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Motivations for SCC

-High-performance power-efficient fabric
- Fine-grain power management
—Message-based programming support

eParallel Programming research
— Better support for scale-out model servers
> Operating system, communication architecture

—Scale-out programming model for client
> Programming languages, runtimes
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— Interconnect Fabric
— Memory model & Message passing
- I/O and System Overview

e Design Overview
— Tiled design methodology
— Clocking
- Power management

e Results
e SUMMary




SCC Feature set

e Message passing architecture

> No coherent shared memory

> Proof of Concept for scalable solution for many core

e Next generation 2D mesh interconnect
> Bisection B/W 1.5Tb/s to 2Tb/s, avg. power 6W to 12W

e Fine grain dynamic power management
> Off-die VRs




Die Architecture
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Core Memory Management

emory space is under
software control

e Each core has an address
o s L COREO LUT Example
extension 255 Boot |— Maps to MCO
~ Provides address translation | 254]................ — Maps to VRC
and routing information Shared }— Maps to MPBs

e LUT must fit within the core
and memory controller

constraints 1GB
e LUT boundaries are Private [— Maps to MCO
dynam|ca”y programmed 1 ..................
0

(intel.



On-Die 2D Mesh

> Bisection bandwidth: Tb/s

> Latency: 4 cycles (2ns)

e 2 message classes and 8 VCs
e Low power circuit techniques

> Sleep, clock gating, voltage control, low power RF

> Low power 5 port crossbar design

e Speculative VC allocation
e Route pre-computation

e Single cycle switch allocation




Router Architecture

N— Q= Route == VO > 168 |
TR ! Pre-compute J : Allocation|| ! SN 1<
H I H I — 1
| » I 1 T
! A\ 4 V. V.V VY : A
| | | |
Input ' | Switch : ‘ﬂ — :
JArbitration||||||! |Arbitration ! 'u L :
- | | |
In-Port 0 i : ; :
Cycle 1 | Cycle 2 | Cycle 3 1 Cycle4
| | | |
Frequency 2GHz @ 1.1V
Latency 4 cycles
Link Width 16 Bytes
Bandwidth 64GB/s per link
Architecture 8 VCs over 2 MCs
Power Consumption 500mW @ 50°C




Message Passing on SCC

memory space

e [WO C
— Off-c
resu

asses of shared memory:

ie, DRAM: Uncachable shared memory ...
ts in high latency message passing

—On-cC

ie, message passing buffers (MPB) ... low

latency message passing

> On-die dedicated message buffers placed in each tile to
improve message passing performance

> Message bandwidth improved to 1 GB/s




Message Passing Protocol

Protocol all fast messages
Core A - L1$ — L1 to L1 data transfers
— New Message Passing Data
1. Data Move 9 Type (MPDT)
> MBS 2. Mp write miss e Message passing Buffer
L6KB (MPB) - 16KB
passing NI - 1 MPB per tile for 384KB of on-
die shared memory
5- MPB read 6. Data Move — MPB size coincides with L1
caches
4, MP read miss
[l Non-coherent Memory Space
[ ] Coherent Memory Space

(intel.



Dedicated Message Buffers

e Each tile has 16KB MPB .

e Part of the shared memory space'is statically mapped into
MPB in each tile rather than into memory controller

e Messages larger than MPB can still go out to main memory

MeshlIH MeshlF MeshIF

Msg Bu Msg Bu

A

- A4
Receive Send Receive
Core Core Core

Local write, remote read Remote write, local read




System Interface

> Done on " R o g ent Console PC
> Configuring memory controller etc.
> Reset cores with default configuration

e Management Console PC can use Mem-mapped

registers to modify default behavior
> Configuration and voltage control registers
> Message passing buffers
> Memory mapping

e Preload image and reset rather than PC bootstrap
> BIOS & firmware a work in progress




SCC system overview

| System Interface SCC die

intel)
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SCC full chip
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SCC Dual-core Tile

« 8K Message passing buffer
 (lock Crossing FIFOs b/w Mesh
interface unit and Router

* Tile area 18.7mm¢?

e Core are 3.9mm?

 Cores and uncore units @1GHz
* Router @2GHz




Clock Distribution

Port_En L2%$1 clk

Corel_En
Router En L2%1 En | |: Corel
Tile_ EN clk
: CoreO

L2$0_En C'k
Corel En

L2$0 clk

= Balanced H-tree clock distribution

= Designed to provide 4GHz clock
to tile entry points

= Simulated skew for adjacent tiles
- 5ps

= (Cross die skew irrelevant

B Router L1 Tile
+ Clock Gating




Voltage and Frequency islands
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SCC Clock Crossing FIFO (CCF)

e Key Benefit: independent mesh & tile frequency

|(— Shorter periods -z-}(— Longer periods -){
Vcc,, F, Vcc,, F,
Bubble Generator Bubble Generator
Reference clock
MNative Rafic €— N

M ———2 Mafive Ratio
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Ratiochronous E— — — — — Clk Clock-Cros ing FIFO Clk

5
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Clocks
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Network of digital temperature sensors
— 2 per Tile, 48 total
- Programmable 13-bit counters via FSM

