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Motivations for SCC

•Many-core processor research

–High-performance power-efficient fabric

–Fine-grain power management

–Message-based programming support

•Parallel Programming research

–Better support for scale-out model servers
> Operating system, communication architecture

–Scale-out programming model for client
> Programming languages, runtimes
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SCC Feature set

• First Si with 48 iA cores on a single die

• Power envelope 125W Core @1GHz, Mesh @2GHz

• Message passing architecture

> No coherent shared memory

> Proof of Concept for scalable solution for many core

• Next generation 2D mesh interconnect

> Bisection B/W 1.5Tb/s to 2Tb/s, avg. power 6W to 12W

• Fine grain dynamic power management 

> Off-die VRs
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Core Memory Management

• Core cache coherency is restricted to private memory space

– Maintaining cache coherency for shared memory space is under 
software control

• Each core has an address 
Look Up Table (LUT) 
extension

– Provides address translation 
and routing information

• LUT must fit within the core 
and memory  controller 
constraints

• LUT boundaries are 
dynamically programmed
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Boot
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On-Die 2D Mesh

• 16B wide data links + 2B sideband

> Target frequency: 2GHz

> Bisection bandwidth: 2 Tb/s

> Latency: 4 cycles (2ns)

• 2 message classes and 8 VCs

• Low power circuit techniques

> Sleep, clock gating, voltage control, low power RF

> Low power 5 port crossbar design

• Speculative VC allocation

• Route pre-computation

• Single cycle switch allocation

10



Input 

Arbitration 
Switch 

Arbitration 

F
IF

O Route         

Pre-compute

VC 

Allocation

Cycle 1 Cycle 2 Cycle 3 Cycle 4
In-Port 0

Frequency 2GHz @ 1.1V 

Latency 4 cycles

Link Width 16 Bytes

Bandwidth 64GB/s per link

Architecture 8 VCs over 2 MCs 

Power Consumption 500mW @ 50°C

16B

16B

Router Architecture

11



Message Passing on SCC

•Message passing is done through shared 
memory space

•Two classes of shared memory:

–Off-die, DRAM: Uncachable shared memory … 
results in high latency message passing

–On-die, message passing buffers (MPB) … low 
latency message passing
> On-die dedicated message buffers placed in each tile to 

improve message passing performance

> Message bandwidth improved to 1 GB/s
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Non-coherent Memory Space 

Coherent Memory Space

Message Passing 

Protocol
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Message Passing Protocol

• Cores communicate through 
small fast messages

– L1 to L1 data transfers

– New Message Passing Data 
Type (MPDT)

• Message passing Buffer 
(MPB) – 16KB

– 1 MPB per tile for 384KB of on-
die shared memory 

– MPB size coincides with L1 
caches
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Dedicated Message Buffers

• Cache line transfers into L1 cache of receiving core 
implemented through on-die message passing buffers

• Each tile has 16KB MPB 

• Part of the shared memory space is statically mapped into 
MPB in each tile rather than into memory controller

• Messages larger than MPB can still go out to main memory
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System Interface

• JTAG access to config system while in reset/debug
> Done on Power Reset from Management Console PC

> Configuring memory controller etc.

> Reset cores with default configuration

• Management Console PC can use Mem-mapped 
registers to modify default behavior

> Configuration and voltage control registers

> Message passing buffers

> Memory mapping

• Preload image and reset rather than PC bootstrap
> BIOS & firmware a work in progress
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SCC system overview
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SCC full chip 

Technology 45nm Process

Interconnect 1 Poly, 9 Metal (Cu)

Transistors Die: 1.3B, Tile: 48M

Tile Area 18.7mm2

Die Area 567.1mm2
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• Balanced H-tree clock distribution

• Designed to provide 4GHz clock 
to tile entry points

• Simulated skew for adjacent tiles 
– 5ps

• Cross die skew irrelevant
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27 Frequency Islands (FI) 8 Voltage Islands (VI)

