
MARC4 User’s Guide
qFORTH Compiler

05.01 1

1 qFORTH Compiler

By using the MARC4 qFORTH compiler, embedded-sys-
tem designers no longer have to stick to assembly
language; the compiler generates a highly optimized
object code. The smart qFORTH compiler translates your
high-level qFORTH program into the MARC4 processors
native code. The compiler system selects the right assem-
bly-language instruction sequences and addressing
modes for optimal operation. The intermediate code
passes through rule-based expert systems at different
optimization stages. This code is optimized for local cen-
ters of reference (colon definitions, macros, loops) to
minimize stack operations and register references; it actu-
ally scoreboards register references to eliminate
redundancies.

The qFORTH compiler supports standard FORTH
constructs such as: BEGIN .. AGAIN, BEGIN .. UNTIL,
CASE .. ENDCASE, DO .. LOOP, IF .. THEN, IF .. ELSE
.. THEN, BEGIN .. WHILE .. REPEAT, and the following
4-bit and 8-bit data types: constants, variables, arrays and
8-bit ROM look-up tables. qFORTH extensions are inter-
rupt functions, direct I/O port access, in-line assembly
language and direct register access. The compiler also
generates a line-number reference file to support source-
code debugging in the MARC4 simulator and emulator.

The compiler is available in two versions. The fully inte-
grated version is run by selecting ’Compile’ in the menu
bar of the MARC4 integrated environment menu and the
command-line version is run by typing QFORTH2,
followed by options and the name of the file to be com-
piled at the DOS command line.

1.1 The qFORTH Program
Structure

In order to compile your qFORTH program correctly, the
compiler expects the program to be composed of direc-
tives, definitions and statements. Most qFORTH
programs will contain at least a group of statements which
will perform computational operations. These statments
are edited according to the guidelines outlined in the
qFORTH Programmer’s Guide. Whether or not you add
compiler directives and CONSTANT definitions is
dependant on the requirements of your program. They are
more or less optional when compiling a qFORTH pro-
gram. Parameters are expected by the compiler, but not
defined by the programmer. The compiler will substitute
default values such as for stack size allocation.

At the end of this chapter you will find a section which
lists the default values used by the qFORTH compiler. But

first it is necessary to re-examine what the three sections
are which make up a qFORTH program.

1.1.1 Compiler Directives

The directives are compiler switches used to control the
way in which your program is compiled and to specify the
format of your compiler generated file(s). The majority
of the directives can be implemented as in-line com-
mands appearing at the beginning of your program code.

1.1.2 Definitions

The CONSTANT and VARIABLE definitions which are
values referenced by your program via names. They
should be assigned before the CONSTANT or
VARIABLE is referenced within the program.

1.1.3 Statements

A qFORTH program is composed of various statements
grouped together to perform a particular task which your
program invokes via a word. These words are called colon
definitions because they appear in your qFORTH pro-
gram as starting with a colon (‘:’), followed by a space
and the name assigned to these group of statements. A
statement group is a sequential list of MARC4 instruc-
tions, words found in the qFORTH system library or
words which have been defined in your program before
invoking this subroutine.

Note: All colon-definitions end with a semi-colon (‘;’).

Sequences of functionally grouped words are called
modules. Modules used to perform the underlying
computational tasks of the MARC4 are often caused by
interrupt service routines. These are predefined names
according to the naming conventions described in the
qFORTH Programmer’s Guide and are identified by ‘:
INT<x> ’, whereby <x> is replaced by the priority
number 0 to 7.

The program entry point is identified as the $RESET ser-
vice routine since it is the first word which the MARC4
processor will execute after power-on reset. Normally,
this colon definition is located at the end of your source
program and consists of two parts: the register and the
application initialization section. After the initialization
of the stack pointers, the on-chip peripherals and the
RAM variables of the application have to be put in a well-
defined state.

1.1.4 Kicking the Assembler Habit

This short description has been intended as an overview
to program composition as required by the qFORTH com-
piler.

MARC4 User’s Guide
qFORTH Compiler

05.012

To achieve a tighter code with your high-level language,
remember the following rules and apply them more or less
in order.

✁ Rethink your approach to problems to see if you can’t
find a more elegant solution.

✁ Make sure you are storing and manipulating your data
efficiently. Accessing data using a pointer requires
almost three times the number of instructions required
to access the same information using array indexing.

✁ Make your code less abstract and take advantage of
hardware-specific shortcuts wherever possible,
always weighing the tradeoffs between speed and
development time.

✁ Optimize your algorithms, eliminating all redundant
and unnecessary operations. Use the address activity
profiler in the emulator or simulator and optimize
where it will do the most good.

✁ To maximize the limited on-chip RAM, minimize the
usage of local variables and too much nested subrou-
tine calls.

✁ To reduce the stack usage, check your parameter
passing and subroutine nesting as well as the number
of concurrent interrupt service routines.

✁ Use assembler instructions for the time-critical code
but do not fall back on writing whole modules in
assembler.

Stick to these approaches and you will be writing applica-
tions that will keep your competition awake at night, not
you.

1.2 Using the Compiler
Check that the correct directory path for qFORTH has
been entered in the setting window ’Directories’ (see
installation guide).

✁ Edit your program file(s)

✁ Setup the project’s file name

✁ Setup the compiler options

✁ Invoke the compiler

To set the project’s filename use the pull-down menu
’Compile’ and select ’Set project file’ . The project’s file-
name means the leading filename of the project which
will be compiled (see figure 1).

To invoke the compiler, use the pull-down menu
’Compile’ and select ’Built Project’ or press the key
<F9>. This occurence will compile the whole project.

The ’Compile’ pull-down menu is shown in figure 2. If
you wish to compile the currently edited file then either
press <Alt-C> followed by the carriage return key or sim-
ply enter <Alt-F9> from within the editor. This will
automatically start the compiler using the active file as its
input filename.