— Outputs written to Config registers
> Readable by any P54c core for DVFS

— Readable by core/JTAG and via 2D mesh/SIF
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Package and Test Board
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Core & Router Fmax
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Measured full chip power
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Power breakdown

Total -125.3W Total - 24.7W
Cores MC &
MC & 69% DDR3-
DDR3- 800
800 69%
19% ]
Routers k Global R;uztgrs \Cores
' ; 21%
& 2D- C'Og(;:”g mesh Global 6
frEa 5% Cloc(tqng
10% o%
Clocking: 1.9W Routers: 12.1W Clocking: 1.2W Routers: 1.2W
Cores: 87.7W MCs: 23.6W Cores: 5.1W MCs: 17.2W

‘ Cores-1GHz, Mesh-2GHz, 1.14V, 50°C \ ‘ Cores-125MHz, Mesh-250MHz, 0.7V, 50°C \
intel'
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* 4 DDR3 channelsin a
* Highest level of IA-32 mtegratlon
« New message passing HW for increased performance
* 384KB of on-die shared memory
* Message passing memory type
« Power management employs 8VIs and 28FIs for
DVFS
* Chip dissipates between 25W and 125W as

performance scales
e 25W at 0.7, 125MHz core, 250MHz mesh and 50°C
e 125W at 1.14V, 1GHz core, 2GHz mesh and 50°C
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Content

ystem : _
— Board management controller (BMC) firmware

e SCC Software

— Customized Linux
— bareMetalC

e Management Console PC Software
— PClIe driver with integrated TCP/IP driver
— Programming API for communication with SCC platform
— GUI for interaction with SCC platform
— Command line tools for interaction with SCC platform

intel)
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— Board management controller (BMC) firmware

e SCC Software

— Customized Linux
— bareMetalC

e Management Console PC Software
— PClIe driver with integrated TCP/IP driver
— Programming API for communication with SCC platform
— GUI for interaction with SCC platform
— Command line tools for interaction with SCC platform
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SCC Platform Board Overview
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—Connects to S e 1terconnect
—I0 capabilities like PClIe, Ethernet & SATA
- Bitstream is part of sccKit distribution

e Board Management Controller (BMC)
—JTAG interface for Clocking, Power etc.
— USB Stick with FPGA bitstream
— Network interface for User intercation via Telnet
— Status monitoring
—Firmware is part of sccKit distribution




— Board management co er (BMC) firmware

e SCC Software

— Customized Linux
— bareMetalC

e Management Console PC Software
— PCIe driver with integrated TCP/IP driver
— Programming API for communication with SCC platform
— GUI for interaction with SCC platform
— Command line tools for interaction with SCC platform

intel)




SCC Linux Build

U J Ul - V'V

can be used to execute own applications:
e Kernel 2.6.16 with Busybox 1.15.1

e Booting w/o BIOS possible (Kernel mods)
e Dropbear ssh

e On-die TCP/IP network drivers

e Off-die TCP/IP driver for connection to
management console including NFS service.

e Drivers for low level access to SCC specific
hardware (e.g. MPB).




SCC Linux Apps

compatik * I ale( ++,
Fortran)

e \Write own low level device drivers for
deeper dives.

e Cross compiled MPI2 including iTAC trace
analyzer available.




Creating own SCC binaries

system.

e C++ based programming framework “bareMetalC”
is available and allows direct access to all dedicated
SCC hardware features (e.g. MPB).

Upsides  |Downsides
Direct access to low Limited IO capabilities.
level features of SCC.

No overhead from OS. Harder to debug.

Full flexibility. Low level coding w/o OS




bareMetalC Apps

- production t .g. est)

e Useful for creation of own low level apps
(e.g. customized OS)

e SCC communication environment (RCCE)
with MPI-like API available including several
applications




YS |
— Board management controller (BMC) firmware

e SCC Software

— Customized Linux
— bareMetalC

e Management Console PC Software
— PClIe driver with integrated TCP/IP driver
— Programming API for communication with SCC platform
— GUI for interaction with SCC platform
— Command line tools for interaction with SCC platform

intel)




PCIle driver with Ethernet

—TCP/IP connection to SCC

—Connection to Management Console PC
applications.

—Access to all memory and register locations of
SCC.




Creating Management Console PC Apps

M \J @

application and UI framework.

e Low level API (sccApi) with
access to SCC and board
management controller via
PCle.

e Code of sccGui as well as
command line tools is
available as code example.
These tools use and extend
the low level API.




sccGui

B :ccGui <@bwirckiabpeoa

File Edit F kige! i Help
B0 x-:0
INFO: Packet tracing is disabled... =

INFO: Opened "/tmp/sccGui_mriepen/trace.log” for writing...
INFO: Initializing System Interface (SCEMI setup)....

INFO: The selected linkfile is: "/p/mcemu/release/blocksberg/r00/REL_20030428_4_RCK/transactor.link"...
INFO: Successfully connected to PCIe driver...

INFO: Welcome to sccGui 0.0.1 beta (build date Dec 18 2008)...

