
 Silicon Objects Application Note 040409

Fast Silicon, Faster Solutions

This document describes one possible early implementation of an N-point Radix2 FFT
using MathStar's SOA13D40-01 Filter Builder FPOA. FPOAs consist of an array of 16-bit
processing elements called Silicon Objects. Please reference MathStar's FPOA data sheet
for a complete description of FPOA architecture and functions.

This mapping is scalable from 64-point to 1024-point via parameters. The current best
performance for an N-pt FFT is:

(log 2 N) * N/(2*BF) * 6 cycles

where BF is the number of Radix 2 Butterflies used. For the SOA13D40-01 FPOA, 32
Radix 2 Butterflies are available. This configuration requires a total of 960 cycles.
Operating at 1 GHz, this translates to 960ns. Further performance improvement is
expected.

Figure 1. SOA13D40-01 Field Programmable Object Array (FPOA)

Figure 1 shows the 20x20 FPOA object array, including the periphery or I/O objects, used
for this application mapping. In the object array, the three Silicon Object types used are:

� Arithmetic Logic Unit (ALU)
� Register File (RF)
� Multiply/Accumulator (MAC)

- Arithmetic Logic Unit

- Register File

- Multiply/Accumulator

256

80

64

32 butterfly tiles are
constructed with 8 tiles per
column. 4 columns total.

- GPIO

- IRAM

GPIO initializes the IRAMs which provide
phase factors to the butterfly tiles.

1024 Point FFT Implementation Using
MathStar�s SOA13D40-01 Field Programmable
Object Array (FPOA)

2 Silicon Objects Application Note 040409

Fast Silicon, Faster Solutions

IRAM and GPIO periphery objects are also used for this application.

This applications note will focus on the implementation of a 1024 point radix2 DIF
(decimation in frequency) FFT using the MathStar SOA13D40-01 FPOA.

The physical size of this array, and the composition of the butterfly tile (2x5 array), gives
us to a total of 32 butterflies. Implementation of a 1024 point FFT requires that each of the
32 butterflies be used 16 times per stage over ten stages to complete the entire FFT
operation.

Phase (or twiddle) factors are pre-calculated and stored in the IRAM on the upper and
lower edges of the device. The data in and out of the chip is handled through the chip�s
GPIO interfaces.

Radix 2 DIF FFT Implementation

Fast Fourier Transform (FFT) is derived from Discrete Fourier Transform (DFT). It
transforms data samples between the time domain and the frequency domain. The
underlying assumption here is that the number of points to be calculated will be a power of
2, such as 4, 16, 32, 64, 128, 256, etc. FFT is a typical �divide-and-conquer� application.
Large numbers of data samples are divided into two groups; for our purposes odd and even
indexed. Each group is further divided until there are only two data points to process.
Refer to any basic FFT book for a detailed derivation of this strategy.

The method described, of halving the data points each time, is called a radix2. Each
Radix2 DIF FFT must process two complex numbers using the proper twiddle factors.
This processing is called a butterfly operation. The figure below illustrates the operations
that comprise the butterfly building block used in a radix2 DIF FFT.

Figure 2. Radix2 Butterfly Computations

The computations performed by each butterfly tile are defined as:

� C1 = a + bj;

X

a+jb

c+jd

e+jf

g+jh

r+js
-1

g=(a+c)
h=(b+d)
r=(a-c)e-(b-d)f
s=(b-d)e+(a-c)f

C1

C2

T

RC1

RC2

040409 Silicon Objects Application Note 3

Fast Silicon, Faster Solutions

� C2 = c + dj;
� T = e + fj;
� RC1 = g + jh;
� RC2 = r + js;

Where RC1 and RC2 are the result complex numbers from butterfly operation.

� RC1 = C1 + C2;
� RC2 = (C1 - C2) * T;

The derivation of these equations can be found in any text covering FFTs.

