
First Experiences with the SCC and a

Comparison with Established Architectures

Stefan Lankes, Carsten Clauss

Chair for Operating Systems
RWTH Aachen University

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

2

Agenda

• First RCCE and MPI benchmark results

• Cache behavior of the P54C Architecture

• Optimization of RCCE_put and RCCE_get

 Learning from the past

• Potential of MP-MPICH
 e.g. clustering of SCC systems

• Capability of SVM systems
 Future project aims

• Conclusions and Outlook

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

3

Background

• Research topics
 Operating Systems (of course)

 Parallelization strategies

 Shared Memory

 Message Passing

 Distributed Systems

 Embedded and Real-Time Systems

 …

 The Chair for Operating systems has developed an own
MPI distribution
 Based on MPICH

 Support of different high performance interconnects (e.g. SCI)

 The “ultimate” MPI benchmark: Ping Pong
- It is obvious to use RCCE with Message Passing Buffers

- Enlarge RCCE example “PingPong” to send messages with
variable size

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Ping Pong

4

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Bottleneck: Bad Cache Behaviour

5

Source

Private Memory

Cache MPB

Core X

Cache MPB

Core Y

Destination

Private Memory

No cache line fill by

a write miss!

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Approach: Data Prefetching

6

Source

Private Memory

Cache MPB

Core X

Cache MPB

Core Y

Destination

Private Memory

Data Prefetching

No SSE → Prefetching by hand

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Ping Pong

7

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

8

• Layered Design of MPICH:

MPI Applikation

MPI Interface (API)

Profiling Interface (PMPI)

MPIR Layer

(platform independent)

ADI2 Interface

MPID Layer

(platform dependent)

Operating System

Hardware

OS / HW Interface

Generic Implementation

of the ADI Device

Channel Interface

Channel Device Implementation

(e.g. ch_smi)

Metacomputing / Grid-enabled MPI

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

9

• Multi-Device Support MetaMPICH

MPI Applikation

MPI Interface (API)

Profiling Interface (PMPI)

MPIR Layer

(platform independent)

ADI2 Interface

MPID Layer

(platform dependent)

Operating System

Hardware

OS / HW Interface

Generic Implementation

of the ADI Device

Channel Interface

SMI

Device

ch_smi

RCCE

Device

ch_scc

P4

Device

ch_p4

SMI iRCCE P4

...

Metacomputing / Grid-enabled MPI

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

10

• The Secondary Device ch_usock

MetaMPICH MetaMPICH

Primary Device

(e.g. ch_scc)

Primary Device

(e.g. ch_smi)

Secondary Device

(ch_usock)

Communication via TCP

Metacomputing / Grid-enabled MPI

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Ping Pong

11

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Pipelining on Shared Memory Architectures

12

• Most SCI adapters used

PCI (express) as I/O bus

 Cache coherence not

supported

 Only local segments

are cache able

 On SCC, the cache is

on all shared regions

disabled

• Classic optimization technique: Pipelining

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Ping Pong

13

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Ping Pong

14

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Parallelization Strategies

 Two basic strategies

• Communication via Message Passing

 Code restructuring

 It’s difficult to use, because we learnt sequential

programming (C, C++, Java)

 Scales very well (→ MPI, URPC, Barrelfish)

• Communication via Shared Memory

 The first contact is easier. Feels like sequential

programming.

 However, it is much more complex (False Sharing, Races,

Deadlocks, NUMA) .

 Incremental parallelization

 Scales mostly good…

15

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Benefits of Shared Memory Parallelization

 Algorithms with a dynamic data structure and access

pattern are easier to parallelize.

• Adaptive PDE solvers

 e.g. Structured Adaptive Mesh Refinements PDE solver

 Not ideal for NUMA architectures

 Using of Affinity-On-Next-Touch to redistribute pages

• Airline flight scheduling module

 Part of Lufthansa Systems’ decision support system

 Searching for a flight between A and B with N connections

 Consideration of departure- and arrival-time, capacity,

costs,…

 More complex as the Shortest Path Problem

 Using of double-linked lists

 Aim: A scalable Shared Virtual Memory (SVM) system on

the top of SCC

16

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

MetalSVM: A Virtual NUMA Architecture on SCC

• Linux defines a clear interface between the paravirtualized

kernel and its hypervisor.

• MetalSVM uses this interface to paravirtualize Linux.

• For instance, the spinlock interface could be used to

synchronize Linux threads over the MPB.

17

Application

Para-virtualized standard Linux

MetalSVM

Core 0 Core 47

• MetalSVM will be a small

hypervisor, which uses

paravirtualization techniques

to run Linux on SCC.

• The integrated SVM system

gives the Linux kernel a

transparent (and cacheable)

view of the memory.

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Device Emulation

• This increases the reusability of code across different

hypervisors (Xen, KVM, lguest).

• MetalSVM will support this framework to minimize the

changes to Linux kernel.

• The smooth integration of a new device into Linux could be

realized by developing a specific device emulation layer for

MetalSVM.

18

Linux guest

front-end driver

MetalSVM

back-end driver

virtio

device emulation

• Linux provides already an I/O

virtualization framework called
Virtio.

• Virtio provides a common

front end for e.g network and

block devices.

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Conclusions and Outlook

• Established techniques could be used to increase

the performance

• The cache behavior of P54C could be “nicer”.

 More influences will be preferable

• Clustering of SCC via MP-MPICH already

possible

• The SCC is an ideal architecture to build a

scalable SVM systems

 Fast collective operations

19

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Ping Pong

20

1st MARC symposium Chair for Operating Systems

9
th

 N
o

v
e

m
b

e
r

 2
0

1
0

Ping Pong

21