“"Send Fiit via SystemIF < @bwircklabp et

registers. =

Route Info: ITllex-O,y-O :] Icne

Address (hex): |;-c IGCBCFG j
e Boot OS or other VU o
GCBCFG_RXB_CLKRATIO_RANGE 2518

3

SCC configurati oftware _TILE_ " :
workloads o T el

g (C 2 s GCBCFG_L2_1_SYNCRESETEN_BIT 07
(e.g. bareMetalC).

GCBCFG_L2_0_SYNCRESETEN_BIT 06
GCBCFG_CORE1_SYNCRESETEN_BIT 05
GCBCFG_COREO_SYNCRESETEN_BIT 04
GCBCFG_L2_1_RESET_BIT03

QCBCFG_L2_0_RESET_BIT02

GCBCFG_CORET_RESET_BIT o1
GCBCFG_COREO_RESET_BIT 00

e Open SSH connections
to booted Linux cores

Default (FPGA specific): 0x38 7000

e Performance meter

e Initialize Platform via Board Management Controller.




sccGui for debugging

**" Send Flit via System|F <@bwlrcklabpc02> &y

Route Infe:

*""SCC Memory Reader <@bwircklabpci2> &Y

|GCECFG j

* Hex Data
I~ Bincat

Addiess thex): ISD

Data (hex) 357000

GCBCFGE_RXB_CLKRATIO_RANGE
GCBCFG_TILE_CLKRATIO_RAMGE 1312
GCBCFG_TILE_CLKDIV_RANGE 11.08
GCBCFG_L2_1_SYMCRESETEMN_BIT o7

TastAddress
Length = &4 bytes

Reading on MC of Tile x=0,
startAddress = 0000500 hex (4026534144 dech 64 bytes.
stopAddress = fOO00S40 hex
= TO00093f hex

y=0

GCBCFG_L2_0_SYNMCRESETEN_BIT 06

k) 7 7
GCBCFG_CORE1_SYNCRESETEN_BIT 05 32 bits a'l‘lgnment

GCBCFGE_CORE0_SYNCRESETEN_BIT 04

GCBCFG_L2_1_RESET_BITOS 00000000F0020%00 | FHFFFF00

Ees(erE] Lo (RIS [ 00000000FO000%08 | 00000000

il 000000O0FO000%10 | QOFFOL00

- - - 00000000 FO000%1E | FFo0Ffo0

Default (FRGA specific): 057000 00000000 F0000%20 | FEFFOOFT

. B 00000000 F0000928 | FFO00000

M Od |fy reg isters 00000000F0000930 | FFFFFFFF
00000000 F0000938 | FEFEFEFFT

0OFFFFO0
O000FFFF
00000101
00FFFFO0
00FFOOFF
00010101
FRFFFFFF
FRFFFFFF

Start Addiess |moogoo

Coabit O 16kt & 32kt C &4 bit

Mumber of Bytes |e4 MNode 1D Ix:ﬂ, y=0 ~| IMC

Fieload ||_Sa\."eﬁ.s.. Close |




sccBoot & sccReset

Linux on selected cores and to check the
status (“which cores are currently booted”).

e SCCReset:
A command-line tool that allows to reset
selected SCC cores.




sccKonsole

|:| mriepen@mrllabl000:~ - rck00 - Konsole =

Sesmion Edit View  Bookmarks  Setlings Help

root@rck00:~> 11 [«]

druwxr—xr—x 3 root 0 140 Feh 3 15:21 .
drwsxr—xr—:x 17 root 0 400 Jan 10 2008 ..
—P-r——r-- 1 root 0} 248 Jan 10 2006 .xdefaults ':;:‘ Monitor for Aclivily
“ru-r--re— 1 root 0 9 Feb 3 15:21 .ash_history [ : !
WX =X =% 1 root 0 903 Jan 10 2006 a Manitor for Silence
=W =R =3 1 root 0 380 Jan 10 2006 {f'i}] Sand |npui fo All Seesions
drwxr—xr—:x Z root u} 100 Jan 10 2006 .ssh
rootBErck0o0: > | @”
* Monre Session Righi Girl+Shith Right
[ roi0
(| rci0n
- e
- o
] ok
o ko5
- rcos
- cor
& rcice
(] rcio
(] it

e Regular konsole, with automatic login to selected cores.
e Enables broadcasting amongst shells.




contained bootin
e Self-boot firmware is in preparation

Let's shape the future
together!
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«RCCE: A communication environment
for application programmers.

eBenchmarks and Results
ePower management




Top Level Hardware Architecture

e 256KB L2 Cache,

=d MPB per tile

4 iMCs, 16-64 GB total memory

Tile Tile Tile Tile Tile Tile
5| R R R R 3
S g
g | | | | §
Q2 Tile Tile || Tile Tile Tile || Tile >
- o
g R R R R =
2 p
p
| | | |
Tile Tile Tile Tile Tile Tile —
e [<5)
% R R R R B
£ =
S i i i i S
> Tile Tile Tile Tile Tile Tile -
=
§ =R R R R 3
s >

System I/F

Tile

L2$1

-

L2$0

Tile area: ~17 mm?
SCC die area: ~567 mm?2

R =router, iMC = integrated Memory Controller, MPB = message passing buffer intel'
51



Programmer’s view of SCC

J" v

ng between cores

e 3 memory spaces, with fast me

(] /[ ] means o/ -chip

Shared off-chip DRAM (variable size)

Private Private
DRAM DRAM

- m Shared test and set register m




SCC Software research goals

scalability c

e Answer question ' what can you do with a many-core
chip that has (some) shared non-cache-coherent
memory?”

e Study usage models and techniques for software
controlled power management

e Sample software for other programming model and
applications researchers (industry partners, Flame
group at UT Austin, UPCRC, YOU ...)