Substituting the definition of C1, C2, and T into the expression of RC1 and RC2 we have:

� RC1 = (a+c) + (b+d)j;
� RC2 = ((a-c) + (b-d)j) * (e+fj)

 = ((a-c)e - (b-d)f) + ((a-c)f + (b-d)e)j;

This yields the desired outputs:

� G = a + c;
� H = b + d;
� R = ((a-c)e - (b-d)f);
� S = ((b-d)e + (a-c)f);

Where a, b, c, d, e, and f, are inputs; g, h, r, and s are the outputs.

The radix2 butterfly DIF execution sequence is illustrated here describing the per-clock
cycle operation of the butterfly tile.

4 Silicon Objects Application Note 040409

Fast Silicon, Faster Solutions

Figure 3. Butterfly Tile DIF Execution by Clock Cycle

Butterfly Operation and Tile Structure

Each butterfly tile consists of two Multiply/Accumulate (MAC), two Register File (RF),
and six Arithmetic Logic Unit (ALU) silicon objects. They are arranged in the following
configuration.

Figure 4. Butterfly Tile Configuration (1 of 32)

These ten silicon objects, in this configuration, comprise the butterfly tile. The
SOA13D40-01 FPOA contains 32 of these tiles using a four column x eight tile matrix as

A0
a - c

A1
b - d

M1

M0
(a - c) e

(b - d) e

A0
a + c

A1
b + d

M1

M0
(r)

(s)

R

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5

R0

CYCLE 0

R1

a

b

c

d (a-c)f

(b-d)f

R R

A0

A0

A0

RFMAC ALU

RF1 ALU5ALU1ALU3

ALU4ALU0ALU2 RF0

MAC1

MAC0

040409 Silicon Objects Application Note 5

Fast Silicon, Faster Solutions

illustrated in Figure 1. The following is a brief description of the operation of each silicon
object and the data flow within the butterfly tile as illustrated in Figure 5.

To improve efficiency and conserve resources for inter-tile routing, communications
within the butterfly should avoid using party line resources when possible. Using nearest
neighbor communications will implement the butterfly operation in six clock cycles per
stage, per butterfly. To complete the entire 1024 point operation will require ten stages per-
butterfly.

 The radix2 DIF data flow within the butterfly tile is shown here.

ALU0 Processes a-c and collects g, h, r, s, results and sends them out.

ALU1 Generates control signals for MAC0 and MAC1, and read enables for
RF0 and RF1.

RF0 Provides a and b inputs to ALU0 and ALU1. It also receives inputs
redirected from ALU3.

RF1 Provides c and d inputs to ALU0 and ALU1. It also receives inputs
redirected from ALU4

MAC0 Processes (a-c)e and (b-d)f and then accumulates.

MAC1 Processes (a-c)f and (b-d)e and then accumulates.

ALU2 Generates the write address to RF0

ALU5 Generates the write address to RF1

ALU3 Muxes in GPIO data inputs and inputs from the source butterfly and
redirects it to RF0.

ALU4 Muxes in GPIO data inputs and inputs from the source butterfly and
redirects it to RF1.

6 Silicon Objects Application Note 040409

Fast Silicon, Faster Solutions

Figure 5. Radix2 DIF Data Flow within the Butterfly.

A2 R0 A0 M1 A4

A3 M0 A1 R1 A5

wr_addr

wr_data

a

b

a-c

r h

b-d

a-c

b-d

d

b

wr_addr

wr_data

GPIO_din

BF_din

BF_din

GPIO_dinTwiddle_in Twiddle_in

Party Line 2
Party Line 3

ALU MAC RF

Party Line 1

ghrs_out0 ghrs_out1

040409 Silicon Objects Application Note 7

Fast Silicon, Faster Solutions

Inter-butterfly Data Flow and Routing

Data must be moved between butterflies after the execution of each butterfly stage. Since
there are 32 butterflies and the number of data points to be processed is 1024, each
butterfly will repeat its operation 16 times to complete the FFT. The butterfly distribution
and numbering on the array is shown here.

