
Jim Held
Intel Fellow & Director

Tera-scale Computing Research

“Single-chip Cloud Computer”
An experimental many-core processor from Intel Labs

Intel Labs Single-chip Cloud Computer Symposium
February 12, 2010

Agenda

10:00 Welcome and Opening Remarks

10:15 SCC Hardware Architecture Overview

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions

13:15 Message Passing on the SCC

13:45 Software-Managed Coherency

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn

2

Motivations for SCC

•Many-core processor research

–High-performance power-efficient fabric

–Fine-grain power management

–Message-based programming support

•Parallel Programming research

–Better support for scale-out model servers
> Operating system, communication architecture

–Scale-out programming model for client
> Programming languages, runtimes

3

Agenda

10:00 Welcome and Opening Remarks

10:15 SCC Hardware Architecture Overview

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions

13:15 Message Passing on the SCC

13:45 Software-Managed Coherency

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn

4

Jason Howard
Advanced Microprocessor Research

Intel Labs

SCC Architecture and
Design Overview

Intel Labs Single-chip Cloud Computer Symposium
February 12, 2010

Agenda

• Feature set

• Architecture overview

– Core

– Interconnect Fabric

– Memory model & Message passing

– I/O and System Overview

• Design Overview

– Tiled design methodology

– Clocking

– Power management

• Results

• Summary

6

SCC Feature set

• First Si with 48 iA cores on a single die

• Power envelope 125W Core @1GHz, Mesh @2GHz

• Message passing architecture

> No coherent shared memory

> Proof of Concept for scalable solution for many core

• Next generation 2D mesh interconnect

> Bisection B/W 1.5Tb/s to 2Tb/s, avg. power 6W to 12W

• Fine grain dynamic power management

> Off-die VRs

7

M
C

0
M

C
1

M
C

2
M

C
3

System InterfaceVRC

Router

IA-32
Core0

L2$0

256KB

L2$1

256KB

IA-32
Core1

MPB
16KB

Router Tile

Die Architecture

2 core clusters in 6x4 2-D mesh

16B

8

Core Memory Management

• Core cache coherency is restricted to private memory space

– Maintaining cache coherency for shared memory space is under
software control

• Each core has an address
Look Up Table (LUT)
extension

– Provides address translation
and routing information

• LUT must fit within the core
and memory controller
constraints

• LUT boundaries are
dynamically programmed

Shared

Boot

1GB
Private

Maps to MC0

Maps to VRC

Maps to MPBs

Maps to MC0

CORE0 LUT Example

0

1

254

255

… …

9

On-Die 2D Mesh

• 16B wide data links + 2B sideband

> Target frequency: 2GHz

> Bisection bandwidth: 2 Tb/s

> Latency: 4 cycles (2ns)

• 2 message classes and 8 VCs

• Low power circuit techniques

> Sleep, clock gating, voltage control, low power RF

> Low power 5 port crossbar design

• Speculative VC allocation

• Route pre-computation

• Single cycle switch allocation

10

Input

Arbitration
Switch

Arbitration

F
IF

O Route

Pre-compute

VC

Allocation

Cycle 1 Cycle 2 Cycle 3 Cycle 4
In-Port 0

Frequency 2GHz @ 1.1V

Latency 4 cycles

Link Width 16 Bytes

Bandwidth 64GB/s per link

Architecture 8 VCs over 2 MCs

Power Consumption 500mW @ 50°C

16B

16B

Router Architecture

11

Message Passing on SCC

•Message passing is done through shared
memory space

•Two classes of shared memory:

–Off-die, DRAM: Uncachable shared memory …
results in high latency message passing

–On-die, message passing buffers (MPB) … low
latency message passing
> On-die dedicated message buffers placed in each tile to

improve message passing performance

> Message bandwidth improved to 1 GB/s

12

Non-coherent Memory Space

Coherent Memory Space

Message Passing

Protocol

16KB

Message

Passing

Buffer

1. Data Move

Core A - L1$

2. MP write miss

6. Data Move

Core B - L1$

4. MP read miss

3. MPB write

5. MPB read

Message Passing Protocol

• Cores communicate through
small fast messages

– L1 to L1 data transfers

– New Message Passing Data
Type (MPDT)

• Message passing Buffer
(MPB) – 16KB

– 1 MPB per tile for 384KB of on-
die shared memory

– MPB size coincides with L1
caches

13

Dedicated Message Buffers

• Cache line transfers into L1 cache of receiving core
implemented through on-die message passing buffers

• Each tile has 16KB MPB

• Part of the shared memory space is statically mapped into
MPB in each tile rather than into memory controller

• Messages larger than MPB can still go out to main memory

Mesh

Send
Core

:Data

:Req/Res
MeshIF

Msg Buf

Receive
Core

MeshIF

Msg Buf

Mesh

Send
Core

:Data

:Req/Res
MeshIF

Msg Buf

Receive
Core

MeshIF

Msg Buf

Local write, remote read Remote write, local read

14

System Interface

• JTAG access to config system while in reset/debug
> Done on Power Reset from Management Console PC

> Configuring memory controller etc.

> Reset cores with default configuration

• Management Console PC can use Mem-mapped
registers to modify default behavior

> Configuration and voltage control registers

> Message passing buffers

> Memory mapping

• Preload image and reset rather than PC bootstrap
> BIOS & firmware a work in progress

15

SCC system overview

16

 tile tile

 tile tile

 tile tile

 tile tile

 tile tile

MC

MC

MC

MC

D
IM

M

D
IM

M
D

IM
M

D
IM

M

System Interface

R

R

R

R

R

R

R

R

 tile tile tile tile

 tile tile

 tile tile

 tile tile

 tile tile

 tile tile

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

System
FPGA

PCIe
Management Console PC

SCC die

JTAG
I/O JTAG

BUS

PLL

RPC

SCC full chip

Technology 45nm Process

Interconnect 1 Poly, 9 Metal (Cu)