Our research resulted in a light weight, compact, low latency
communication library called RCCE (pronounced “Rocky”)

53



SCC Platforms

- u "a

— SCC board with two “0S Flavors” ... Linux or Baremetal
(i.e. no OS)

icc
RCcCE_EmMu ifort . .
Driver MKL icc MKL icc fort MKL
OpenMP Baremetal C Linux
PC or server with | |
Windows or Linux Rock creek Rock creek
|\ )
Y N

Functional emulator,

based on OpenMP. SCC board - NO OpenMP

e ——

RCCE supports greatest common denominator between the three platforms

T— 54

Third party names are the property of their owners.



=)e RCCE‘: A communication environment
for application programmers.

eBenchmarks and Results

ePower management




High level view of RCCE

— SCC and RCCE were designed together side by side:
> ... a true HW/SW co-design project.
e RCCE is a research vehicle to understand how
message passing APIs map onto many core chips.

e RCCE is for experienced parallel programmers
willing to work close to the hardware.

e RCCE Execution Model:
— Static SPMD:

> identical UEs created together when a program starts (this is a
standard approach familiar to message passing programmers)

UE: Unit of Execution ... a software entity that advances a program
counter (e.g. process of thread).

intel)
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How does RCCE work? Part 1

Shared off-chip DRAM (variable size)

V"'--

Cached in L1, L2
bypassed. Not coherent
between cores

Private
DRAM

Private
DRAM

Data cached on read, not
write. Single cycle op to
invalidate all MPBT In L1

Consequences of MPBT properties: ... Note this is not a flush
= If data changed by another core and image still in L1, read returns stale data.
« Solution: Invalidate before read.
= L1 has write-combining buffer; write incomplete line? expect trouble!
= Solution: don’t. Always push whole cache lines
= If image of line to be written already in L1, write will not go to memory.
- Solution: invalidate before write.

Discourage user operations on data in MPB. Use only as a data movement

area managed by RCCE ... Invalidate early, invalidate often




How does RCCE work? Part 2




How does RCCE work? Part 2

Each core gets a variab 1 name at a fixed offset
from the beginning of a core’s MPB.

Private
DRAM

4

A = (double *) RCCE_malloc(size)
Called on all cores so any core can
put/get(A at Core_ID) without error-
prone explicit offsets

Flags allocated and
used to coordinate
memory ops

59



How does RCCE work? Part 3

P

e Symmetric name spe ollective op. Each core
gets a variable with the glven name at a fixed offset from the beginning of
a core’s MPB.

EEE Private
DRAM

Private Private
DRAM DRAM




How does RCCE work? Part 3

P

e Symmetric name spe ollective op. Each core
gets a variable with the glven name at a fixed offset from the beginning of
a core’s MPB.

Private
DRAM

Private Private
DRAM DRAM




How does RCCE work? Part 3

e Symmetric name space ... / ollective op. Each core
gets a variable with the glven name at a fixed offset from the beginning of
a core’s MPB.

Private
DRAM

Private Private
DRAM DRAM

62




How does RCCE work? Part 3

P

e Symmetric name spe ollective op. Each core
gets a variable with the glven name at a fixed offset from the beginning of
a core’s MPB.

Private

Private Private
DRAM DRAM

... and use flags to make the puts and gets “safe”

(intel.




The RCCE library

Unication

library:

- One + two sided interface (put/get |
+ send/recv) with synchronization
flags and MPB management
exposed.

- The “gory” interface for

programmers who need the most
detailed control over SCC

- Two sided interface (send/recv)
with most detail (flags and MPB
management) hidden.

- The "basic” interface for typical
application programmers.




-RCCE: A communication environment
for application programmers.

=) e Benchmarks and Results

ePower management




Linpack and NAS Parallel benchmarks

Each core owns multiple blocks (3 in this case)
— update all blocks in plane of 3x3 blocks

- send data to neighbor blocks in next plane

- update next plane of 3x3 blocks

)
z-sweep

053

3. LU: Pencil decomposition
Define 2D-pipeline process

— await data (bottom+left)
— compute new tile
— send data (top+right)

L
L

Third party names are the property of their owners.
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Low overhead synchronous
message passing pays off
even in emulator mode
/N I\ (compared to MPI)

3.5 /
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2.5
2 =
1.5

1 S
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4 Intel®Xeon® MP Processors
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—RCCE
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0
RCCE 1-bit flag:

1 21 41 61 81 101 121 141 161 181 201

Standard HPL algorithm variant case numbers

These results provide a comparison of RCCE and MPI on an older 4 processor Intel® Xeon® MP
SMP platform* using a tiny 4x4 block size. These are not official MP-LINPACK results.