12518

Figure 1. �✂✄☎✆✝ ✞✟ ✝✠✞✡✂☛✄ ✟☞✌✂ ✄✞ ✍✂ ✎✂✌✂☛✄✂✏ ✟☞✠✎✄

MARC4 User’s Guide
qFORTH Compiler

05.01 3

12519

Figure 2. ✁�✂�✄☎✆✝✞ ✝✟ ☎✠� ✄✝✡☛✆✂�☞ ✌✆☎✠✆✞ ☎✠� �✞✍✆☞✝✞✡�✞☎

1.2.1 Compiler Generated Messages

If the compiler detects a code which can not compile
correctly, a warning or an error message will be displayed.
The occurence of a warning is an indication to you that
your program will still compile and is executable,
however, it may not produce a code with the desired kind
of execution. If an error is found, the compiler will
terminate since it is unable to generate executable code.
A complete list of all warning and error messages can be
found in the Appendix.

The information given during any compilation is the
following:

✎ The qFORTH compiler version and the date of
creation with the qFORTH system library used with
their date of creation

✎ The name, drive and directory path of the compiled
source file

✎ The optimizer passes, because a ‘.’ is written to the
screen for each step during optimization and a ‘,’
when macro expansion takes place.

✎ The compilation result:

If no errors were found, the amount of ROM (in
bytes) required and the calculated CRC check-
sum stored in the last two bytes of the ROM is
displayed.

If errors occur during the compilation, the error
and/or warning messages will be reported
instead. They will be attached at the end of your
source code within the list file.

Note: A complete list of all warnings and error
messages can be found in chapter 4.6 ”Error and
Warning Messages”.

1.2.2 Compiler Generated Files

The compiler generates various files which are normally
directed to the same filename, drive and directory path as
the project’s source file (see table 1).

Table 1 ✗✆✏☎ ✝✟ ✑✂✂ ✄✝✡☛✆✂�☞ ✒�✞�☞✑☎�✓ ✟✆✂�✏

Extension File Type & Contents Format

HEX Object code Binary

SYM Symbol table Internal

LST Complete list and statistics Text

CRF Cross reference file Text

ASS Assembly code list file of compiler generated object code Text

HLL Line number reference file for high level language orientated debugging Internal

LIB User generated library for often used routines Internal

RPT Compilation success/error report file within SDS Internal

MARC4 User’s Guide
qFORTH Compiler

05.014

1.2.3 Compiler Switches

12520

Figure 3. ✚�✁✂✄☎✆ ✝�✆✆✞✟✠ ✁✡☛ ☞✡✌✍✞☎�☛ ✝✎✞✆☞✏�✝ ✎✞✆✏✞✟ ✆✏� ✡✍✆✞✡✟ ✌�✟✄

To set the compiler switches for different compiler
options, use the pull-down menu ”Options” and select
”Compiler” within the SDS2 environment.

Compiler Options

Assembler

This controls, whether an assembler list file is generated.
The default extension is “ASS” , the default filename is
that of the source file. This output file may be used to
check the efficiency of the generated object code.

List

This controls whether a source listing has to be generated.
The default extension is “LST” , the default filename and
path is that of the source file. This generated file contains
all events during compilation, depending on additional
compiler switches.

Object Default setting

This controls whether a binary object code file has to be
generated. The default ectension is “HEX ” and default
filename is that of the source file. By default, an object
and symbol file with full optimization is created.

Symbols Default setting

This controls whether a symbol file has to be generated.
The default extension is “SYM” and the default filename
is that of the source code. This file is necessary if you want
to check your code with all defined symbols (subroutines
and variables). By pressing the function key <F7> at the

software simulator or emulator, you can view the symbol
table data.

Warnings Default setting

This controls whether warnings are written onto the
screen and with the setting of the additional switch “List ”
into the list file too.

HLL linkage

This controls whether a high-level-language debugger
link file has to be generated. The default extension is
“HLL ” , the default filename and path is that of the source
file. This generated file enables source level debugging
(see chapter 5 ”Software Simulator”).

Cross reference

This controls, whether a cross reference file has to be gen-
erated. The default extension is “CRF ” , the default
filename and path is that of the source file. The cross
reference file shows the correlations of all used symbols
(subroutines, variables and constants) with regard to their
definition and their use for different source files.

New Library

This controls whether a new user library has to be gener-
ated. The default extension is “LIB” , the default filename
is that of the first source file. When a user library is gener-
ated, no object, symbol and assemblerfile will be created.
A user library contains all codes generated during this
compilation or all codes read from other user libraries
(see input line “LIBRARIES”).

MARC4 User’s Guide
qFORTH Compiler

05.01 5

Compiler Statistics

None

By setting this switch, all statistical information is sup-
pressed in the list file.

Brief

Generates a summary of all errors, all defined words and
all defined variables at the end of the list file.

Normal Default setting

Additionally lists the return and expression stack usage of
all routines, the addresses of all words placed in ROM, a
summary of left ROM holes, unused RAM nibbles and
unused short call address entries, an overview of bytes
saved during the optimization steps and information
about the compiler’s memory usage.

Full

Additional information about the subroutine placement
algorithm, the CPU time for the different compilation
steps, statistics on the usage of the internal symbol table
data base, summary of created files and used compiler
switch settings.

Libraries

This input line controls whether one or more user libraries
have to be read after the system library has been read. By
default, no additional user library is read. The list may
consist of up to 7 user libraries, their names must be sepa-
rated by a comma. The default extension is “LIB ”.

1.3 Compiler Directives
A compiler directive may occur anywhere in the source
file(s), the first character of a compiler directive is always
an “$”. In general, a directive is used to control the com-
pilers behavior when processing the source code.
Compiler directives can not be abbreviated.

1.3.1 Conditional Compilation

To make your job easier, qForth offers conditional com-
pilation. This means that you can decide what portions of
your program to compile based on defined symbols.

The conditional directives are similar in format to the
compiler directives you are accustomed to. In other
words, they have the format.

$directive <arg>

Where directive is the directive (such as DEFINE ,
IFDEF, and so on), and <arg> is the argument, if any.

Note: There must be a blank as seperator between
directive and <arg> .