Transistors Die: 1.3B, Tile: 48M

Tile Area 18.7mm2

Die Area 567.1mm2

17

13

21.4mm

26.5mm

DDR3
MC

DDR3
MC

PLL +
I/O

RPC

DDR3
MC

DDR3
MC

JTAG

System Interface + I/O

SCC
TILE

SCC
TILE

P54cL2$
+
CC

GCUMIU MPB

C
C
F

Router

P54c

P54cL2$
+
CC

GCUMIU MPB

L2$
+
CC

C
C

F
• 2 P54C cores (16K L1$/core)

• 256K L2$ per core

• 8K Message passing buffer

• Clock Crossing FIFOs b/w Mesh

interface unit and Router

• Tile area 18.7mm2

• Core are 3.9mm2

• Cores and uncore units @1GHz

• Router @2GHz

SCC Dual-core Tile

18

SIF

M
C

0

M
C

2

M
C

1

M
C

3

Router Tile

Clock Gating

VRC

PLL

Port_En

Router_En L2$1_En

L2$0_En

Tile_EN

Core1_En

Core1_En

Port

CLKs

L2$1 clk

L2$0 clk

Core0

clk

Core1

clk

[4:0]

Clock Distribution

• Balanced H-tree clock distribution

• Designed to provide 4GHz clock
to tile entry points

• Simulated skew for adjacent tiles
– 5ps

• Cross die skew irrelevant

19

27 Frequency Islands (FI) 8 Voltage Islands (VI)

Voltage and Frequency islands

20

SCC Clock Crossing FIFO (CCF)

• 6 entry deep FIFO, 144-bits wide

• Built-in Voltage translation: M, N ratios and pointer
separation scanned in

• Key Benefit: independent mesh & tile frequency

Vcc1, F1 Vcc2, F2

21

Closed Loop Thermal Management
• Network of digital temperature sensors

– 2 per Tile, 48 total
– Programmable 13-bit counters via FSM
– Outputs written to Config registers

> Readable by any P54c core for DVFS

– Readable by core/JTAG and via 2D mesh/SIF

22

C
o
n
fig

/S
c
a
n

To P54c
And JTAG

SCC_TILE

Package and Test Board

Technology 45nm Process

Package 1567 pin LGA package

14 layers (5-4-5)

Signals 970 pins

23

Core & Router Fmax

24

Measured full chip power

25

Power breakdown

Full Power Breakdown

Total -125.3W
Cores

69%MC &

DDR3-

800

19%

Routers

& 2D-

mesh

10%

Global

Clocking

2%

Low Power Breakdown

Total - 24.7W

Cores

21%

MC &

DDR3-

800

69%

Routers

& 2D-

mesh

5%

Global

Clocking

5%

Clocking: 1.9W Routers: 12.1W

Cores: 87.7W MCs: 23.6W

Clocking: 1.2W Routers: 1.2W

Cores: 5.1W MCs: 17.2W

Cores-125MHz, Mesh-250MHz, 0.7V, 50°CCores-1GHz, Mesh-2GHz, 1.14V, 50°C

26

Summary

• A 48 IA-32 core processor in 45nm CMOS
• Second generation 2D-mesh network
• 4 DDR3 channels in a 6×4
• Highest level of IA-32 integration

• New message passing HW for increased performance
• 384KB of on-die shared memory
• Message passing memory type

• Power management employs 8VIs and 28FIs for
DVFS

• Chip dissipates between 25W and 125W as
performance scales
• 25W at 0.7, 125MHz core, 250MHz mesh and 50°C
• 125W at 1.14V, 1GHz core, 2GHz mesh and 50°C

27

Agenda

10:00 Welcome and Opening Remarks

10:15 SCC Hardware Architecture Overview

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions

13:15 Message Passing on the SCC

13:45 Software-Managed Coherency

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn

28

Michael Riepen, Michael Konow
Germany Research Center

sccKit
Software framework

for SCC Platform

Intel Labs Single-chip Cloud Computer Symposium
February 12, 2010

Content

• Platform

– Platform overview

– System Interface FPGA bitstream

– Board management controller (BMC) firmware

• SCC Software

– Customized Linux

– bareMetalC

• Management Console PC Software

– PCIe driver with integrated TCP/IP driver

– Programming API for communication with SCC platform

– GUI for interaction with SCC platform

– Command line tools for interaction with SCC platform

30

Content

• Platform

– Platform overview

– System Interface FPGA bitstream

– Board management controller (BMC) firmware

• SCC Software

– Customized Linux

– bareMetalC

• Management Console PC Software

– PCIe driver with integrated TCP/IP driver

– Programming API for communication with SCC platform

– GUI for interaction with SCC platform

– Command line tools for interaction with SCC platform

31

SCC Platform Board Overview

32

SCC “Chipset”

•System Interface FPGA

–Connects to SCC Mesh interconnect

–IO capabilities like PCIe, Ethernet & SATA

–Bitstream is part of sccKit distribution

•Board Management Controller (BMC)

–JTAG interface for Clocking, Power etc.

–USB Stick with FPGA bitstream

–Network interface for User intercation via Telnet

–Status monitoring

–Firmware is part of sccKit distribution

33

Content

• Platform

– Platform overview

– System Interface FPGA bitstream

– Board management controller (BMC) firmware

• SCC Software

– Customized Linux

– bareMetalC

• Management Console PC Software

– PCIe driver with integrated TCP/IP driver

– Programming API for communication with SCC platform

– GUI for interaction with SCC platform

– Command line tools for interaction with SCC platform

SCC Linux Build

The sccKit comes with a custom Linux build which
can be used to execute own applications:

• Kernel 2.6.16 with Busybox 1.15.1

• Booting w/o BIOS possible (Kernel mods)

• Dropbear ssh

• On-die TCP/IP network drivers

• Off-die TCP/IP driver for connection to
management console including NFS service.

• Drivers for low level access to SCC specific
hardware (e.g. MPB).

35

SCC Linux Apps

•Cross-compilers for Pentium processor
compatible IA cores available (C++,
Fortran)

•Write own low level device drivers for
deeper dives.

•Cross compiled MPI2 including iTAC trace
analyzer available.

36

Creating own SCC binaries

• It is also possible to write software that directly
executes on SCC cores such as an operating
system.

• C++ based programming framework “bareMetalC”
is available and allows direct access to all dedicated
SCC hardware features (e.g. MPB).