*3 GHz Intel® Xeon® MP processor in a 4 socket SMP platform (4 cores total), L2=1MB, L3=8MB, Intel® icc 10.1 compiler, Intel® MPI 2.0

Third party names are the property of their owners.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.




Linpack, on the Linux SCC platform

Matrix order 1000

e Calculation Details:
2.5 1 - Un-optimized C-BLAS
3 — Un-optimized block size (4x4)
2 21 - Used latency-optimized whole
0) cache line flags
15 - - Performance dropped ~10% with
memory optimized 1-bit flags
1 o

O I T T T T
0 10 20 30 40 50

# cores * These are not official LINPACK benchmark results.

SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz. /—D

L
Third party names are the property of their owners. I n te
Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are

considering purchasing. For more information on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.




LU/BT NAS Parallel Benchmarks, SCC

1200 -~

—— LU

MFlops

800 -

400 - e Using latency
optimized,
whole cache
line flags

O I I I
0 10 20 30 40
# cores * These are not official NAS Parallel benchmark results.

SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz. /—)
nte

Third party names are the property of their owners.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in
system hardware or software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are
considering purchasing. For more information on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.




«RCCE: A communication environment
for application programmers.

eBenchmarks and Results

==>e¢ POwer management




RCCE Power Management API

power domain.

— A Master core sets V + GHz for all cores in domain.
> RCCE_istep_power():
« steps up or down V + GHz, where GHz is max for selected voltage.
> RCCE_wait_power():
« returns when power change is done

> RCCE_step_frequency():
» steps up or down only GHz

e Power management latencies
-V changes: Very high latency, O(Million) cycles.
— GHz changes: Low latency, O(few) cycles.




Conclusions

— Functional emulator is a useful de‘vlopment/debug device
e SCC architecture

— The on-chip MPB was effective for scalable message passing
applications

- Software controlled power management works ... but it’s

challenging to use because (1) granularity of 8 cores and (2)
high latencies for voltage changes

— The Test&set registers (only one per core) will be a bottleneck.
> Sure wish we had asked for more!

e Future work

— Add shmalloc() to expose shared off-chip DRAMM (in progress).

— Move resource management into OS/drivers so multiple apps can
work together safely.

— We have only just begun to explore power management
capabilities ... we need to explore additional usage models.

intel)
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Revive an old topic: cache

coherence ?

— Mostly targeting multiprocessors or clusters of workstations

e World is changing
— Many cores on a single die
— Much higher bandwidth and lower latency
— Running out of power budget

e World is not changing
— Legacy code written in shared memory programming model
— Coherent memory requirement from ISVs

What is the right trade-off: HW vs. SW?
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Why Software-Managed Coherency?

(Why not hardware)

- High complexity and validation effort to support hardware cache
coherence protocol

o Flexibility:
— Multiple applications running in separate coherency domains
— Good match to SCC
— Enable more optimizations: load balancing etc.
e Emerging applications
— Most data are RO-shared, few are RW-shared
— Coarse-grained synchronization: Map-Reduce, BSP, etc

SW-managed coherency can achieve
comparable performance

intel)
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SCC architecture, a brief overview

/|

48 |A cores -l ) .
6x4 2D mesh network Dual-core Tile
4 DDR3 memory controllers
-die message buftfer




eOvervie ged coherence

eImplementation and Optimizations
eOur results
e Challenges for future research




Overview

— Similar to DSM p

— A single shared memory view
to applications

— Seamlessly sharing data \ application ‘

structure and pointers among
multiple cores shared
e No special HW support is bl iy

needed.
core core core
Cores in SCC have ey 1 2 N
separate address spaces ’ i ’ i ’ ‘




Why Shared Virtual Memory?

Separate
Memory Spaces
without Coherency



Why Shared Virtual Memory?

Programmer
serializes
into a buffer




Why Shared Virtual Memory?




Why Shared Virtual Memory?

Programmer
recreates
the binary tree




Why Shared Virtual Memory?

All data potentially needed
should be transferred




Why Shared Virtual Memory?

Even worse, what to do
if one node is modified at
one core?




Why Shared Virtual Memory? (Cont.)

Explicit data management
goes away

Binary Tree

: Only data really needed are
Physical Shared Space

accessed

But:

SCC has no hardware
cache coherency,

So the shared space must
not be cached

It is a performance hit



Why Shared Virtual Memory? (Cont.)

Shared data are allocated
in the shared virtual
address space

Binary Tree
Virtual Shared Space They are cacheable

(higher performance)

Data coherency are
managed by software

Users don’t care about
where the data locate and
how many copies exist




Shared Virtual Memory Model

VA

Shared

.......