List of conditional compilation directives:

$DEFINE <symbol> Defines symbol for other
directives

To define a symbol, insert this directive into your
program. <symbol> follows the usual rules for identifiers
as far as length, characters allowed, and other specifica-
tions are concerned.

Example: $DEFINE Debug

This defines the symbol ‘Debug’ used for the remainder
of your program which is to be compiled.

$IFDEF <symbol> Compiles the following code
if <symbol> is defined

$ELSE Compiles the following code
if the previous $IFDEF is
not true, i.e., the <symbol>
is not defined.

$ENDIF Marks the end of $IFDEF
and/or $ELSE section.

Example: $IFDEF <symbol>
<source code A>

$ELSE
<source code B>

$ENDIF

Where $IFDEF is followed by the appropriate argument,
and <source code> is any amount of qFORTH
statements. If the <symbol> is not defined, the <source
code A> is ignored as if it had been commented out of
your program.

Within a skipped conditional block only $IFDEF,
$ELSE and $ENDIF are processed. All other words (in-
cluding directives) are ignored. Skipped conditional
blocks are marked with a hash sign ‘#’ in the listing file.

Often you have alternate chunks of source code. If the
symbol is defined, you need to compile one chunk, and if
it’ s false, you need to compile the other chunk. The
qFORTH compiler enables you to do this with the $ELSE
directive.

Note: All $IFDEF directives must be completed within
the same source file, which means they cannot
start in one source file and end in another.
However, an $IFDEF directive can encompass
an include file.

Example: $IFDEF MUX4–LCD
$INCLUDE LCD–MUX4.SCR
$ELSE \ otherwise 3:1 MUX
$INCLUDE LCD –MUX3.SCR
$ENDIF

MARC4 User’s Guide
qFORTH Compiler

05.016

In this way, you can select alternate include files based on
the same condition. You can nest $IFDEF .. $ENDIF
constructs to achieve the following results:

$IFDEF Version–2
<source code A>

$IFDEF Debug
<additional code>

$ENDIF \ end of debugging output
<source code B>

$ENDIF \ Version–2

1.3.2 Compilation Control

Index Checking

$I+ Default setting
$I–

Normally the index checking for the array indices is on.
When the default setting $I+ is active during compilation,
the constant array indices must be kept in the range
0 to <length-1>.

By using $I– for a section of code, the index checking is
switched off, i.e., any constant array index may be speci-
fied. For example, specifying the DataArray [-1] could
be useful while writing to the array using [+Y]! or [+X]!
instructions within a loop.

Macro Expansion Control

$EXPAND Default setting
$NOEXPAND

To modify the time of the macro expansion and thereby
the amount of optimization done by the compiler, the
$EXPAND and $NOEXPAND directives may be used.
The use of the directives $EXPAND or $NOEXPAND on
the outside of a CODE definition sets this directive
globally. This means that the macro expansion mode in-
fluences all following CODE definitions.

By default all macros are expanded before the optimiza-
tion process is started. The directive $NOEXPAND
means that CODE definitions are expanded after the
optimization process has finished.

Branch Stripping Algorithm

$BRA_STRIP NOTALL Default setting

Unconditional branches are stripped so that short
branches will stay short branches, i.e., if a short branch
leads to a second unconditional short or long branch, the
first short branch could be stripped. If this results in a long
branch, stripping is suppressed.

$BRA_STRIP ALL

All branches are stripped, regardless of whether short
branches could become long branches. This kind of
branch stripping may result in an increase in code length,
but will minimize the execution speed.

ROM CRC-Algorithm

$CRC <arg>

The $CRC directive (Cyclic Redundance Check) checks
the contents of ROM. The check sum will be stored after
compilation at the last two ROM bytes of the last physical
ROM bank.

The following arguments are available:

DEFAULT 16-bit software CRC
SIMPLE 8-bit software CRC (optimized code

size)
HARDWARE 16-bit hardware CRC (for MARC4

variants with built-in selftest)

1.3.3 List-File Directives

The list file directives will only have an effect, if /LIST
was specified in the command line or as one of the com-
piler options in the integrated environment.

$NOLIST Default setting
$LIST

The source listing is suspended by $NOLIST until $LIST
is found again in the source code.

$PAGE

$PAGE will force a form feed in the print output file, if
the list output is active.

$DEBUG_STACKS

The compiler directive $DEBUG_STACKS, when in-
cluded in one of the source files, writes the calculated
expression and return stack effects of all code and colon
definitions into the print file. The four columns following
the source line number contain stack depth values that are
relative to the beginning of this source line.

The sequence of the columns is as follows :

– current number of nibbles on the expression stack,

– current number of used return stack entries,

– maximum expression stack depth reached within this
routine (nibbles),

– maximum return stack depth reached within this
routine.

MARC4 User’s Guide
qFORTH Compiler

05.01 7

27 $DEBUG_STACKS

28 : INT7

29 | 5 | 1 | 5 | 1 | PortData @

30 | 6 | 1 | 7 | 1 | Port0 OUT

31 | 5 | 1 | 7 | 1 | ;

32

33

34 $NOEXPAND

35 $OPTIMIZE –XYTRACE

36 CODE X–

37 | 0 | 0 | 0 | 0 | [X–]@ DROP

38 | 0 | 0 | 1 | 0 | END–CODE

39 $OPTIMIZE +XYTRACE

40

41

42 | 0 | 0 | 0 | 0 | >SP S0

43 | 0 | 0 | 0 | 0 | >RP NoRAM

44 | 0 | 0 | 0 | 0 |

45 | 0 | 0 | 0 | 0 | Port0 IN 0 =

46 | 0 | 0 | 2 | 0 | IF RAM_TEST

47 | 0 | 0 | 0 | 0 | ROM_TEST

48 | 0 | 0 | 7 | 3 | THEN

49 | 0 | 0 | 7 | 3 |

50 | 0 | 0 | 7 | 3 | 0 0 Timer_A 2 !

51 | 0 | 0 | 7 | 3 |

52 | 0 | 0 | 7 | 3 | PortData X! X–

53 | 0 | 0 | 7 | 3 | 8 #DO

54 | 0 | 1 | 0 | 1 | 0 [+X] !