Up sides Down sides

Direct access to low
level features of SCC.

Limited IO capabilities.

No overhead from OS. Harder to debug.

Full flexibility. Low level coding w/o OS

37

bareMetalC Apps

•bareMetalC used for bring-up and
production tests (e.g. BIST test)

•Useful for creation of own low level apps
(e.g. customized OS)

•SCC communication environment (RCCE)
with MPI-like API available including several
applications

38

Content

• Platform

– Platform overview

– System Interface FPGA bitstream

– Board management controller (BMC) firmware

• SCC Software

– Customized Linux

– bareMetalC

• Management Console PC Software

– PCIe driver with integrated TCP/IP driver

– Programming API for communication with SCC platform

– GUI for interaction with SCC platform

– Command line tools for interaction with SCC platform

PCIe driver with Ethernet

•Management Console PC comes with
PCIe driver that provides:

–TCP/IP connection to SCC

–Connection to Management Console PC
applications.

–Access to all memory and register locations of
SCC.

40

Creating Management Console PC Apps

• Written in C++ making use of
Nokia Qt cross-platform
application and UI framework.

• Low level API (sccApi) with
access to SCC and board
management controller via
PCIe.

• Code of sccGui as well as
command line tools is
available as code example.
These tools use and extend
the low level API.

41

sccGui

• Read and write
system memory and
registers.

• Boot OS or other
workloads
(e.g. bareMetalC).

• Open SSH connections
to booted Linux cores

• Performance meter

• Initialize Platform via Board Management Controller.

42

sccGui for debugging

Modify registers

Read system memory

43

sccBoot & sccReset

•sccBoot:
A command-line tool that allows to boot
Linux on selected cores and to check the
status (“which cores are currently booted”).

•sccReset:
A command-line tool that allows to reset
selected SCC cores.

44

sccKonsole

• Regular konsole, with automatic login to selected cores.

• Enables broadcasting amongst shells.

45

Future

•Linux will be the default OS for self-
contained booting

•Self-boot firmware is in preparation

Let„s shape the future
together!

46

Agenda

10:00 Welcome and Opening Remarks

10:15 SCC Hardware Architecture Overview

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions

13:15 Message Passing on the SCC

13:45 Software-Managed Coherency

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn

47

Agenda

10:00 Welcome and Opening Remarks

10:15 SCC Hardware Architecture Overview

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions

13:15 Message Passing on the SCC

13:45 Software-Managed Coherency

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn

48

Richly

Restricted

Communicating Cores

Capability Communication Environment

Ecosystem

Radically Cool Coordination E-science

Research Cores Communication Environment

Rabble-of Communicating Cores Experiments

Rock Creek Communication Environment

Rorschach Core Communication Express

Rapidly Communicating Cores Env.

R C C E
A small library for many-core

communication

Reduced Compact Communication Environment

Rob van der Wijngaart
Software and Services Group

Tim Mattson
Intel Labs

Intel Labs Single-chip Cloud Computer Symposium

February 12, 2010

Agenda

•Views of SCC: HW, SW and Platforms

•RCCE: A communication environment
for application programmers.

•Benchmarks and Results

•Power management

50

Top Level Hardware Architecture

•6x4 mesh 2 Pentium™ P54c cores per tile

•256KB L2 Cache, 16KB shared MPB per tile

•4 iMCs, 16-64 GB total memory

M
em

o
ry

 C
o

n
tr

o
ll

er

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

Tile

R

M
em

o
ry

 C
o

n
tr

o
ll

er

M
em

o
ry

 C
o

n
tr

o
ll

er
M

em
o

ry
 C

o
n

tr
o

ll
er

System I/F

Tile

Core 1

Core 0

L2$1

L2$0

Router MPB

Core 1

Core 0

R = router, iMC = integrated Memory Controller, MPB = message passing buffer

Tile area: ~17 mm2

SCC die area: ~567 mm2

51

Programmer’s view of SCC
• 48 x86 cores with the familiar x86 memory model for Private

DRAM
• 3 memory spaces, with fast message passing between cores

(/ means on/off-chip)

CPU_0

L
1

$

L
2

$

Private
DRAM

CPU_47

L
1

$

L
2

$

Private
DRAM

…

Shared on-chip Message Passing Buffer (8KB/core)

Shared off-chip DRAM (variable size)

t&s t&s

t&s Shared test and set register

52

SCC Software research goals

• Understand programmability and application
scalability of many-core chips.

• Answer question “what can you do with a many-core
chip that has (some) shared non-cache-coherent
memory?”

• Study usage models and techniques for software
controlled power management

• Sample software for other programming model and
applications researchers (industry partners, Flame
group at UT Austin, UPCRC, YOU …)

Our research resulted in a light weight, compact, low latency

communication library called RCCE (pronounced “Rocky”)

Third party names are the property of their owners.
53

SCC Platforms

• Three platforms for SCC and RCCE

– Functional emulator (on top of OpenMP)

– SCC board with two “OS Flavors” … Linux or Baremetal
(i.e. no OS)

Rock creek

Apps

Linux

RCCE

PC or server with

Windows or Linux

Apps

OpenMP

Rock creek

Apps

Baremetal C

RCCE_EMU

Driver

RCCE RCCE

Functional emulator,
based on OpenMP. SCC board – NO OpenMP

icc
ifort
MKL

icc MKL icc fort MKL

RCCE supports greatest common denominator between the three platforms

Third party names are the property of their owners.
54

Agenda

•Views of SCC: HW, SW and Platforms

•RCCE: A communication environment
for application programmers.

•Benchmarks and Results

•Power management

55

High level view of RCCE

• RCCE is a compact, lightweight communication
environment.

– SCC and RCCE were designed together side by side:
> … a true HW/SW co-design project.

• RCCE is a research vehicle to understand how
message passing APIs map onto many core chips.

• RCCE is for experienced parallel programmers
willing to work close to the hardware.

• RCCE Execution Model:

– Static SPMD:
> identical UEs created together when a program starts (this is a

standard approach familiar to message passing programmers)

UE: Unit of Execution … a software entity that advances a program

counter (e.g. process of thread).