Core 1 virt addr space Core 2 virt addr space
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Shared Virtual Memory Model

VA

Qharad

SW can indicate regions
being exclusively
accessed:

Owned by core 1

Core 1 virt addr space Core 2 virt addr space
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Shared Virtual Memory Model

VA VA

Qharad Qharad

These regions can
be handed over:
Owned by core 2

Core 1 virt addr space Core 2 virt addr space
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Shared Virtual Memory Model

VA

- VA
No particular
Qharad owner: / Charad
(jointly accessed) I
Core 1 virt addr space Core 2 virt addr space
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Shared Virtual Memory Model

VA

Partially shared VA
——-—1 Release consistency fr————

Ownership

Cut down
coherent overhead

Core 1 virt addr space Core 2 virt addr space
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Outline

dfNagec
eImplementation and Optimizations
eOur results

eChallenges for future research




Language and Compiler Support

int* pa; //a pointer to a shared int
int* pb; //a shared pointer to a shared int

e Static checking rules enforced by the compiler
> No sharing between stack variables

@ foo() {shared int c;}

> Shared pointer can’t point to private data

@ int™ shared pc;
> And more on pointer assignment and casting etc.




Runtime Support




Runtime Support

e Release consistency model

— Consistency only guaranteed at the sync points (release,
acquire)
> Significantly reduce coherence traffic
— Many applications already follow RC model
> E.g. sync points: pthread_create, mutex, barrier, ...
> Release/Acquire can be inserted automatically at these points




Runtime Support

e Release consistency model
— Consistency only guaranteed at the sync points (release,
acquire)
> Significantly reduce coherence traffic

— Many applications already follow RC model
> E.g. sync points: pthread_create, mutex, barrier, ...
> Release/Acquire can be inserted automatically at these points

e Ownership rights
— No coherence traffic until ownership changed

— They are treated as hints (i.e. optimization opportunities)
> Fault on touch: fault if touch something owned by others
> Promote on touch: promote to “jointly accessible”
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Object Collision Detection Example:

Share Memory Approach

for(i=0; i<N; i++)

int area_id,; n
shared struct Ball* next; // balls in the area thd[i] = spawn(collision, areasli]);
i for(i=0; i<N; i++)
joimn(thdli]);
shared struct Ball* areas[N]; update area_array();
}

void collision(shared struct Ball* all) {
// do collision detection
/[ and compute the new position/velocity




Object Collision Detection Example:

CREE L e —

Share Memory Approach

struct Ball { : -

Vector position, velocity; {
int area_id; for(i=0; i<N; i++)
shared struct Ball* next; // balls in the area thd[i] = spawn(collision, areas|i]);
h for(i=0; i<N; i++)
join(thd[i]);
shared struct Ball* areas[N]; update_area_array();
}

void collision(shared struct Ball* all) {
// do collision detection
/[ and compute the new position/velocity

e It's just like writing a pthread program
e Implicit sync points at spawn, join,
the beginning and ending of collision()
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Example: Message Passing Approach

struct Ball {
Vector position, velocity;
int area_id;

Ball* next; // balls in the same area

Ji

Ball* areas[N];

void collision(int id)
{
// receive the data objects
// and recreate the structure
for(i=0; i<N; i++) {
areas[i] = NULL;
while(recv(id, buf)) {
b = malloc(sizeof(Ball));
*b = *buf;
b->next = areas[i];
areas[i] = b;
b
b

// send back new data

// and free the local objects

for(b=all; b; b=next) {
new_id = get_area_id(b);
send(new_id, b);
next = b->next; free(b);

b

b

void simulate()
{
// spawn
for(i=0; i<N; i++)
thd[i] = spawn(collision, i);
// send data to the individual threads
// and destroy the objects

) N; i++) {
or(b=areasl[i];b;b=next) {
for(j=0; j<N; j++) send(j, b);
next = b->next; free(b);

b
b

// gather data back
// and recreate the link list
for(i=0; i<N; i++) {
areas[i] = NULL;
while(recv(id, buf)) {
b = malloc(sizeof(Ball));
*b = *puf;
b->next = areas[i];
areas[i] = b;
b
b
// join
for(i=0; i<N; i++)
join(thd[i]);
b

Lots of code are spent in data

serialization and reconstruction.
e Is error-prone and might dead-lock.
All data are sent even not used.




Optimized implementation for SCC

runtime runtime runtime

W 2 4 4
lPrivMem y lPrivMem Z] ErivMem ﬂ
— Physical Shared Memory (SHM) - -

— Leverage shared memory (SHM) support in SCC

— Golden copy is saved at SHM, needn’t communicate with any
other nodes

- Do memcpy between cacheable private memory &
uncacheable SHM

intel)
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Scalability on SCC

ART - SCC Opt

Q 15
3
©
()
0 10
o
(7))

5

A’Av
0 2 ! ! ! ! |
1 2 4 8 16 32
# of cores

 Significantly improved scalability, up to 20X on 32 cores.