55 | 0 | 1 | 7 | 1 | #LOOP

56 | 0 | 0 | 7 | 3 |

57 | 0 | 0 | 7 | 3 | 2_Hz Prescaler OUT

58 | 0 | 0 | 7 | 3 | ;

All values related to the return stack are counted as 16-bit
or 4 nibbles entries. The MARC4 core uses 12-bit words
on each return stack entry. The address space of the fourth
nibble, not used by the return stack, will be assigned by
the compiler for single 4-bit variables.

All calculated values are relative to the start of the CODE
or colon definition. The expression stack values always
start with 0. The return stack value starts with 0 in CODE
definitions. In colon definitions it starts with 1 because of
the return address which is already saved on the return
stack.

1.3.4 Stack Effect Directives

The following directives have no effect if the compiler
switch WARNINGS is turned OFF. The warning mes-
sages of the compiler are very helpful when looking for

an unexpected expression stack under-/overflows or i.e.,
different stack effects of IF .. ELSE .. THEN parts.

On the other hand, the programmer may be aware of the
fact that i.e. a LOOP block eats up a specified number of
elements from the stack. Therefore, if the programmer is
sure that this particular code works perfectly, the
compiler warnings can be turned OFF. These compiler
directives will be placed at the end of each ‘block’ of
qFORTH words (i.e., a DO .. LOOP).

They always start with ‘[’ and end with the symbol ‘]’.
In between those two symbols each combination of the
following directives are allowed:

✁ ✄�✂☎✆✝✞✟ ✚✠✡☛☞✠ ✠✌✍✠✎✏✠✑ ✠✌✍✒✠✓✓☛✔☞ ✓✏✕✎✖

✠✡✡✠✎✏✗

✘ ✄�✂☎✆✝✞✟ ✚✠✡☛☞✠ ✠✌✍✠✎✏✠✑ ✒✠✏✙✒☞ ✓✏✕✎✖ ✠✡✡✠✎✏✗

✁✛ ✄�✂☎✆✝✞✟ ✚✠✡☛☞✠ ✜✕✌☛✜✙✜ ✠✌✍✒✠✓✓☛✔☞ ✓✏✕✎✖

✠✡✡✠✎✏✗

✘✛ ✄�✂☎✆✝✞✟ ✚✠✡☛☞✠ ✜✕✌☛✜✙✜ ✒✠✏✙✒☞ ✓✏✕✎✖ ✠✡✡✠✎✏✗

✢ ✣✠✏✙✒☞ ✕☞✑ ✠✌✍✒✠✓✓☛✔☞ ✓✏✕✎✖ ✠✡✡✠✎✏✓

✔✡ ✏✤✠ ✍✒✠✥☛✔✙✓ ✦✧✔✎✖ ✕✒✠ ✙☞✖☞✔★☞✗

✏✤✠ ✎✔✒✒✠✓✍✔☞✑☛☞✩ ✪✫✘✬✭✬✮

✜✠✓✓✕✩✠ ★☛✧✧ ✦✠ ✏✙✒☞✠✑ ✯✰✰✱

Example:

✲✭✳ ✴ ✵✂✞� ✶�✷✝✛ ✸✹✝✸✺✶�✻ ✯✰✰

✼ ✽✾✿❀ ✴ ❁✂❂✹ ❃ �✂☎✆✝✞ ❄❅

✴ ✷✶✻✶❆❂ ❄�❆❄ ❆✹✝ ❂❆❃✸✺

❇✂❈❆✶❉❈✶✝✞ ❊ ❋● ❍ ■❏ ✴ ❑✝❆✂❉ ❃✞✞❃▲ ❉❄✶�❆✝✞

▼ ◆✿✯

❊ ❖■ ❍❀ ✴ ❁✂❂✹ ❃� ❃✞✞❃▲

✴ ✝❈✝☎✝�❆ ❄�❆❄ ❆✹✝ ❂❆❃✸✺

❊ ✁ P ❍ ✴ ✵✂✞� ❆✹✝ ✸❄☎❉✶❈✝✞

✴ ◗❃✞�✶�✻ ☎✝❂❂❃✻✝ ✯✰✰

◆❘✯✯❁

❊ ✁ ▼ ❍ ✴ ❑✝❆ ✸❄✞✞✝✸❆ �✂☎✆✝✞

✴ ❉✂❂✹✝✷ ❄�❆❄ ❂❆❃✸✺

❙

✲✭❖

1.3.5 Optimization Control
The amount of optimization done during the compilation
process can be controlled by the $OPTIMIZE control
switch. By default all optimization steps will be per-
formed.

$OPTIMIZE <switch1>, <switch2>

The ABSOLUTE range of optimizations to be performed
is set by qualifying the control switch $OPTIMIZE . The
only types of optimization performed furthermore are
those, that are listed after $OPTIMIZE .

$OPTIMIZE {+ –}<switch1>, {+–}<switch2>

The optimization qualifiers can also be used in conjunc-
tion with the $OPTIMIZE control switch for a

MARC4 User’s Guide
qFORTH Compiler

05.018

RELATIVE setting in the source files. The kind of opti-
mizations performed is determined by adding (+) or
removing (–) the listed types from the current optimiza-
tion set.

$OPTIMIZE ?

The current optimization control settings are written into
the print output file.

$NOOPTIMIZE Default setting
$OPTIMIZE

All kinds of optimization are inhibited when the $NOOP-
TIMIZE is specified. Whereas $OPTIMIZE will cancel
a previous $NOOPTIMIZE directive, i.e., the optimiza-
tion set is the same as before the $NOOPTIMIZE
directive.

It is possible to control the optimization process in such
a way that some specific subroutines or macros will not
be optimized. For example, no register tracing in a hand-
optimized memory block MOVE routine.