56

How does RCCE work? Part 1

Consequences of MPBT properties:

 If data changed by another core and image still in L1, read returns stale data.

 Solution: Invalidate before read.

 L1 has write-combining buffer; write incomplete line? expect trouble!

 Solution: don’t. Always push whole cache lines

 If image of line to be written already in L1, write will not go to memory.

 Solution: invalidate before write.

Message passing buffer

memory is special … of

type MPBT

Cached in L1, L2

bypassed. Not coherent

between cores

Data cached on read, not

write. Single cycle op to

invalidate all MPBT in L1

… Note this is not a flush

Discourage user operations on data in MPB. Use only as a data movement

area managed by RCCE … Invalidate early, invalidate often
57

How does RCCE work? Part 2

…
0 1 2 473

• Treat Msg Pass Buf (MPB) as 48 smaller buffers … one per core.

58

How does RCCE work? Part 2

…
0 1 2 473

• Treat Msg Pass Buf (MPB) as 48 smaller buffers … one per core.

2

A = (double *) RCCE_malloc(size)

Called on all cores so any core can

put/get(A at Core_ID) without error-

prone explicit offsets

Flags allocated and

used to coordinate

memory ops

59

• Symmetric name space … Allocate memory as a collective op.
Each core gets a variable with the given name at a fixed offset
from the beginning of a core’s MPB.

How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

• Symmetric name space … Allocate memory as a collective op. Each core
gets a variable with the given name at a fixed offset from the beginning of
a core’s MPB.

0

CPU_0

L
1

$

L
2

$

Private
DRAM

t&s

CPU_47

L
1

$

L
2

$

Private
DRAM

t&s

47…

60

How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

• Symmetric name space … Allocate memory as a collective op. Each core
gets a variable with the given name at a fixed offset from the beginning of
a core’s MPB.

0

CPU_0

L
1

$

L
2

$

Private
DRAM

t&s

CPU_47

L
1

$

L
2

$

Private
DRAM

t&s

47…

Put(A,0)

61

How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

• Symmetric name space … Allocate memory as a collective op. Each core
gets a variable with the given name at a fixed offset from the beginning of
a core’s MPB.

0

CPU_0

L
1

$

L
2

$

Private
DRAM

t&s

CPU_47

L
1

$

L
2

$

Private
DRAM

t&s

47…

Put(A,0) Get(A, 0)

62

How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

• Symmetric name space … Allocate memory as a collective op. Each core
gets a variable with the given name at a fixed offset from the beginning of
a core’s MPB.

0

CPU_0

L
1

$

L
2

$

Private
DRAM

t&s

CPU_47

L
1

$

L
2

$

Private
DRAM

t&s

47…

Put(A,0) Get(A, 0)

… and use flags to make the puts and gets “safe”

63

The RCCE library

• RCCE API provides the basic message passing
functionality expected in a tiny communication
library:

– One + two sided interface (put/get
+ send/recv) with synchronization
flags and MPB management
exposed.

– The “gory” interface for
programmers who need the most
detailed control over SCC

– Two sided interface (send/recv)
with most detail (flags and MPB
management) hidden.

– The “basic” interface for typical
application programmers.

64

put() get()

send() recv ()

Agenda

•Views of SCC: HW, SW and Platforms

•RCCE: A communication environment
for application programmers.

•Benchmarks and Results

•Power management

65

Linpack and NAS Parallel benchmarks

3. LU: Pencil decomposition
Define 2D-pipeline process

– await data (bottom+left)

– compute new tile

– send data (top+right)

4

4

4

4

4

4

4

3

3
3

3

3

2
2

2

1

x-sweep

z
-s

w
e

e
p

1. Linpack (HPL): solve dense system of linear equations
– Synchronous comm. with “MPI wrappers” to simplify porting

2. BT: Multipartition decomposition

– Each core owns multiple blocks (3 in this case)

– update all blocks in plane of 3x3 blocks

– send data to neighbor blocks in next plane

– update next plane of 3x3 blocks

66
Third party names are the property of their owners.

RCCE functional emulator vs. MPI
HPL implementation of

the LINPACK benchmark

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 21 41 61 81 101 121 141 161 181 201

G
F

lo
p

s

Case Number

MPI

RCCE

RCCE 1-bit flags

67

Standard HPL algorithm variant case numbers

G
F

L
O

P
S

*3 GHz Intel® Xeon® MP processor in a 4 socket SMP platform (4 cores total), L2=1MB, L3=8MB, Intel® icc 10.1 compiler, Intel® MPI 2.0

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in

system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are

considering purchasing. For more information on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

These results provide a comparison of RCCE and MPI on an older 4 processor Intel® Xeon® MP

SMP platform* using a tiny 4x4 block size. These are not official MP-LINPACK results.

Matrix Order fixed at 2200

4 Intel®Xeon® MP Processors

Third party names are the property of their owners.

RCCE functional emulator vs. MPI
HPL implementation of

the LINPACK benchmark

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 21 41 61 81 101 121 141 161 181 201

G
F

lo
p

s

Case Number

MPI

RCCE

RCCE 1-bit flags

Low overhead synchronous

message passing pays off

even in emulator mode

(compared to MPI)

68

Standard HPL algorithm variant case numbers

G
F

L
O

P
S

*3 GHz Intel® Xeon® MP processor in a 4 socket SMP platform (4 cores total), L2=1MB, L3=8MB, Intel® icc 10.1 compiler, Intel® MPI 2.0

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in

system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are

considering purchasing. For more information on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

These results provide a comparison of RCCE and MPI on an older 4 processor Intel® Xeon® MP

SMP platform* using a tiny 4x4 block size. These are not official MP-LINPACK results.

Matrix Order fixed at 2200

4 Intel®Xeon® MP Processors

Third party names are the property of their owners.

Linpack, on the Linux SCC platform

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

cores

G
F

lo
p

s

Matrix order 1000

• Linpack (HPL)* strong scaling results:
– GFLOPS vs. # of cores for a fixed size problem (1000).
– This is a tough test … scaling is easier for large problems.

• Calculation Details:
– Un-optimized C-BLAS
– Un-optimized block size (4x4)
– Used latency-optimized whole

cache line flags
– Performance dropped ~10% with

memory optimized 1-bit flags

69

SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in

system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are

considering purchasing. For more information on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

* These are not official LINPACK benchmark results.