Voltage and Frequency islands
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SCC Clock Crossing FIFO (CCF) 

• 6 entry deep FIFO, 144-bits wide

• Built-in Voltage translation: M, N ratios and pointer 
separation scanned in

• Key Benefit: independent mesh & tile frequency

Vcc1, F1 Vcc2, F2
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Closed Loop Thermal Management
• Network of digital temperature sensors

– 2 per Tile, 48 total
– Programmable 13-bit counters via FSM
– Outputs written to Config registers

> Readable by any P54c core for DVFS

– Readable by core/JTAG and via 2D mesh/SIF
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Package and Test Board

Technology 45nm Process

Package 1567 pin LGA package

14 layers (5-4-5)

Signals 970 pins
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Core & Router Fmax
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Measured full chip power
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Power breakdown

Full Power Breakdown
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Summary

• A 48 IA-32 core processor in 45nm CMOS 
• Second generation 2D-mesh network
• 4 DDR3 channels in a 6×4 
• Highest level of IA-32 integration

• New message passing HW for increased performance
• 384KB of on-die shared memory
• Message passing memory type

• Power management employs 8VIs and 28FIs for 
DVFS

• Chip dissipates between 25W and 125W as 
performance scales
• 25W at 0.7, 125MHz core, 250MHz mesh and 50°C
• 125W at 1.14V, 1GHz core, 2GHz mesh and 50°C
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– Platform overview

– System Interface FPGA bitstream
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• SCC Software

– Customized Linux

– bareMetalC

• Management Console PC Software

– PCIe driver with integrated TCP/IP driver

– Programming API for communication with SCC platform

– GUI for interaction with SCC platform

– Command line tools for interaction with SCC platform
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SCC Platform Board Overview
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SCC “Chipset”

•System Interface FPGA

–Connects to SCC Mesh interconnect

–IO capabilities like PCIe, Ethernet & SATA

–Bitstream is part of sccKit distribution

•Board Management Controller (BMC)

–JTAG interface for Clocking, Power etc.

–USB Stick with FPGA bitstream

–Network interface for User intercation via Telnet

–Status monitoring

–Firmware is part of sccKit distribution
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SCC Linux Build

The sccKit comes with a custom Linux build which
can be used to execute own applications:

• Kernel 2.6.16 with Busybox 1.15.1

• Booting w/o BIOS possible (Kernel mods)

• Dropbear ssh

• On-die TCP/IP network drivers

• Off-die TCP/IP driver for connection to 
management console including NFS service.

• Drivers for low level access to SCC specific 
hardware (e.g. MPB).
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SCC Linux Apps

•Cross-compilers for Pentium processor 
compatible IA cores available (C++, 
Fortran)

•Write own low level device drivers for 
deeper dives.

•Cross compiled MPI2 including iTAC trace 
analyzer available.
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Creating own SCC binaries

• It is also possible to write software that directly 
executes on SCC cores such as an operating 
system.

• C++ based programming framework “bareMetalC”
is available and allows direct access to all dedicated 
SCC hardware features (e.g. MPB).

Up sides Down sides

Direct access to low 
level features of SCC.

Limited IO capabilities.

No overhead from OS. Harder to debug.

Full flexibility. Low level coding w/o OS
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bareMetalC Apps

•bareMetalC used for bring-up and 
production tests (e.g. BIST test)

•Useful for creation of own low level apps 
(e.g. customized OS)

•SCC communication environment (RCCE) 
with MPI-like API available including several 
applications
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PCIe driver with Ethernet

•Management Console PC comes with 
PCIe driver that provides:

–TCP/IP connection to SCC

–Connection to Management Console PC 
applications.

–Access to all memory and register locations of 
SCC.

40



Creating Management Console PC Apps

• Written in C++ making use of 
Nokia Qt cross-platform 
application and UI framework.