$OPTIMIZE Qualifieres

The user may parameterize the $OPTIMIZE directive
with the following qualifieres:

✦✎�� ✥✁✗✗ ✞✂✄☎✆☎✝✟✠ ✂✡☛☛ ☞ ✥✁✗✗→✌✥✁✗✗ ✍✏

✑✒✎✓✦✔ ✪✠✡✕✖✘ ✞✂✄☎✆☎✝✟✠ ✂✡☛☛ ☞ ✪✙✁ → ✌✪✙✁ ✍✏

✦✚✛ ✥✞✆✂✡✠☎☛✞✕ ✞✂✄☎✆☎✝✟✠✏

✧✒✜✛ ✢✣✤ ★★ ✢✙✩✤ ✞✂✄☎✆☎✝✟✠✏

✸✫✎✛ ✌✬✁✤ ★★ ✌✬✁✤ ✞✂✄☎✆☎✝✟✠✏

❂✭�✜✎✧ ✙✟✮☎☛✄✟✠ ✯✞✡✰ ✞✂✄☎✆☎✝✟✠✏

❂✭✱✲ ✙✟✮☎☛✄✟✠ ✯✞✡✰ ✳☎✄✘ ✆✟✆✞✠✴ ✵✟✄✖✘✶☛✄✞✠✟

✞✂✟✠✡✄☎✞✕✏

❂✭✷✒✎✦✹✙✟✮☎☛✄✟✠ ☛✖✞✠✟✺✞✡✠✰☎✕✮✏ ✂✠✟☎✕✖✠✟✆✟✕✄

✶✂✞☛✄✰✟✖✠✟✆✟✕✄

XYLOAD

Sequences like LIT_p LIT_q .. X! will be optimized to
a >X $pq instruction.

XY@!

Sequences like >X $pq .. [X]! will be optimized to a [>X]!
$pq instruction.

XYTRACE

By reloading the X or Y register sequences like [>X]@ or
[>Y]! $pq will be replaced by [+X]@ or [Y-]! operations,
whenever possible.

CMP

Sequences like CMP_cc .. TOG_BF .. BRA are opti-
mized to the sequence CMP_cc .. BRA, where cc is the
opposite condition of cc. Also TOG_BF .. TOG_BF
sequences are omitted which may result from macro
expansions.

CALL

A CALL instruction is replaced by a SCALL , whenever
possible.

SAVECONTXT

The INTx prefix and postfix register save macro (X@
Y@ CCR@ .. CCR! Y! X!) is reduced, whenever pos-
sible. If INT5 does not change theregister, X@ and X! are
removed from the routine’s prefix and postfix sequence.

The lowest priority interrupt routine may be compiled
with:

✻✜✛✷✼✚✼✽✹ ✾✸✎❄✹✦✜✓✷❂✷

✿ ✼✓✷❀ ✦❁❃❅❆❃❁❇❈❉✜❊❉✜❋❋

●❍■❁❇❈❉�✦✧

❏

✻✜✛✷✼✚✼✽✹ ❑✸✎❄✹✦✜✓✷❂✷

BRANCH

A long branch instruction is optimized to a short branch
instruction within a code page whenever possible.

BRA_EXIT

Unconditional branches to an EXIT instruction are
replaced by an EXIT , also unconditional branches to an
instruction that is placed directly before an EXIT are
replaced by this instruction followed by an EXIT .

BRA_STRIP

A branch to a second unconditional branch will be
changed so that the first branch goes directly to the target
of the second branch. This will not save any code, but
result in a faster execution speed. See also the compiler
directive $BRA_STRIP, which allows you to control the
amount of branch stripping being performed.

DROP

Any sequence <Push nibble onto stack> .. DROP will
be removed from the code if this nibble is not used any-
where else and results in no side effects.

Note: Because [+Y]@ DROP will change the Y register,
it is not optimizable.

SWAP

Any sequence SWAP .. SWAP will be removed whenever
possible. Furthermore, any sequence LIT_x .. LIT_y ..
SWAP will be optimized to LIT_y .. LIT_x .

1.4 Compiler Optimization Steps
The previous section described how to use the compilers
optimization directives. The code optimizations imple-
mented are reviewed in this section.

MARC4 User’s Guide
qFORTH Compiler

05.01 9

1.4.1 Branch Optimizer

Short branches are used whenever the address is
achieveable within the present 64-byte page, otherwise
full branches are used. The programmer does not need to
be aware of any page boundaries.

1.4.2 Call Optimizer

Short calls can only be used for colon definitions in the
Zero Page (the first 512 bytes). These definitions are auto-
matically selected to be placed in the Zero Page as a result
of their size and static usage. The programmer can force
a Zero Page placement by appending either AT
<Address> or ‘ [Z]’ compiler directives at the end of a
colon definition.

1.4.3 Peephole Optimizer

The peephole optimizer replaces a sequence of instruc-
tions with a shorter, more efficient sequence. In general,
a stack architecture allows a much wider peephole than
normal, as stack effects within a ‘basic block’ may be eva-
luated at compile time. This means that a given code
sequence does not need to be consecutive. Currently eight
separate peephole sequences are checked. The following
example shows the two sequences which were found to
occur most frequently.

Example 1: Compile time constant folding

Source Assembly Optimized
code code

FRED @ Lit_3 Lit_4 [>X]@ $FRED
X!
[X]@

Example 2: DUP DROP optimizing resulting from the
MARC4 implementation of the compare
instructions, where only one of the top two
elements is dropped.

Source Assembly Optimized
code code

DUP 3 = DUP Lit_3

IF Lit_3 CMP_NE

.. CMP_EQ SBRA $THEN

THEN DROP
TOG_BF
BRA $THEN

1.4.4 Register Tracking

While a good assembly code programmer may never
write code with redundant DUP and DROP instructions,

it is often the case that he may forget exactly which vari-
ables and addresses are cached in registers. A good
compiler however, can keep track of which register con-
tains are variable. This is especially true in qFORTH since
the programmer’s model of the machine has no additional
registers.

Example 1: Variables FRED and BERT are in consec-
utive RAM locations

Source Assembly code Optimized Final code

FRED@ Lit_3 [>X]@ $FRED [>X]@ $FRED
BERT +! Lit_4 [>Y]@ $BERT [+X]@

X! ADD ADD
[X]@ [Y]! [X]!
Lit_3
Lit_5
Y! (+! macro)
[Y]@
ADD
[Y]!