Third party names are the property of their owners.

LU/BT NAS Parallel Benchmarks, SCC

0

400

800

1200

1600

2000

0 10 20 30 40

cores

M
F

lo
p

s

LU

BT

• Using latency
optimized,
whole cache
line flags

Problem size: Class A, 64 x 64 x 64 grid*

70

SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in

system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are

considering purchasing. For more information on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

* These are not official NAS Parallel benchmark results.

Third party names are the property of their owners.

Agenda

•Views of SCC: HW, SW and Platforms

•RCCE: A communication environment
for application programmers.

•Benchmarks and Results

•Power management

71

RCCE Power Management API

• RCCE power management emphasizes safe control:
V/GHz changed together within each 4-tile (8-core)
power domain.

– A Master core sets V + GHz for all cores in domain.

> RCCE_istep_power():

• steps up or down V + GHz, where GHz is max for selected voltage.

> RCCE_wait_power():

• returns when power change is done

> RCCE_step_frequency():

• steps up or down only GHz

• Power management latencies

– V changes: Very high latency, O(Million) cycles.

– GHz changes: Low latency, O(few) cycles.

72

Conclusions

• RCCE software works
– RCCE‟s restrictions (Symmetric MPB memory model and blocking

communications) have not been a fundamental obstacle

– Functional emulator is a useful development/debug device

• SCC architecture
– The on-chip MPB was effective for scalable message passing

applications

– Software controlled power management works … but it‟s
challenging to use because (1) granularity of 8 cores and (2)
high latencies for voltage changes

– The Test&set registers (only one per core) will be a bottleneck.
> Sure wish we had asked for more!

• Future work
– Add shmalloc() to expose shared off-chip DRAMM (in progress).

– Move resource management into OS/drivers so multiple apps can
work together safely.

– We have only just begun to explore power management
capabilities … we need to explore additional usage models.

73

SW Acknowledgements

Management Console software Michael Riepen

BareMetalC workflow Michael Riepen

Linux for SCC Thomas Lehnig

Paul Brett

System Interface FPGA development Matthias Steidl

TCP/IP network driver Werner Haas

RCCE library and apps Rob Van der Wijngaart
Tim Mattson

Developer tools
(Intel compilers and math libraries)

Patrick Kennedy

Mandelbrot app + viz Michael Riepen

• SCC System software:

• SCC Application software:

74

Agenda

10:00 Welcome and Opening Remarks

10:15 SCC Hardware Architecture Overview

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions

13:15 Message Passing on the SCC

13:45 Software-Managed Coherency

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn

75

Sai Luo, Xiaocheng Zhou, Tiger Hu Chen,
Shoumeng Yan, Ying Gao

Intel Labs China

Wei Liu, Brian Lewis, Bratin Saha
Programming Systems Lab

Software Managed
Coherency on SCC

Intel Labs Single-chip Cloud Computer Symposium
February 12, 2010

Revive an old topic: cache
coherence ?
• Software-managed coherence was a popular topic

– Been around at least a couple of decades

– Mostly targeting multiprocessors or clusters of workstations

77

Revive an old topic: cache
coherence ?
• Software-managed coherence was a popular topic

– Been around at least a couple of decades

– Mostly targeting multiprocessors or clusters of workstations

• World is changing

– Many cores on a single die

– Much higher bandwidth and lower latency

– Running out of power budget

78

Revive an old topic: cache
coherence ?
• Software-managed coherence was a popular topic

– Been around at least a couple of decades

– Mostly targeting multiprocessors or clusters of workstations

• World is changing

– Many cores on a single die

– Much higher bandwidth and lower latency

– Running out of power budget

• World is not changing

– Legacy code written in shared memory programming model

– Coherent memory requirement from ISVs

79

Revive an old topic: cache
coherence ?
• Software-managed coherence was a popular topic

– Been around at least a couple of decades

– Mostly targeting multiprocessors or clusters of workstations

• World is changing

– Many cores on a single die

– Much higher bandwidth and lower latency

– Running out of power budget

• World is not changing

– Legacy code written in shared memory programming model

– Coherent memory requirement from ISVs

80

What is the right trade-off: HW vs. SW?

Why Software-Managed Coherency?
(Why not hardware)

• No or minimal hardware!

– Limited power budget on many-core

– High complexity and validation effort to support hardware cache
coherence protocol

81

Why Software-Managed
Coherency?

(Why not hardware)
• No or minimal hardware!

– Limited power budget on many-core

– High complexity and validation effort to support hardware cache
coherence protocol

• Flexibility: Dynamic reconfigurable coherency domains

– Multiple applications running in separate coherency domains

– Good match to SCC

– Enable more optimizations: load balancing etc.

82

Why Software-Managed
Coherency?

(Why not hardware)
• No or minimal hardware!

– Limited power budget on many-core

– High complexity and validation effort to support hardware cache
coherence protocol

• Flexibility: Dynamic reconfigurable coherency domains

– Multiple applications running in separate coherency domains

– Good match to SCC

– Enable more optimizations: load balancing etc.

• Emerging applications

– Most data are RO-shared, few are RW-shared

– Coarse-grained synchronization: Map-Reduce, BSP, etc

83

Why Software-Managed Coherency?
(Why not hardware)

• No or minimal hardware!

– Limited power budget on many-core

– High complexity and validation effort to support hardware cache
coherence protocol

• Flexibility: Dynamic reconfigurable coherency domains

– Multiple applications running in separate coherency domains

– Good match to SCC

– Enable more optimizations: load balancing etc.