• Low level API (sccApi) with 
access to SCC and board 
management controller via 
PCIe.

• Code of sccGui as well as 
command line tools is 
available as code example. 
These tools use and extend 
the low level API.
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sccGui

• Read and write 
system memory and
registers.

• Boot OS or other
workloads 
(e.g. bareMetalC).

• Open SSH connections 
to booted Linux cores

• Performance meter

• Initialize Platform via Board Management Controller.
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sccGui for debugging

Modify registers

Read system memory
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sccBoot & sccReset

•sccBoot:
A command-line tool that allows to boot 
Linux on selected cores and to check the 
status (“which cores are currently booted”).

•sccReset:
A command-line tool that allows to reset 
selected SCC cores.
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sccKonsole

• Regular konsole, with automatic login to selected cores.

• Enables broadcasting amongst shells.
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Future

•Linux will be the default OS for self-
contained booting

•Self-boot firmware is in preparation

Let„s shape the future 
together!
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Top Level Hardware Architecture

•6x4 mesh 2 Pentium™  P54c cores per tile

•256KB L2 Cache, 16KB shared MPB per tile

•4 iMCs, 16-64 GB total memory
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SCC die area: ~567 mm2
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Programmer’s view of SCC
• 48 x86 cores with the familiar x86 memory model for Private 

DRAM
• 3 memory spaces, with fast message passing between cores 

(      /      means on/off-chip)

CPU_0

L
1

$

L
2

$

Private 
DRAM

CPU_47

L
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$
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$

Private 
DRAM

…

Shared on-chip Message Passing Buffer (8KB/core)

Shared off-chip DRAM (variable size)

t&s t&s

t&s Shared test and set register
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SCC Software research goals

• Understand programmability and application 
scalability of many-core chips.

• Answer question “what can you do with a many-core 
chip that has (some) shared non-cache-coherent 
memory?”

• Study usage models and techniques for software 
controlled power management

• Sample software for other programming model and 
applications researchers (industry partners, Flame 
group at UT Austin, UPCRC, YOU …)

Our research resulted in a light weight, compact, low latency 

communication library called RCCE (pronounced “Rocky”)

Third party names are the property of their owners.
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SCC Platforms

• Three platforms for SCC and RCCE

– Functional emulator (on top of OpenMP)

– SCC board with two “OS Flavors” … Linux or Baremetal 
(i.e. no OS)

Rock creek

Apps

Linux

RCCE 

PC or server with

Windows or Linux

Apps

OpenMP

Rock creek

Apps

Baremetal C 

RCCE_EMU

Driver

RCCE RCCE 

Functional emulator, 
based on OpenMP. SCC board  – NO OpenMP

icc
ifort
MKL

icc  MKL icc  fort    MKL

RCCE supports greatest common denominator between the three platforms

Third party names are the property of their owners.
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High level view of RCCE

• RCCE is a compact, lightweight communication 
environment.

– SCC and RCCE were designed together side by side:
> … a true HW/SW co-design project.

• RCCE is a research vehicle to understand how 
message passing APIs map onto many core chips.

• RCCE is for experienced parallel programmers 
willing to work close to the hardware.

• RCCE Execution Model:

– Static SPMD: 
> identical UEs created together when a program starts (this is a 

standard approach familiar to message passing programmers)

UE: Unit of Execution … a software entity that advances a program 

counter (e.g. process of thread).
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How does RCCE work? Part 1

Consequences of MPBT properties:

 If data changed by another core and image still in L1, read returns stale data.  

 Solution: Invalidate before read.

 L1 has write-combining buffer; write incomplete line? expect trouble! 

 Solution: don’t.  Always push whole cache lines

 If image of line to be written already in L1, write will not go to memory.  

 Solution: invalidate before write.

