Program

Copyright © 2003-2007 Ambric, Inc.


...


Library Objects

- Video Compression
- Motion Estimation
 - Full-search
 - · Hierarchical-search
- H.264 I-frame Decoder Module
 - Deblocking Filter
 - Inverse Transform
 - · Intra-prediction
 - Macroblock assembler
 - Motion Compensation
 - Cache-controller
 - CABAC decode
- DV Decoder Module
- DVCPRO-HD modules
 - Variable length codec
 - Forward & Inverse DCT
- Pixel Processing
 - HD Video scaler
 - HD De-interlacer

- Signal Processing
 - FFT radix-2, radix-4
 - FIR, IIR Filters
 - Vector Saturation
 - Maximum value search
 - Dot Product
 - Matrix Math
- Communications
- Turbo CTC
- Viterbi
- AES encryption
- Regular expression search

Ambric

- Structural Object Programming Model
- Architecture
- Chip
- Tools
- Applications
- University Program

Copyright © 2003-2007 Ambric, Inc.

٥.

Ambric University Program

- Ambric offers development tools, documentation, hardware, and limited technical support, at no cost, to University Program partners.
- Benefits to University
 - Access to a real massively-parallel embedded-systems architecture
 - Very high performance execution with energy efficiency
 - Easier and faster software-only development effort
 - Real execution target for research tools, languages, etc.
- Benefits to Ambric
 - Real development experience with more application areas
 - Promote innovative tools, methodologies, libraries
 - Get to know the best future graduates
- Current Members as of January 2008
 - U. Wash EE Dept.: Prof. Scott Hauck
 - Portland State U. ECE Dept.: Prof. Dan Hammerstrom
 - Halmstad U. CERES (Sweden): Prof. Bertil Svenson

Copyright © 2003-2007 Ambric, Inc.

36

www. Anbric.com

Publications

- "Synchronization through Communication in a Massively Parallel Processor Array", Mike Butts, IEEE Micro, Sept/Oct 2007.
- "A Structural Object Programming Model, Architecture, Chip and Tools for Reconfigurable Computing", Mike Butts, Anthony Mark Jones, Paul Wasson, IEEE Symposium on Field-Programmable Custom Computing Machines, April 2007.

A Structural Object Programming Model, Architecture, Chip and Tools for Reconfigurable Computing

- Structural Object Programming Model
- Architecture
- Chip
- Tools
- Applications
- University Program
- Additional Background Material

Ambric

The Energy Efficiency of Parallelism

- Strict power budgets at all levels limit power scalability
 - 1W handheld, 10W portable, 100W desktop/server
- Minimize energy per operation
 - Lower voltage: slower but far less power
- Get performance back with parallelism
 - This makes the most power-efficient use of silicon area
- Example:
 - One cool processor: 75% speed, 42% power*
 - Two in parallel: 150% speed, 84% power
- The catch is making parallelism practical. Ambric's programming model opens this door.
 - High performance made scalable