• Emerging applications

– Most data are RO-shared, few are RW-shared

– Coarse-grained synchronization: Map-Reduce, BSP, etc

84

SW-managed coherency can achieve
comparable performance

SCC architecture, a brief overview

85

R

M
C

M
C

M
C

M
C

24 Tiles
24 Routers
48 IA cores

Core 1

Core 2

L2 Cache

L2 Cache

ROUTER Message BufferROUTER

M
E

M
O

R
Y

 C
O

N
T

R
O

LL
E

R

• 45nm Hi-K metal-gate silicon

• 48 IA cores

• 6x4 2D mesh network

• 4 DDR3 memory controllers

• On-die message buffers

• No hardware cache
coherency

R R

R R R

1TILE

Dual-core Tile

Outline

•Motivation

•Overview of SW managed coherence

•Implementation and Optimizations

•Our results

•Challenges for future research

86

Overview

• Shared virtual memory can be used to support
coherency

– Similar to DSM

– A single shared memory view
to applications

– Seamlessly sharing data
structure and pointers among
multiple cores

• No special HW support is
needed.

87

Cores in SCC have

separate address spaces

shared
virtual memory

core
1

application

core
2

core
N

…

Why Shared Virtual Memory?

88

Core 1 Core 2, …

Binary
Tree

Separate
Memory Spaces

without Coherency

Why Shared Virtual Memory?

89

Core 1 Core 2, …

Binary
Tree

Buffer
Programmer

serializes
into a buffer

Why Shared Virtual Memory?

90

Buffer

Core 1 Core 2, …

Binary
Tree

Buffer

Transfer to other core(s)

Why Shared Virtual Memory?

91

Buffer

Core 1 Core 2, …

Binary
Tree

Buffer

Transfer to other core(s)

Programmer
recreates

the binary tree

Why Shared Virtual Memory?

92

Buffer

Core 1 Core 2, …

Binary
Tree

Buffer

All data potentially needed
should be transferred

Transfer to other core(s)

Even worse, what to do
if one node is modified at

one core?

Why Shared Virtual Memory?

93

Buffer

Core 1 Core 2, …

Binary
Tree

Buffer

Transfer to other core(s)

Why Shared Virtual Memory? (Cont.)

94

Physical Shared Space

Core 1

Binary Tree

Core 2, …

Explicit data management
goes away

Only data really needed are
accessed

But:
SCC has no hardware
cache coherency,
So the shared space must
not be cached

It is a performance hit

Or

Why Shared Virtual Memory? (Cont.)

95

Virtual Shared Space

Core 1

Binary Tree

Core 2, …

Shared data are allocated
in the shared virtual
address space

They are cacheable
(higher performance)

Data coherency are
managed by software

Users don‟t care about
where the data locate and
how many copies exist

How
about

96

Shared Virtual Memory Model

VA
Shared

Core 1 virt addr space Core 2 virt addr space

Shared data
are allocated

here

VA
Private

VA
Private

VA
Shared

97

Shared Virtual Memory Model

VA
Shared

Core 1 virt addr space Core 2 virt addr space

SW can indicate regions
being exclusively

accessed:
Owned by core 1

VA
Private

VA
Private

VA
Shared

98

Shared Virtual Memory Model

VA
Shared

Core 1 virt addr space Core 2 virt addr space

VA
Private

VA
Private

VA
Shared

These regions can
be handed over:
Owned by core 2

99

Shared Virtual Memory Model

VA
Shared

Core 1 virt addr space Core 2 virt addr space

VA
Private

VA
Private

VA
Shared

No particular
owner:

(jointly accessed)

Partially shared
Release consistency

Ownership

Cut down
coherent overhead

100

Shared Virtual Memory Model

VA
Shared

Core 1 virt addr space Core 2 virt addr space

VA
Private

VA
Private

VA
Shared

Outline

•Motivation

•Overview of SW managed coherence

•Implementation and Optimizations

•Our results

•Challenges for future research

101

Language and Compiler Support

• New “shared” type qualifier

> shared int a; //a shared variable

> shared int* pa; //a pointer to a shared int

> shared int* shared pb; //a shared pointer to a shared int

• Static checking rules enforced by the compiler

> No sharing between stack variables

• foo() {shared int c;}

> Shared pointer can‟t point to private data

• int* shared pc;

> And more on pointer assignment and casting etc.

102

Runtime Support

• Partial sharing on page-level
– Only those actually shared are subjected to consistency

maintenance

103

Runtime Support

• Partial sharing on page-level
– Only those actually shared are subjected to consistency

maintenance

• Release consistency model
– Consistency only guaranteed at the sync points (release,

acquire)
> Significantly reduce coherence traffic

– Many applications already follow RC model
> E.g. sync points: pthread_create, mutex, barrier, …
> Release/Acquire can be inserted automatically at these points

104

Runtime Support

• Partial sharing on page-level
– Only those actually shared are subjected to consistency

maintenance

• Release consistency model
– Consistency only guaranteed at the sync points (release,

acquire)
> Significantly reduce coherence traffic

– Many applications already follow RC model
> E.g. sync points: pthread_create, mutex, barrier, …
> Release/Acquire can be inserted automatically at these points

• Ownership rights
– No coherence traffic until ownership changed
– They are treated as hints (i.e. optimization opportunities)

> Fault on touch: fault if touch something owned by others
> Promote on touch: promote to “jointly accessible”

105

Object Collision Detection Example:
Share Memory Approach

struct Ball {

Vector position, velocity;

int area_id;

shared struct Ball* next; // balls in the area

};

shared struct Ball* areas[N];

void collision(shared struct Ball* all) {

// do collision detection

// and compute the new position/velocity

……

}

void simulate()

{

for(i=0; i<N; i++)

thd[i] = spawn(collision, areas[i]);

for(i=0; i<N; i++)

join(thd[i]);

update_area_array();

}

106

Object Collision Detection Example:
Share Memory Approach

struct Ball {

Vector position, velocity;

int area_id;

shared struct Ball* next; // balls in the area

};

shared struct Ball* areas[N];

void collision(shared struct Ball* all) {

// do collision detection

// and compute the new position/velocity

……

}

void simulate()

{

for(i=0; i<N; i++)

thd[i] = spawn(collision, areas[i]);

for(i=0; i<N; i++)

join(thd[i]);

update_area_array();

}

• It‟s just like writing a pthread program
• Implicit sync points at spawn, join,

the beginning and ending of collision()

107

• Lots of code are spent in data
serialization and reconstruction.

• Is error-prone and might dead-lock.
• All data are sent even not used.