Message passing buffer 

memory is special … of 

type MPBT

Cached in L1, L2 

bypassed. Not coherent 

between cores

Data cached on read, not 

write.  Single cycle op to 

invalidate all MPBT in L1 

… Note this is not a flush

Discourage user operations on data in MPB. Use only as a data movement 

area managed by RCCE … Invalidate early, invalidate often
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How does RCCE work? Part 2

…
0 1 2 473

• Treat Msg Pass Buf (MPB) as 48 smaller buffers … one per core.
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How does RCCE work? Part 2

…
0 1 2 473

• Treat Msg Pass Buf (MPB) as 48 smaller buffers … one per core.

2

A = (double *) RCCE_malloc(size)

Called on all cores so any core can 

put/get(A at Core_ID) without error-

prone explicit offsets

Flags allocated and 

used to coordinate 

memory ops

59

• Symmetric name space … Allocate memory as a collective op. 
Each core gets a variable with the given name at a fixed offset 
from the beginning of a core’s MPB.



How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

• Symmetric name space … Allocate memory as a collective op. Each core 
gets a variable with the given name at a fixed offset from the beginning of 
a core’s MPB.
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How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

• Symmetric name space … Allocate memory as a collective op. Each core 
gets a variable with the given name at a fixed offset from the beginning of 
a core’s MPB.
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Put(A,0)
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How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

• Symmetric name space … Allocate memory as a collective op. Each core 
gets a variable with the given name at a fixed offset from the beginning of 
a core’s MPB.
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How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

• Symmetric name space … Allocate memory as a collective op. Each core 
gets a variable with the given name at a fixed offset from the beginning of 
a core’s MPB.
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Put(A,0) Get(A, 0)

… and use flags to make the puts and gets “safe”
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The RCCE library

• RCCE API provides the basic message passing 
functionality expected in a tiny communication 
library:

– One + two sided interface (put/get 
+ send/recv) with synchronization 
flags and MPB management 
exposed.

– The “gory” interface for 
programmers who need the most 
detailed control over SCC

– Two sided interface (send/recv) 
with most detail (flags and MPB 
management) hidden.

– The “basic” interface for typical 
application programmers.
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Linpack and NAS Parallel benchmarks

3.  LU:  Pencil decomposition
Define 2D-pipeline process

– await data (bottom+left)

– compute new tile

– send data (top+right)
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1. Linpack (HPL): solve dense system of linear equations
– Synchronous comm. with “MPI wrappers” to simplify porting

2.  BT: Multipartition decomposition

– Each core owns multiple blocks (3 in this case)

– update all blocks in plane of 3x3 blocks

– send data to neighbor blocks in next plane

– update next plane of 3x3 blocks

66
Third party names are the property of their owners.



RCCE functional emulator vs. MPI
HPL implementation of 

the LINPACK benchmark
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*3 GHz Intel® Xeon® MP processor in a 4 socket SMP platform (4 cores total), L2=1MB, L3=8MB, Intel® icc 10.1 compiler, Intel® MPI 2.0

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in

system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are

considering purchasing. For more information on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

These results provide a comparison of RCCE and MPI on an older 4 processor Intel® Xeon® MP 

SMP platform* using a tiny 4x4 block size.   These are not official MP-LINPACK results.

Matrix Order fixed at 2200

4 Intel®Xeon® MP Processors

Third party names are the property of their owners.



RCCE functional emulator vs. MPI
HPL implementation of 

the LINPACK benchmark
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*3 GHz Intel® Xeon® MP processor in a 4 socket SMP platform (4 cores total), L2=1MB, L3=8MB, Intel® icc 10.1 compiler, Intel® MPI 2.0

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in

system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are

considering purchasing. For more information on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.
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SMP platform* using a tiny 4x4 block size.   These are not official MP-LINPACK results.
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Linpack, on the Linux SCC platform
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• Linpack (HPL)* strong scaling results:
– GFLOPS vs. # of cores for a fixed size problem (1000).
– This is a tough test … scaling is easier for large problems.