* More optimizations (WIP)




SW managed coherence vs. HW coherence
on 32way SMP server (process per core)

c - K
g 25 _IBlack Scholes - Software
s 20 - Art - Hardware
t MW Art - Software
o 15
& _
_“2’ 10 -
wld —
8 5
g - —
0 | =

1 2 4 8 16 32
Thread Number

e Software managed coherency is as efficient as
hardware cache coherency
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Emerging usage models

Non-coherent |
MPI-based

[m—————

1 ! ! | | *

Domain #2

r———————
e L L L LT

— Whole system partitioned into multiple coherency domains
— Dynamic reconfigurable
— Mixed mode: share memory in one domain with MPI in others



../../../../Local Settings/Temp/scc_myo_bullet.avi
../../../../Local Settings/Temp/scc_myo.wmv

Another usage models

I coherency
I domain

T T e

— When an application is massively paraIIeI more SCC chips
can be connected together to form a uniform wider
coherency domain




Summary

fu ure trenc

e A prototyped partially shared virtual memory
system demonstrates it can be:
—Easy to program
—Comparable performance vs. hardware coherence
— Adaptive to future advanced usage models

e Also opens new research opportunities




Challenges for future research

e What are the right software optimizations?
— Prefetching, locality, affinity, consistency model
—And more...

e What is the right hardware support?
e How do emerging workloads adapt to this?

Please contact us if you are interested in this topic.
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ParWeb Project

-Becoming n phlstlcated and
complex (product|V|ty suites, photo editing,
games, etc.)

- Still largely sequential, despite availability of
multi-core and many-core, due to limitations of
programming tools and support infrastructure

eProject goals

—Flexible and expressive parallel programming
model

— Utilize all available resources to maximum

intel)
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JavaScript

eDesigned for productivity
—One of the most popular web technologies
—One of the most popular scripting languages

e imited support for parallelism

—Web workers (in HTML 5) designed to increase
GUI responsiveness

- Web workers can communicate with HTTP
servers via message passing




Parallelizing JavaScript on SCC

(browse | arm on

e Utilize as many off-the-shelf components
as possible for high productivity

—Client and server code written in pure
JavaScript

—Unmodified client (browser) running on host

—-Largely unmodified execution engine (based on
Google’s v8) for servers running on SCC

— Standard libraries and tool-chain used on SCC

(inteD)



Web App Architecture

SCRIPTING ENGINE
JS (V8), PHP, ...

WEB WORKERS

JS SCRIPTING ENGINE (v8)

HTTP SERVER
)

\

eHTTP server’s scripting engine typically
used for dynamic web page generation

eCan be used for general-purpose
computation as well
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Single-chip Cloud Computer

WEB WORKERS

SCRIPTING ENGINE
JS (V8), PHP, ...

JS SCRIPTING ENGINE (v8)

!

HTTP SERVEI%

PCle

NN
CICICCICIC1010]
L01010101010100
L01010101000
CO000000
OOOO0000

SCC

\

|




Enabling SCC

SCRIPTING ENGINE
JS (V8), PHP, ...

WEB WORKERS

JS SCRIPTING ENGINE (v8)

compute 1 compute

PC
request response
DO000000T -

Ooooooog-|
00000000 1 1] *<REasee™ |

HTTP SERVEI%

|

00000000
O0o0ooog |
OOO00000 | | HTTP SERVER

SCC




Web Workers = Actors

SCRIPTING ENGINE
JS (V8), PHP, ...

ACTORS

JS SCRIPTING ENGINE (v8)

compute compute
request response

HTTP SERVER
)

\

o B

o o o

00000000 | [ e
oo o o

00000000 | AEToks
00000000 | .| HTTP SERVER

SCC




Compute Servers

SCRIPTING ENGINE
JS (V8), PHP, ...

ACTORS

JS SCRIPTING ENGINE (v8)

compute compute PC
request response

HTTP SERVEI%

|

\

OooOo000 -
00000000

00000000 S SCRIPTING ENGINE (v8)
DDDDDDDD \\\\\ ACTORS
BEEEBEEB *.| COMPUTE SERVER

SCC




Infrastructure

eSupport for compute servers

- Google’s v8 JavaScript execution engine at the
core

-v8cgi wrapper around v8 for standalone
execution environment (minor modifications)

e Unmodified browser can only “talk” HTTP

— Custom communication layer for compute
servers written in JavaScript

—Problem with “single-origin policy”




Single-origin Policy

exchange at single server
e Except...
— A script can run in global scope or in “iframe”

— Multiple iframes created by the same program can
be downloaded from different servers

—Variables and function definitions can be shared
between global scope and iframes
e Solution — generic iframes downloaded from
compute servers and used to bootstrap
computation defined in global scope

intel)
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Case Studies

eIdentical infrastructure

eParallel ray-tracer based on sequential
JavaScript app from Google’s JavaScript
v8 benchmark suite

e Two different approaches for work
distribution

— Dispatcher
- Direct




Dispatcher Approach

e Utilize 8 cores (for bl
SI m pl iCIty) : JS SCRIPTING ENGINE (vl
—Dispatcher actor on core O PCle
—Worker actors on the
remaining / cores 00000000
e s o vomsr | SEEEEEE
D0000000
—Workers perform actual 00000000
computation SCC
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Browser Front End