The data pairs that BF0 will initially process are as follows:

 BF0 <= [0/512, 1/513, 2/514, �15/527]

The same rule then applies to BF1 through BF31:

BFx <= [(0+x)/(512+x), (1+x)/(513+x), � (15+x)/(527+x)]

where x = 1, 2, ...31

Each butterfly must process 16 data pairs sequentially. It doesn�t wait for outputs from
other butterflies until it finishes all 16 pairs. This is referred to as one stage. By the time all
16 pairs have finished there should be 14 or 15 renewed data pairs available for further
processing from the RF within the butterfly. After several data pairs are processed the
remaining data pairs will have arrived, at which point the second stage will be finished.
Continuing this for 10 stages will properly process all 1024 data points.

After six stages of data processing using this scheme, the data stored in each butterfly is
exactly the same index as it was from the beginning. For example, BF0 would have:

BF0 <= [0/512, 1/513, 2/514, �15/527]

To handle this anomaly requires a slight modification to the data moving scheme. Each of
the butterflies will need to process 16 pairs of data before going into next stage. There are
10 stages for each data pair and each stage will have to be repeated 16 times. An odd cycle
is defined as the first eight butterfly cycles out of the sixteen at each stage. An even cycle
is defined as the next eight butterfly cycles out of the sixteen at each stage.

BF0 BF1 BF2 BF3

BF16 BF17 BF18 BF19

BF4 BF5 BF6 BF7

BF20 BF21 BF22 BF23

BF8 BF9 BF10 BF11

BF24 BF25 BF26 BF27

BF12 BF13 BF14 BF15

BF28 BF29 BF30 BF31

8 Silicon Objects Application Note 040409

Fast Silicon, Faster Solutions

The data transport pattern is described as following.

 BFm, BFm+n/2 -> BF2m @ odd cycle, -> BF2m+1 @ even cycle

Where n is the number of tiles, m = 0, 1, � (n/2 - 1).

The output of BFm will go to BF2m storage RFs at odd cycles and BF2m+1 at even
cycles. Thus the data moving pattern between tiles is as follows:

Odd cycles are butterfly cycles 0~7, 16~23, 32~39, �
Even cycles are butterfly cycles 8~15, 24~31, 40~47, �

The following graph shows how the data moving is performed for the 1024 point FFT
using the first four butterflies (BF0 - BF3).

 bf0,bf16 -> bf0 @ odd cycle, -> bf1 @ even cycle

 bf1,bf17 -> bf2 @ odd cycle, -> bf3 @ even cycle

 bf2,bf18 -> bf4 @ odd cycle, -> bf5 @ even cycle

 bf3,bf19 -> bf6 @ odd cycle, -> bf7 @ even cycle

 bf4,bf20 -> bf8 @ odd cycle, -> bf9 @ even cycle

 bf5,bf21 -> bf10 @ odd cycle, -> bf11 @ even cycle

 bf6,bf22 -> bf12 @ odd cycle, -> bf13 @ even cycle

 bf7,bf23 -> bf14 @ odd cycle, -> bf15 @ even cycle

 bf8,bf24 -> bf16 @ odd cycle, -> bf17 @ even cycle

 bf9,bf25 -> bf18 @ odd cycle, -> bf19 @ even cycle

 bf10,bf26 -> bf20 @ odd cycle, -> bf21 @ even cycle

 bf11,bf27 -> bf22 @ odd cycle, -> bf23 @ even cycle

 bf12,bf28 -> bf24 @ odd cycle, -> bf25 @ even cycle

 bf13,bf29 -> bf26 @ odd cycle, -> bf27 @ even cycle

 bf14,bf30 -> bf28 @ odd cycle, -> bf29 @ even cycle

 bf15,bf31 -> bf30 @ odd cycle, -> bf31 @ even cycle

040409 Silicon Objects Application Note 9

Fast Silicon, Faster Solutions

Figure 6. Sample Data Moving Pattern 1024 Point FFT w/Four Butterflies

Each butterfly will have only two output words, ghrs_out_odd and ghrs_out_even. One
ALU inside the butterfly will collect all four output words and send them out sequentially
to the designated butterfly.

Twiddle Factors

All the twiddle factors are pre-calculated and stored in the IRAM on the FPOA device.
They are read out in the order needed. There are eight IRAMS used for the 1024 FFT
application. Four of them are at the top of the array and the other four IRAMs are at the
bottom of the array.

Each IRAM is 768x76 bits.