• Calculation Details:
– Un-optimized C-BLAS
– Un-optimized block size (4x4)
– Used latency-optimized whole 

cache line flags
– Performance dropped ~10% with 

memory optimized 1-bit flags

69

SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in

system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are

considering purchasing. For more information on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

* These are not official LINPACK benchmark results.

Third party names are the property of their owners.



LU/BT NAS Parallel Benchmarks, SCC
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• Using latency 
optimized, 
whole cache 
line flags

Problem size: Class A, 64 x 64 x 64 grid*

70

SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in 

system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are 

considering purchasing. For more information on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

* These are not official NAS Parallel benchmark results.

Third party names are the property of their owners.



Agenda

•Views of SCC: HW, SW and Platforms

•RCCE: A communication environment 
for application programmers.

•Benchmarks and Results 

•Power management 
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RCCE Power Management API

• RCCE power management emphasizes safe control: 
V/GHz changed together within each 4-tile (8-core) 
power domain.

– A Master core sets V + GHz for all cores in domain. 

> RCCE_istep_power(): 

• steps up or down V + GHz, where GHz is max for selected voltage.

> RCCE_wait_power(): 

• returns when power change is done

> RCCE_step_frequency(): 

• steps up or down only GHz

• Power management latencies  

– V changes: Very high latency, O(Million) cycles.

– GHz changes: Low latency, O(few) cycles.
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Conclusions

• RCCE software works
– RCCE‟s restrictions (Symmetric MPB memory model and blocking 

communications) have not been a fundamental obstacle

– Functional emulator is a useful development/debug device

• SCC architecture
– The on-chip MPB was effective for scalable message passing 

applications

– Software controlled power management works … but it‟s 
challenging to use because (1) granularity of 8 cores and (2) 
high latencies for voltage changes

– The Test&set registers (only one per core) will be a bottleneck. 
> Sure wish we had asked for more!

• Future work
– Add shmalloc() to expose shared off-chip DRAMM (in progress).

– Move resource management into OS/drivers so multiple apps can 
work together safely.

– We have only just begun to explore power management 
capabilities … we need to explore additional usage models.
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Revive an old topic: cache 
coherence ?
• Software-managed coherence was a popular topic

– Been around at least a couple of decades

– Mostly targeting multiprocessors or clusters of workstations
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Why Software-Managed Coherency?
(Why not hardware)

• No or minimal hardware!

– Limited power budget on many-core

– High complexity and validation effort to support hardware cache 
coherence protocol
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SCC architecture, a brief overview
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Outline

•Motivation

•Overview of SW managed coherence

•Implementation and Optimizations

•Our results

•Challenges for future research
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Overview

• Shared virtual memory can be used to support 
coherency

– Similar to DSM

– A single shared memory view
to applications

– Seamlessly sharing data 
structure and pointers among
multiple cores

• No special HW support is
needed.
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Why Shared Virtual Memory?
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Why Shared Virtual Memory?
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Why Shared Virtual Memory?
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Why Shared Virtual Memory?
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Why Shared Virtual Memory?
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Even worse, what to do
if one node is modified at 

one core?

Why Shared Virtual Memory?
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Why Shared Virtual Memory? (Cont.)
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Physical Shared Space
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It is a performance hit
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Why Shared Virtual Memory? (Cont.)
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Virtual Shared Space
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Shared Virtual Memory Model
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Shared Virtual Memory Model
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Partially shared
Release consistency

Ownership

Cut down 
coherent overhead
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Outline

•Motivation

•Overview of SW managed coherence

•Implementation and Optimizations

•Our results

•Challenges for future research
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Language and Compiler Support

• New “shared” type qualifier

> shared int a; //a shared variable

> shared int* pa; //a pointer to a shared int

> shared int* shared pb;  //a shared pointer to a shared int

• Static checking rules enforced by the compiler

> No sharing between stack variables

• foo() {shared int c;}

> Shared pointer can‟t point to private data

• int* shared pc;