Sometimes register tracking may also eliminate redun-
dant address register loads across an IF statement.

Example 2:

✔�✁✂ ★ ✂✧✄ ❇ ☎✆

✑✔ ✥✁�✘ ✷

✁✝✞✁ ✂�✟✄

✽ ✔�✁✂ ✷

✘✠✁✡

1.5 The Command-Line Compiler
Compiling qFORTH programs can also be done by using
the command-line approach common to most computers
where each step in program generation occurs from the
command line. On your PC this means from the DOS
command line indicated by the prompt, such as the drive
indicator.

C:\MARC4 > qFORTH2 [/<switch>]
<filename>[/<switch>]

To invoke the compiler, enter the program name
qFORTH2 followed by the filename to be compiled.
Normally, a file extension is not required since ‘SCR‘ is
default when compiling a main program.

As an example, to compile a file called ‘MYFILE.SCR’
with the generation of a list and object code file, the
following command-line sequences would be accepted as
valid by the compiler:

QFORTH2/LIST/NOSTAT MYFILE
QFORTH2 MYFILE/LIST/STAT=NO
QFORTH2/LIST/SYM MYFILE/STAT=FULL

MARC4 User’s Guide
qFORTH Compiler

05.0110

An overview of the various compiler switches, options
and directives accepted by the command-line compiler is
listed in the subsequent sections of this chapter.

After the compilation of your program is completed, the
DOS drive indicator will appear on the screen permitting
you to either enter the simulator or emulator (in com-
mand-line mode) or to go back to your program editor to
correct any possible errors which may have occured.

1.5.1 Compiler Generated Messages

The generated messages of the command-line compiler
version are the same as the MARC4 environment inte-
grated version.

1.5.2 Compiler Generated Files

A listing of all generated files is shown in table 1.

1.5.3 Setting the Compiler Switches

The compiler switches of the command-line version are
the same as the integrated version. Default switch settings
do not have to be called in the command line. For more
detailed information, see the section ’Compiler Switches’
of the integrated version.

Object Code Generation

/NOOBJECT

/OBJECT[=<object file>] Default setting

This controls whether a binary object code file has to be
generated. The default extension is ”.HEX” and the de-
fault filename is that of the source file.

/NOSYMBOLS

/SYMBOLS[=<symbol file>] Default setting

This switch controls whether a symbol file has to be gen-
erated. The default extension is ”.SYM” and the default
filename is that of the source code. This file is necessary
if you want to check your code with all defined symbols
(subroutines and variables). By pressing the function key
<F7> in the software simulator or emulator, you can view
the symbol table data.

List File Generation

/LIST[=<list file>]

/NOLIST Default setting

This switch controls whether a source listing has to be
generated. The default extension is ”.LST” and the
default filename and path are that of the source file. This
generated file contains all events during compilation,

depending on additional compiler switches.

/NOWARNING

/WARNING Default setting

This controls whether warnings will be written onto the
screen and – with the setting of the additional switch
”$List” – in the list file, too.

/NOSTATISTICS

/STATISTICS[=<statistics qualifier>]

<statistics qualifier>:

/STATISTICS=NO (is identical to
NOSTATISTICS)

/STATISTICS=BRIEF

/STATISTICS=NORMAL Default setting

/STATISTICS=FULL

No

By setting this switch, all statistical information is sup-
pressed in the list file.

Brief

Generates a summary of all errors, all defined words and
all defined variables at the end of the list file.

Normal

Lists additionally the return and expression stack usage of
all routines, the addresses of all words placed in ROM, a
summery of left ROM holes, unused RAM nibbles and
unused short-call address entries, an overview of bytes
saved during the optimazition steps and information
about the compiler’s memory usage.

Full

Additional information about the subroutine placement
algorithm, the CPU time for the different compilation
steps, statistics on the usage of the internal symbol table
data base, summary of created files and used compiler
switch settings.

Debugging Support File Generation

/ASSEMBLER[=<assembler file>]

/NOASSEMBLER Default setting

This controls whether an assembler list file will be gener-
ated. The default extension is ”.ASS” , the default
filename is that of the source file. This output file may be
used to check the efficiency of the generated object code.

MARC4 User’s Guide
qFORTH Compiler

05.01 11

/CRF[=<crossreference file>]

/NOCRF Default setting

This controls whether a cross reference file has been
generated. The default extension is ”.CRF” , the default
filename and path is that of the source file. The cross
reference file shows the correlations of all used symbols
(subroutines, variables and constants) with regard to their
definition and their use in the different source files.

/LOG[=<HLL file>]

/NOLOG Default setting

This switch controls whether a high-level language de-
bugger link file has to be generated. The default extension
is ”.HLL” , the default filename and path is that of the
source file. This generated file enables source-level
debugging (see chapter 5 ”Software Simulator”).

Library Management

/NEWLIB[=<library file>]

/LIBRARY[=<library file>[,<library file>]]

This command controls whether one or more user
libraries have to be read after the system library has been
read.

/SYSLIB

Controls whether a new system library has to be generated
or not. The default filename is ‘qFORTH2.LIB’,
generated from the input source file. The source files to
be compiled into a system library must have a certain for-
mat, otherwise the compilation will fail.

Note: This compiler switch is reserved for Atmel
Wireless & Microcontrollers’ internal use only.

MARC4 User’s Guide
qFORTH Compiler

05.0112

1.6 Error and Warning Messages
Notes:

All errors marked with (****) are severe errors which indicate that the compiler does not work properly. In this case,
you should send your source code which caused the error, together with your system library and a brief description,
to Atmel Wireless & Microcontrollers.

DOS errors, which are preceeded by the word DOS, are not explained in this manual. Refer to your DOS manual.
Turbo (Pascal) runtime (RT) errors are caused by an incorrect compiler source code.