IRAM Initialization

GPIO north is responsible for the initialization of the four IRAMs on the north side of the
FPOA. Inputs will consist of 16 data bits and 5 control bits. The leftmost ALU beneath the
GPIO is responsible for the control of the GPIO. Data coming through GPIO is time-
multiplexed into the corresponding IRAM depending on the control bit coming with data.

Cycle #0 Cycle #1 Cycle #2 Cycle #3 Cycle #4 Cycle #5 Cycle #6 Cycle #7 Cycle #8 Cycle #9 Cycle #10 Cycle #11 Cycle #12 Cycle #13 Cycle #14 Cycle #15 Cycle
R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0 R1 R0

0 16 0 4 0 4 0 1 0 1
1 17 8 12 8 12 2 3 2 3
2 18 16 20 4 5

BF0 3 19 24 28 6 7
0 8 0 8 0 2 0 2

16 24 16 24 4 6 4 6
1 9 8 10

17 25 12 14
4 20 1 5 1 5 8 9 8
5 21 9 13 9 13 10 11 10
6 22 17 21 12

BF1 7 23 25 29 14
2 10 2 10 16 18 16 18

18 26 18 26 20 22 20 22
3 11 24 26

19 27 28 30
8 24 2 6 2 6 16 17 16 17
9 25 10 14 10 14 18 19 18 19

10 26 18 22 20 21
BF2 11 27 26 30 22 23

4 12 4 12 1 3 1 3
20 28 20 28 5 7 5 7

5 13 9 11
21 29 13 15

12 28 3 7 3 7 24 25
13 29 11 15 11 15 26 27
14 30 19 23 28

BF3 15 31 27 31 30
6 14 6 14 17 19 17 19

22 30 22 30 21 23 21 23
7 15 25 27

23 31 29 31

10 Silicon Objects Application Note 040409

Fast Silicon, Faster Solutions

IRAM control is provided by the two ALUs directly beneath the IRAM. The leftmost
ALU in the tile is also responsible for generating IRAM addresses in both read and write
modes.

Figure 7. Supplying Twiddle Factors for Column 0, Rows 0-3 (BF0 - BF3)

Providing Twiddle Factors to the MACs

Providing twiddle factors to each MAC in each butterfly requires some additional
work.The FFT core is divided into four columns, with each column containing eight rows
of butterfly tiles.

Each butterfly needs different twiddle factors at each stage, for each data pair input. Every
six clock cycles there will be two words presented to the two MACs in each butterfly tile.

For discussion purposes our focus will be on the first tile column, top four butterfly tiles
(BF0-BF3).

IRAM1 provides twiddle factors to BF16, BF4, BF20 using Party Line 3 of the column
where MAC0 and MAC1 are. Because party Line 3 cannot turn either east or west some
buffers are necessary to allow a lane change. One RF and one ALU are dedicated for this
purpose.

twBF0

BF16

BF4

BF20

Dedicated
ALU for lane

change
GPIO_CTL0

IRAM1 GPIO_NORTH

Dedicated
RF for lane

change

tw

RF to relay
TW for BF0

t
w

tw

tw

GPIO_data

040409 Silicon Objects Application Note 11

Fast Silicon, Faster Solutions

The same IRAM also provides twiddle factors to BF0 through the dedicated RF. That RF
is necessary to balance timing compared to BF16, BF4, BF20.

Data Input and Output

Data input is provided through the GPIO at the top of the array (GPIO North). Data output
is provided through the GPIO South. Note GPIO South must also input data for the four
IRAMs at the south side of the FPOA during IRAM initialization.

During the FFT operation all the RFs will start to fill in new FFT inputs via GPIO north
one butterfly, (actually one RF) half a butterfly at a time, each column sequentially.
Starting from BF0, BF16, BF4, BF20, BF8, BF24, BF12, BF28, BF1, BF17, etc.

At the same time RF gets in new data, the center ALU begins to output results calculated
during previous the FFT operation. Each column is chained together through Party Line
muxing in the center ALU column. Each of the four columns is muxed out to GPIO South.

12 Silicon Objects Application Note 040409

Fast Silicon, Faster Solutions