> And more on pointer assignment and casting etc.
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Runtime Support

• Partial sharing on page-level
– Only those actually shared are subjected to consistency 

maintenance
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Runtime Support

• Partial sharing on page-level
– Only those actually shared are subjected to consistency 

maintenance

• Release consistency model
– Consistency only guaranteed at the sync points (release,

acquire)
> Significantly reduce coherence traffic

– Many applications already follow RC model
> E.g. sync points: pthread_create, mutex, barrier, … 
> Release/Acquire can be inserted automatically at these points
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Runtime Support

• Partial sharing on page-level
– Only those actually shared are subjected to consistency 

maintenance

• Release consistency model
– Consistency only guaranteed at the sync points (release,

acquire)
> Significantly reduce coherence traffic

– Many applications already follow RC model
> E.g. sync points: pthread_create, mutex, barrier, … 
> Release/Acquire can be inserted automatically at these points

• Ownership rights
– No coherence traffic until ownership changed
– They are treated as hints (i.e. optimization opportunities)

> Fault on touch: fault if touch something owned by others
> Promote on touch: promote to “jointly accessible”
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Object Collision Detection Example: 
Share Memory Approach

struct Ball {

Vector position, velocity;

int area_id;

shared struct Ball* next; // balls in the area

};

shared struct Ball* areas[N];

void collision(shared struct Ball* all) {

// do collision detection

// and compute the new position/velocity

……

}

void simulate()

{

for(i=0; i<N; i++)

thd[i] = spawn(collision, areas[i]);

for(i=0; i<N; i++)

join(thd[i]);

update_area_array();

}  
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Object Collision Detection Example: 
Share Memory Approach

struct Ball {

Vector position, velocity;

int area_id;

shared struct Ball* next; // balls in the area

};

shared struct Ball* areas[N];

void collision(shared struct Ball* all) {

// do collision detection

// and compute the new position/velocity

……

}

void simulate()

{

for(i=0; i<N; i++)

thd[i] = spawn(collision, areas[i]);

for(i=0; i<N; i++)

join(thd[i]);

update_area_array();

}  

• It‟s just like writing a pthread program
• Implicit sync points at spawn, join,

the beginning and ending of collision()
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• Lots of code are spent in data
serialization and reconstruction.

• Is error-prone and might dead-lock.
• All data are sent even not used.

Example: Message Passing Approach

typedef struct Ball Ball;

struct Ball {

Vector position, velocity;

int area_id;

Ball* next; // balls in the same area

};

Ball* areas[N];

void collision(int id)

{

// receive the data objects

// and recreate the structure

for(i=0; i<N; i++) {

areas[i] = NULL;

while(recv(id, buf)) {

b = malloc(sizeof(Ball));

*b = *buf;

b->next = areas[i];

areas[i] = b;

}

}

// do collision detection
// and compute the new pos/vel
……

// send back new data
// and free the local objects
for(b=all; b; b=next) {
new_id = get_area_id(b);
send(new_id, b);
next = b->next; free(b);

}
}

void simulate()
{
// spawn
for(i=0; i<N; i++)
thd[i] = spawn(collision, i);

// send  data to the individual threads
// and destroy the objects

for(i=0; i<N; i++) {
for(b=areas[i];b;b=next) {

for(j=0; j<N; j++) send(j, b);
next = b->next; free(b);

}
}

// gather data back
// and recreate the link list
for(i=0; i<N; i++) {
areas[i] = NULL;
while(recv(id, buf)) {

b = malloc(sizeof(Ball));
*b = *buf;
b->next = areas[i];
areas[i] = b;

}
}
// join
for(i=0; i<N; i++)
join(thd[i]);

} 
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Optimized implementation for SCC

– Leverage shared memory (SHM) support in SCC

– Golden copy is saved at SHM, needn‟t communicate with any 
other nodes

– Do memcpy between cacheable private memory & 
uncacheable SHM
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Scalability on SCC
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• Significantly improved scalability, up to 20X on 32 cores.