Example: Message Passing Approach

typedef struct Ball Ball;

struct Ball {

Vector position, velocity;

int area_id;

Ball* next; // balls in the same area

};

Ball* areas[N];

void collision(int id)

{

// receive the data objects

// and recreate the structure

for(i=0; i<N; i++) {

areas[i] = NULL;

while(recv(id, buf)) {

b = malloc(sizeof(Ball));

*b = *buf;

b->next = areas[i];

areas[i] = b;

}

}

// do collision detection
// and compute the new pos/vel
……

// send back new data
// and free the local objects
for(b=all; b; b=next) {
new_id = get_area_id(b);
send(new_id, b);
next = b->next; free(b);

}
}

void simulate()
{
// spawn
for(i=0; i<N; i++)
thd[i] = spawn(collision, i);

// send data to the individual threads
// and destroy the objects

for(i=0; i<N; i++) {
for(b=areas[i];b;b=next) {

for(j=0; j<N; j++) send(j, b);
next = b->next; free(b);

}
}

// gather data back
// and recreate the link list
for(i=0; i<N; i++) {
areas[i] = NULL;
while(recv(id, buf)) {

b = malloc(sizeof(Ball));
*b = *buf;
b->next = areas[i];
areas[i] = b;

}
}
// join
for(i=0; i<N; i++)
join(thd[i]);

}

108

Optimized implementation for SCC

– Leverage shared memory (SHM) support in SCC

– Golden copy is saved at SHM, needn‟t communicate with any
other nodes

– Do memcpy between cacheable private memory &
uncacheable SHM

109

Linux

Core 1 Core 2

runtime

Core N

mmap

runtime runtime

…Linux mmap Linux mmap

PrivMem 1 PrivMem 2 PrivMem N

Physical Shared Memory (SHM)

Scalability on SCC

0

5

10

15

20

25

1 2 4 8 16 32

S
p

e
e
d

u
p

of cores

BlackScholes - SCC Opt

ART - SCC Opt

• Significantly improved scalability, up to 20X on 32 cores.

• More optimizations (WIP)

110

SW managed coherence vs. HW coherence
on 32way SMP server (process per core)

• Software managed coherency is as efficient as
hardware cache coherency

111

0

5

10

15

20

25

30

1 2 4 8 16 32

R
e
la

ti
v
e
 P

e
r
fo

r
m

a
n

c
e

Thread Number

Black Scholes - Hardware

Black Scholes - Software

Art - Hardware

Art - Software

Emerging usage models

• Separated coherency domains

– Whole system partitioned into multiple coherency domains

– Dynamic reconfigurable

– Mixed mode: share memory in one domain with MPI in others

112

Domain #1

Domain #2

Domain #3

Non-coherent

MPI-based

../../../../Local Settings/Temp/scc_myo_bullet.avi
../../../../Local Settings/Temp/scc_myo.wmv

• Multiple SCC chips

– When an application is massively parallel, more SCC chips
can be connected together to form a uniform wider
coherency domain

Another usage models

A uniform

wider

coherency

domain

113

Summary

• We believe software managed coherency on non-
coherent many-core is the future trend

• A prototyped partially shared virtual memory
system demonstrates it can be:

−Easy to program

−Comparable performance vs. hardware coherence

−Adaptive to future advanced usage models

• Also opens new research opportunities

114

114

Challenges for future research

• This revived “software managed coherency” topic
opens many “cold cases”

• What are the right software optimizations?

−Prefetching, locality, affinity, consistency model

−And more…

• What is the right hardware support?

• How do emerging workloads adapt to this?

Please contact us if you are interested in this topic.

115

Agenda

10:00 Welcome and Opening Remarks

10:15 SCC Hardware Architecture Overview

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions

13:15 Message Passing on the SCC

13:45 Software-Managed Coherency

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn

116

Adam Welc, Richard L. Hudson,
Tatiana Shpeisman, Ali-Reza Adl-Tabatabai

Programming Systems Lab

JavaScript Farm on SCC

Intel Labs Single-chip Cloud Computer
Symposium February 12, 2010

ParWeb Project

•Today‟s web applications

–Becoming more and more sophisticated and
complex (productivity suites, photo editing,
games, etc.)

–Still largely sequential, despite availability of
multi-core and many-core, due to limitations of
programming tools and support infrastructure

•Project goals

–Flexible and expressive parallel programming
model

–Utilize all available resources to maximum

118

JavaScript

•Object-oriented dynamically typed
scripting language

•Designed for productivity

–One of the most popular web technologies

–One of the most popular scripting languages

•Limited support for parallelism

–Web workers (in HTML 5) designed to increase
GUI responsiveness

–Web workers can communicate with HTTP
servers via message passing

119

Parallelizing JavaScript on SCC

•Offload computation from the client
(browser) to the server farm on SCC

•Utilize as many off-the-shelf components
as possible for high productivity

–Client and server code written in pure
JavaScript

–Unmodified client (browser) running on host

–Largely unmodified execution engine (based on
Google‟s v8) for servers running on SCC

–Standard libraries and tool-chain used on SCC

120

Web App Architecture

•HTTP server‟s scripting engine typically
used for dynamic web page generation

•Can be used for general-purpose
computation as well

HTTP SERVER

SCRIPTING ENGINE

JS (V8), PHP, …

JS SCRIPTING ENGINE (v8)

content

request

web

page

BROWSER

121

WEB WORKERS

Single-chip Cloud Computer

HTTP SERVER

SCRIPTING ENGINE

JS (V8), PHP, …

content

request

web

page

SCC

PCIe

122

JS SCRIPTING ENGINE (v8)

BROWSER

WEB WORKERS

Enabling SCC

HTTP SERVER

SCRIPTING ENGINE

JS (V8), PHP, …

content

request

web

page

SCC

PCIe
compute

request

compute

response

HTTP SERVER

SCRIPTING ENGINE

JS (V8), PHP, …

123

JS SCRIPTING ENGINE (v8)

BROWSER

WEB WORKERS

Web Workers  Actors

HTTP SERVER

SCRIPTING ENGINE

JS (V8), PHP, …

content

request

web

page

SCC

PCIe
compute

request

compute

response

HTTP SERVER

SCRIPTING ENGINE

JS (V8), PHP, …

ACTORS

124

JS SCRIPTING ENGINE (v8)