1.6.1 Coded Error and Warning Messages

001 File not found

When including a file with the $INCLUDE directive, this file was not found. All files to be included are expected
in the same directory as the source file, as long as there is no directory path preceeding the filename.

005 Turbo RT: Object not initialized (****)

TURBO runtime error caused by an incorrect compiler code.

006 Turbo RT: Call to abstract method (****)

TURBO runtime error caused by an incorrect compiler code.

050 WARNING –– Source line too long. Truncated after 120 characters

A source line is always processed up to 120 characters only. Additional characters are ignored.

051 WARNING –– End of file reached while scanning comment

When scanning comment, the end of file was reached prior to the end of comment. The closing parenthesis ‘)’
seems to be missing.

052 Too many nested INCLUDE’s. INCLUDE will be ignored.

Includes may be nested only 4 levels deep. Additional nested include files are ignored. Nevertheless, including
can be done sequentially without limitations.

053 Numeric value out of range

The numeric value read was either out of the machine’s integer number range, or an array index was out of its
range. Arrays always start with index 0. This message is also issued if you force an object via ’AT’ to a location
outside of the current RAM or ROM address range.

054 Internal stack overflow (****)

The compiler’s internal number stack has overflowed.

055 Internal stack empty (****)

The compiler’s internal number stack was empty when the compiler tried to get a number from the stack.

056 Number expected

The compiler expected a number or constant as next item within the source file. This message is often seen on
constant or array definitions following a look-up table. Please rearrange the sequence of definition so that a vari-
able or colon/macro definition follows a look-up table.

057 Assembler definitions expected when creating library

When compiling a system library source, the compiler always expects a section with assembler definitions at
the beginning. This section was not found.

MARC4 User’s Guide
qFORTH Compiler

05.01 13

058 Additional characters ignored

There are characters after the end of a program in your source file. They will be ignored by the compiler.

059 Only CODE, ’:’ or CONSTANT definitions are permitted

In a system library source, only CODE, COLON and CONSTANT definitions may occur.

060 END–ASSEMBLER expected

The end of the assembler section has to be marked with this word. The compiler did not find it in the system
library source code.

061 QFORTH–LIBRARY expected

The COLON and MACRO definition in a system library source have to be enclosed by the words
QFORTH–LIBRARY ... END–LIBRARY. This error occurs if there are no COLON or MACRO definitions
whatsoever.

062 Reserved word QFORTH–LIBRARY not found, will be added

When compiling a system library source, a COLON or MACRO defintion was found before the word
QFORTH–LIBRARY.

063 Unable to handle. Skipped to next

When looking for the beginning of an object definition, an unusable object definition was found. The compiler
skips to the beginning of the next object definition.

064 ’:’ added

Whenever an undefined name is found, and the compiler looks for the beginning of a new definition, this name
is regarded to be the name of a COLON definition where the user forgot to write the colon.

065 WARNING –– Undefined Word

An undefined word was found within a COLON or MACRO definition .

066 Undefined label or label referenced outside of definition

All labels used within a COLON or MACRO definition have to be defined in this definition, unless the labels
are maked as ’special labels’ which begin with the two characters ’_$’. If this error occurs, one or more labels
within a definition were not defined.

067 END–CODE expected

When compiling a macro, the beginning of the next definition was found while the macro was not compiled
completely. In this case, an END–CODE is added by the compiler which causes the compilation of the macro
to be completed properly.

068 ’;’ expected

When compiling a COLON definition, the beginning of the next definition was found while the colon definition
was not compiled completely. In this case, a ’;’ is added by the compiler which causes the compilation of the
colon definition to be completed properly.

069 WARNING –– There is no special handling of negative numbers

The MARC4 is not able to process signed numbers in binary format. All negative numbers used in your source
file will be treated as positive values.

070 $VERSION expected

The system library source code must begin with a $VERSION statement. The word $VERSION must be
followed by a string that will identify this library version. The compiler also uses the version string to check
the validity of user libraries.

MARC4 User’s Guide
qFORTH Compiler

05.0114

071 Only ’CALL’ and ’BRA’ instructions permitted

When using assembler instructions in COLON or MACRO definitions, you are not allowed to use the short-call
(SCALL) or short-branch (SBRA) instruction. The compiler will optimize the long-branch (BRA) and long-
call (CALL) instruction to SBRA and SCALL instructions whenever possible.

072 Insufficient space for intermediate code (****)

When compiling a program, the code is stored in an intermediate array before the object code is assembled. This
error does not occur if the space reserved within the compiler for intermediate code is defined to be large enough.

073 ’%’ or ’$’ not permitted in label names

These two characters may not occur in label names, for they are reserved to the compiler’s use when substituting
macros. Furthermore, care should be taken when using labels beginning with an underscore, for most labels in
the qFORTH library begin with an underscore. This might cause duplicated label names.

074 WARNING –– Label too long. Truncated to 16 characters

The length of a label is limited to 16 characters.

075 Duplicate label names

Within your program, two duplicate label names were found. You have to rename one of them.

Note: Avoid label names beginning with an underscore, as this might cause interferences with label names
already used within the qFORTH library.

076 “]” expected

The option list or an array index must always be enclosed in square brackets. In an option list, these brackets
must be preceeded and followed by at least one blank. When supplying an index, the opening bracket must be
preceeded by at least one blank, the closing bracket must be followed by at least one blank. The index may be
preceeded or followed by one or more blanks (optional). An index may only occur after an array name in the
source code.

077 WARNING –– Stack effect of word not computable

Normally, the compiler computes the EXP and return stack effects of every COLON and MACRO definition.
This is impossible if

– BRA assembler instructions are used in the definition,

– you use a COLON or MACRO definition whose stack effects are un-computable,

– this COLON definition is recursive,

– this COLON or MACRO definition contains an IF–ELSE–THEN statement where THEN and ELSE part have
 different stack effects,

– this COLON or MACRO definition contains any loop (DO .. LOOP or #DO .. #LOOP or ... or BEGIN ...
 AGAIN or BEGIN ... UNTIL or ...) in whose block the RET or EXP stack effect is <> 0

– this COLON or MACRO definition contains a DO ... +LOOP statement wherein the RET stack effect is not
 0 or the EXP stack effect is not 1.