• More optimizations (WIP)
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SW managed coherence vs. HW coherence
on 32way SMP server (process per core)

• Software managed coherency is as efficient as 
hardware cache coherency
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Emerging usage models

• Separated coherency domains

– Whole system partitioned into multiple coherency domains

– Dynamic reconfigurable

– Mixed mode: share memory in one domain with MPI in others
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• Multiple SCC chips

– When an application is massively parallel, more SCC chips 
can be connected together to form a uniform wider 
coherency domain

Another usage models

A uniform

wider

coherency

domain
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Summary

• We believe software managed coherency on non-
coherent many-core is the future trend

• A prototyped partially shared virtual memory 
system demonstrates it can be:

−Easy to program

−Comparable performance vs. hardware coherence

−Adaptive to future advanced usage models

• Also opens new research opportunities

114
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Challenges for future research

• This revived “software managed coherency” topic 
opens many “cold cases”

• What are the right software optimizations?

−Prefetching, locality, affinity, consistency model

−And more…

• What is the right hardware support?

• How do emerging workloads adapt to this?

Please contact us if you are interested in this topic.
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ParWeb Project

•Today‟s web applications

–Becoming more and more sophisticated and 
complex (productivity suites, photo editing, 
games, etc.)

–Still largely sequential, despite availability of 
multi-core and many-core, due to limitations of 
programming tools and support infrastructure

•Project goals

–Flexible and expressive parallel programming 
model

–Utilize all available resources to maximum
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JavaScript

•Object-oriented dynamically typed 
scripting language

•Designed for productivity

–One of the most popular web technologies

–One of the most popular scripting languages

•Limited support for parallelism

–Web workers (in HTML 5) designed to increase 
GUI responsiveness

–Web workers can communicate with HTTP 
servers via message passing 
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Parallelizing JavaScript on SCC

•Offload computation from the client 
(browser) to the server farm on SCC

•Utilize as many off-the-shelf components 
as possible for high productivity

–Client and server code written in pure 
JavaScript

–Unmodified client (browser) running on host

–Largely unmodified execution engine (based on 
Google‟s v8) for servers running on SCC

–Standard libraries and tool-chain used on SCC
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Web App Architecture

•HTTP server‟s scripting engine typically 
used for dynamic web page generation

•Can be used for general-purpose 
computation as well

HTTP SERVER

SCRIPTING ENGINE

JS (V8), PHP, …

JS SCRIPTING ENGINE (v8)

content 

request

web

page

BROWSER
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Single-chip Cloud Computer
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Enabling SCC
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Web Workers  Actors
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Compute Servers
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Infrastructure

•Actors on both sides programmed in 
JavaScript

•Support for compute servers

–Google‟s v8 JavaScript execution engine at the 
core

–v8cgi wrapper around v8 for standalone 
execution environment (minor modifications) 

•Unmodified browser can only “talk” HTTP

–Custom communication layer for compute 
servers written in JavaScript

–Problem with “single-origin policy”
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Single-origin Policy

•A script downloaded from a server can only 
exchange messages with that single server

•Except…

–A script can run in global scope or in “iframe”

–Multiple iframes created by the same program can 
be downloaded from different servers

–Variables and function definitions can be shared 
between global scope and iframes

•Solution – generic iframes downloaded from 
compute servers and used to bootstrap 
computation defined in global scope
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Case Studies

•Parallel ray-tracer (presented here) and 
parallel physics engine

•Identical infrastructure

•Parallel ray-tracer based on sequential 
JavaScript app from Google‟s JavaScript 
v8 benchmark suite

•Two different approaches for work 
distribution

–Dispatcher

–Direct
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Dispatcher Approach

•Reduce host/device 
network traffic

•Utilize 8 cores (for 
simplicity):