File Edit View Higtory Bookmarks Tools Help

E] Cancurrent Raytrace - Dispatch | aF

Concurrent Raytrace - Dispatch

Parallelized at PSL based on sequential raytrace benchmark from Google JavaScript V8 benchmark suite, v.5

2500 pixels 19600 pixels 115600 pixels

RAun |1 worker 8 workers 47 workers

Lo




Dispatcher Results

[®] Concurrent Raytrace - Dispatch - Mozila Fire
Eile

Edit View Higtory Bookmarks Tools Help

El Concurrent Raytrace - Dispatch | Tr

Concurrent Raytrace - Dispatch

Parallelized at PSL based on sequential raytrace benchmark from Google JavaScript V8 benchmark suite, v.5

2500 pixels 19600 pixels 115600 pixels

ﬂﬁ worker Run | B workers 47 workers

x4.6 x23.2

(Total: 4.24 s) (Total: 8.68 s) (Total: 17.78 s) i




Direct Approach

eAgain, utilize 8 cores '

(for simplicity):
—Worker actors on all 8
cores

—Workers talk to browser
and perform actual
computation

ACTORS

JS SCRIPTING ENGINE (v8)

PCle

DO00000
CICOIOIC0I010]
HE NN
HE N
L010101010100
00000000

SCC
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Direct Results

[®] Concurrent Raytrace - Direct
Eile

Edit View Higtory Bookmarks Tools Help

El Cancurrent Raytrace - Direct | aF

Concurrent Raytrace - Direct

Parallelized at PSL based on sequential raytrace benchmark from Google JavaScript V8 benchmark suite, v.5

2500 pixels 19600 pixels 119025 pixels

Run |1 worker Aun | B workers 48 workers

x4.6

(Total: 3.42 s) (Total: 5.87 s) (Total: 7.69 s)

=l
(DISPATCH)




Direct Results

[®] Concurrent R
File Edit View Higtory Bookmarks Tools Help

El Concurrent Raytrace - Direct | L -

Concurrent Raytrace - Direct

Parallelized at PSL based on sequential raytrace benchmark from Google JavaScript V8 benchmark suite, v.5

2500 pixels 19600 pixels 119025 pixels
Run |1 worker Aun | B workers 48 workers

x4.6

(Total: 3.42 s) (Total: 5.87 s) (Total: 7.69 s)

hd|
(Total: 4.24 5) (Total: 8.68 s) (Total: 17.78 s) (DISPATCH)




Results Summary

eBoth approzc . milar scalability
for large pictures — ~50%

eHost/device network effortlessly handles
48 independent connections

—Direct approach is ~2x faster than dispatcher
approach

—Multiple worker sending rendered image piece-
wise help hiding communication latency




Conclusions

e Infrastructure L , st off-the-shelf

software components and tools
e Demonstrated good scalability

e Future work includes
- Better implementation of the communication
layer in a plug-in (no iframes!)
— Experimentation with other applications that

exercise the actor model (e.g. inter-actor
communication and collaboration)
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SCC Co-Travelers Program

Starter Package for Participants

depending on your resea ced

e Documentation: SCC Architecture, How To Guides, RCCE

Messaging Library Spec, SCC APIs, more

e Open Source SW: Sample Linux image for SCC, several workflows

ported to SCC environments

e Tools: Intel Compilers, Trace Analyzer and Collector. Math Libraries

(MKL) and Integrated Performance Primitives (IPP) may be included

e Support: SW: Self-Supporting w/in the community, HW: through

Intel Premier Support

intel)
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SCC Co-Travelers Program

Community Development

— User-contribu ; e a enab er
— Shared ideas to help overcome research problems

— Peer assistance on "How To” issues, design research plans
— Intel Looking for Forum/Topic Sponsors

e Regular Intel Sponsored Conferences
— Chance to present Data, discuss Results

e Frequent SCC Special Topic Workshops
- Memory, Power Mgmt, Languages, etc
— Face to Face and/or Webinars
— Community driven, not just Intel taking lead




SCC Timeline

Jan Feb Mar Apr May Jun Jul Aug
Introduction Sklmposia/Workshops

Sep

A A
Santa Clara Germany Workshops and Conferences
Feb 12 Mar 17 TBD

Research Proposal Process
A A A A

Registration Applications 15 Apr Notification
Deadline 15t Week of May

Documentation/SW Availability

A A A
Overview, Messaging LIB, Sample Final Docs
EAS, How To Use Linux Workflows Website Active

Platform Availability

A A >
Beta General HW Availability
Testers Datacenter For Remote Access
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Research Grant Application Process

— Applications Ar 2010
— Final Selection Notification 1st Week of May 2010

e Working through existing Research Grant Processes
— Academics: Research Grant Proposal thru Intel ERO

— Industry: Work with Intel Labs and Intel Field Sales

— Government: Use your Existing Intel Labs Contact

e Selection Criteria
— Will it help Intel build better Hardware?

— Will it advance the development of parallel programs for
cloud and client?

— Details to be provided on the application forms

intel)
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Questions?

e Technical Questions re: SCC Platform, Research
SCC_Technical_Questions@intel.com
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