BROWSER

ACTORS

Compute Servers

HTTP SERVER

SCRIPTING ENGINE

JS (V8), PHP, …

content

request

web

page

SCC

PCIe
compute

request

compute

response

COMPUTE SERVER

JS SCRIPTING ENGINE (v8)

ACTORS

125

JS SCRIPTING ENGINE (v8)

BROWSER

ACTORS

Infrastructure

•Actors on both sides programmed in
JavaScript

•Support for compute servers

–Google‟s v8 JavaScript execution engine at the
core

–v8cgi wrapper around v8 for standalone
execution environment (minor modifications)

•Unmodified browser can only “talk” HTTP

–Custom communication layer for compute
servers written in JavaScript

–Problem with “single-origin policy”

126

Single-origin Policy

•A script downloaded from a server can only
exchange messages with that single server

•Except…

–A script can run in global scope or in “iframe”

–Multiple iframes created by the same program can
be downloaded from different servers

–Variables and function definitions can be shared
between global scope and iframes

•Solution – generic iframes downloaded from
compute servers and used to bootstrap
computation defined in global scope

127

Case Studies

•Parallel ray-tracer (presented here) and
parallel physics engine

•Identical infrastructure

•Parallel ray-tracer based on sequential
JavaScript app from Google‟s JavaScript
v8 benchmark suite

•Two different approaches for work
distribution

–Dispatcher

–Direct

128

Dispatcher Approach

•Reduce host/device
network traffic

•Utilize 8 cores (for
simplicity):

–Dispatcher actor on core 0

–Worker actors on the
remaining 7 cores

–Dispatcher talks to browser
and deals work

–Workers perform actual
computation SCC

PCIe

129

JS SCRIPTING ENGINE (v8)

BROWSER

ACTORS

Browser Front End

130

Dispatcher Results

131

Direct Approach

•Assume host/device
traffic is a non-issue

•Again, utilize 8 cores
(for simplicity):

–Worker actors on all 8
cores

–Workers talk to browser
and perform actual
computation

SCC

PCIe

132

JS SCRIPTING ENGINE (v8)

BROWSER

ACTORS

Direct Results

133

(DISPATCH)

Direct Results

134

(DISPATCH)

Results Summary

•Actor distribution does make a difference

•Both approaches yield similar scalability
for large pictures – ~50%

•Host/device network effortlessly handles
48 independent connections

–Direct approach is ~2x faster than dispatcher
approach

–Multiple worker sending rendered image piece-
wise help hiding communication latency

135

Conclusions

•Prototyped a server farm on SCC

•Infrastructure utilizes mostly off-the-shelf
software components and tools

•Demonstrated good scalability

•Future work includes

–Better implementation of the communication
layer in a plug-in (no iframes!)

–Experimentation with other applications that
exercise the actor model (e.g. inter-actor
communication and collaboration)

136

Agenda

10:00 Welcome and Opening Remarks

10:15 SCC Hardware Architecture Overview

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions

13:15 Message Passing on the SCC

13:45 Software-Managed Coherency

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn

137

Agenda

10:00 Welcome and Opening Remarks

10:15 SCC Hardware Architecture Overview

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions

13:15 Message Passing on the SCC

13:45 Software-Managed Coherency

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn

138

Bob Noradki

Microprocessor & Programming Research Lab

SCC Co-Travelers Program

Intel Labs Single-chip Cloud Computer Symposium
February 12, 2010

SCC Co-Travelers Program
Starter Package for Participants

• Access to an SCC System: Remote access or at your site –

depending on your research needs

• Documentation: SCC Architecture, How To Guides, RCCE

Messaging Library Spec, SCC APIs, more

• Open Source SW: Sample Linux image for SCC, several workflows

ported to SCC environments

• Tools: Intel Compilers, Trace Analyzer and Collector. Math Libraries

(MKL) and Integrated Performance Primitives (IPP) may be included

• Support: SW: Self-Supporting w/in the community, HW: through

Intel Premier Support

140

SCC Co-Travelers Program
Community Development

• Website to facilitate a strong community

– User-contributed software will be a key enabler

– Shared ideas to help overcome research problems

– Peer assistance on “How To” issues, design research plans

– Intel Looking for Forum/Topic Sponsors

• Regular Intel Sponsored Conferences

– Chance to present Data, discuss Results

• Frequent SCC Special Topic Workshops

– Memory, Power Mgmt, Languages, etc

– Face to Face and/or Webinars

– Community driven, not just Intel taking lead

141

SCC Timeline

Jan Feb Mar Apr May Jun Jul Aug Sep

Santa Clara

Feb 12

Germany

Mar 17

Introduction Symposia/Workshops

Research Proposal Process

Overview, Messaging LIB,

EAS, How To Use Linux

Sample

Workflows

Documentation/SW Availability

Beta

Testers

General HW Availability

Datacenter For Remote Access

Platform Availability

Registration Applications 15 Apr

Deadline

Notification

1st Week of May

Final Docs

Website Active

Workshops and Conferences

TBD

142

Research Grant Application Process

• Key Dates

– Applications Available End of Feb 2010

– Applications Close 15 Apr 2010

– Final Selection Notification 1st Week of May 2010

• Working through existing Research Grant Processes

– Academics: Research Grant Proposal thru Intel ERO

– Industry: Work with Intel Labs and Intel Field Sales

– Government: Use your Existing Intel Labs Contact

• Selection Criteria

– Will it help Intel build better Hardware?

– Will it advance the development of parallel programs for
cloud and client?

– Details to be provided on the application forms

143

Questions?

• General Questions or to request an Application

SCC_Symposia@intel.com

• Technical Questions re: SCC Platform, Research

SCC_Technical_Questions@intel.com

144

Agenda

10:00 Welcome and Opening Remarks

10:15 SCC Hardware Architecture Overview

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions

13:15 Message Passing on the SCC

13:45 Software-Managed Coherency

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn

145

Agenda

10:00 Welcome and Opening Remarks

10:15 SCC Hardware Architecture Overview

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions

13:15 Message Passing on the SCC

13:45 Software-Managed Coherency

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn

146