–Dispatcher actor on core 0

–Worker actors on the 
remaining 7 cores

–Dispatcher talks to browser 
and deals work

–Workers perform actual 
computation SCC

PCIe
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Browser Front End
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Dispatcher Results
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Direct Approach

•Assume host/device 
traffic is a non-issue

•Again, utilize 8 cores 
(for simplicity):

–Worker actors on all 8
cores

–Workers talk to browser 
and perform actual 
computation 

SCC

PCIe
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Direct Results
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Direct Results
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Results Summary

•Actor distribution does make a difference

•Both approaches yield similar scalability  
for large pictures – ~50%

•Host/device network effortlessly handles 
48 independent connections

–Direct approach is ~2x faster than dispatcher 
approach

–Multiple worker sending rendered image piece-
wise help hiding communication latency
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Conclusions

•Prototyped a server farm on SCC

•Infrastructure utilizes mostly off-the-shelf 
software components and tools

•Demonstrated good scalability

•Future work includes

–Better implementation of the communication 
layer in a plug-in (no iframes!)

–Experimentation with other applications that 
exercise the actor model (e.g. inter-actor 
communication and collaboration)
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SCC Co-Travelers Program
Starter Package for Participants

• Access to an SCC System: Remote access or at your site –

depending on your research needs

• Documentation: SCC Architecture, How To Guides, RCCE 

Messaging Library Spec, SCC APIs, more

• Open Source SW: Sample Linux image for SCC, several workflows 

ported to SCC environments

• Tools: Intel Compilers, Trace Analyzer and Collector.  Math Libraries 

(MKL) and Integrated Performance Primitives (IPP) may be included

• Support: SW: Self-Supporting w/in the community, HW: through 

Intel Premier Support
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SCC Co-Travelers Program
Community Development

• Website to facilitate a strong community

– User-contributed software will be a key enabler 

– Shared ideas to help overcome research problems

– Peer assistance on “How To” issues, design research plans

– Intel Looking for Forum/Topic Sponsors

• Regular Intel Sponsored Conferences

– Chance to present Data, discuss Results

• Frequent SCC Special Topic Workshops

– Memory, Power Mgmt, Languages, etc

– Face to Face and/or Webinars

– Community driven, not just Intel taking lead
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SCC Timeline

Jan Feb Mar Apr May Jun Jul Aug Sep

Santa Clara

Feb 12

Germany

Mar 17

Introduction Symposia/Workshops

Research Proposal Process

Overview, Messaging LIB,

EAS, How To Use Linux

Sample

Workflows

Documentation/SW Availability

Beta

Testers

General HW Availability

Datacenter For Remote Access

Platform Availability

Registration Applications      15 Apr

Deadline    

Notification

1st Week of May

Final Docs

Website Active

Workshops and Conferences

TBD
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Research Grant Application Process

• Key Dates

– Applications Available End of Feb 2010

– Applications Close 15 Apr 2010

– Final Selection Notification 1st Week of May 2010

• Working through existing Research Grant Processes

– Academics: Research Grant Proposal thru Intel ERO

– Industry: Work with Intel Labs and Intel Field Sales

– Government: Use your Existing Intel Labs Contact

• Selection Criteria

– Will it help Intel build better Hardware?

– Will it advance the development of parallel programs for 
cloud and client?

– Details to be provided on the application forms
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Questions?

• General Questions or to request an Application

SCC_Symposia@intel.com

• Technical Questions re: SCC Platform, Research

SCC_Technical_Questions@intel.com
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Agenda

10:00 Welcome and Opening Remarks 

10:15 SCC Hardware Architecture Overview 

11:15 Today’s SCC Software Environment

12:15 Buffet Lunch – Informal discussions 

13:15 Message Passing on the SCC 

13:45 Software-Managed Coherency 

14:15 Application ”Deep Dive”: Javascript Farm on SCC

14:45 Break

15:00 Plans for future SCC access

15:30 Q&A

16:30 Adjourn
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