–this COLON or MACRO definition contains a CASE statement wherein the effects of all selections are not
 the same. You can suppress this warning by classifying the COLON/MACRO as one, which stack effect do
 not has to be computed by supplying the option ’?’ or by explicitly typing the stack effects in the option
 brackets, e.g. [E 0 R 0].

078 Only ’:’ definitions can be forced to ZERO PAGE

Only COLON defintions can be forced to the zero page by the ’Z’ option. A COLON definition forced to the
zero page will be placed there, regardless whether it is called by any routine or not.

MARC4 User’s Guide
qFORTH Compiler

05.01 15

079 Nesting of object definitions not permitted

Object definitions may not be nested, i.e., you can not write a COLON or MACRO definition within an other
COLON or MACRO definition.

080 ELSE or THEN expected; THEN will be added

When processing the THEN part of an IF statement, the beginning of another object definition or the end of the
current definition was found. In this case, a THEN is added to correct the block structure.

081 THEN added

When processing the ELSE part of an IF statement, the beginning of another object definition or the end of the
current definition was found. In this case, a THEN is added to correct the block structure.

082 #LOOP added

When processing an #DO ... #LOOP statement, the beginning of another object definition or the end of the
current definition was found. In this case, a #LOOP is added to correct the block structure.

083 Last numeric entry omitted

When scanning the source code the compiler has to do a look-ahead of one word to process CONSTANT or
ARRAY definitions. Therefore, when a number is found at the beginning of an object definition, the compiler
has to read the next word to decide whether the number is valid or not. If a number is invalid, this is flagged
at the word following the number with this message.

084 Predefined value is already initialized

Predefined constants like $RAMSIZE or $ROMSIZE can only be set once in a program’s source code.

085 WARNING –– Return stack doesn’t start at address 0

The return stack does not start at adress 0, because it was forced to another location by ’AT’ . This means, when
an RET stack underflow occurs, NO SLEEP mode is entered and program exectution will continue at a random
location. You should ensure that this mode is impossible when forcing the RET stack to a specific address.

086 $RAMSIZE value is insufficient

By declaring too large stacks or too much arrays or variables, there is insufficient space in the internal RAM
to place all objects into it. The compiler has to be told the RAM size in the predefined constant $RAMSIZE,
or a default value of now 111 nibbles is used.

087 AT not permitted here

The AT part of an array or a variable definition has to stand in front of the ALLOT part.

088 A label became too long when macroing

Calling macros in other macros over several levels may cause the label name length to overrun the limit. You
should use shorter names or less excessive macro-in-macro-calls.

089 LOOP added

When processing a ?DO/DO ... LOOP statement, the beginning of another object definition or the end of the
current definition was found. In this case, a LOOP is added to correct the block structure.

090 WARNING –– THEN and ELSE block with different stack effects

When processing a COLON or MACRO definition, an IF–THEN–ELSE statement with different stack effects
in the THEN and ELSE part was found. This causes the stack effects of the current COLON/MACRO definition
to be uncomputable. An IF–THEN–ELSE statement with an absent ELSE part is regarded as an IF–THEN–
ELSE statement with an RET and EXP stack effect of 0 in the ELSE part.

MARC4 User’s Guide
qFORTH Compiler

05.0116

091 WARNING –– RET stack effect in LOOP block is <> 0

The current COLON/MACRO definition contains any kind of loop in which the RET stack effect is not 0. This
causes the stack effects of the whole COLON/MACRO definition to be uncomputable.

092 WARNING –– EXP stack effect in LOOP block is <> 0

The current COLON/MACRO definition contains any kind of loop in which the EXP stack effect is not 0. This
causes the stack effects of the whole COLON/MACRO definition to be uncomputable.

093 WARNING –– EXP stack effect in final +LOOP block is <> 1

The current COLON/MACRO definition contains a DO ... +LOOP statement in which the EXP stack effect of
the last block in front of the +LOOP is not 1. This causes the stack effects of the whole COLON/MACRO
definition to be uncomputable.

094 UNTIL, WHILE or AGAIN expected. UNTIL added

When processing a BEGIN statement, the beginning of another object definition or the end of the current
definition was found. In this case, an UNTIL is added to correct the block structure.

095 REPEAT added

When processing a BEGIN ... WHILE ... statement, the beginning of another object definition or the end of the
current definition was found. In this case, an UNTIL is added to correct the block structure.

096 ENDCASE added

When processing a CASE .. OF .. ENDOF .. statement, the beginning of another object definition or the end
of the current definition was found. In this case, an ENDCASE is added to correct the block structure.

097 ENDOF added

When processing a CASE .. OF .. statement, the beginning of another object definition or the end of the current
definiton was found. In this case, an ENDCASE is added to correct the block structure.

098 System library incomplete! Contact Atmel Wireless & Microcontrollers for immediate support (****)

One basic part of the system libray QFORTH.LIB was not found. This error only occurs if your system library
has been damaged by hard-disk errors. For first aid, delete qFORTH2.LIB and dearchive this file from
MARC4.ARJ on the installation disk.

099 Internal compiler error ! Contact Atmel Wireless & Microcontrollers for immediate support (****)

Supply your source code for failure analysis.

100 $AUTOSLEEP and $RESET have fixed ROM addresses, AT ignored

The $AUTOSLEEP routine is always placed at ROM address 000h, while $RESET is placed at ROM
address 008h. Trying to force these routines to different start addresses will result in this warning.

101 Symbol longer than 20 characters – truncated

Whenever a symbol name with more than 20 characters is defined, the name is truncated to 20 characters.

102 WARNING –– Dirty programming style – Stack effects uncomputable

This warning occurs if you are using BRA instructions and lables within a MACRO/COLON definition. The
compiler is not able to calculate the correct stack effects.

103 WARNING –– Redefining a Number with a qFORTH word

By creating a new vocabulary entry and linking it in the word-list, this warning will occur if you have defined
a new object with the name which already exists.

MARC4 User’s Guide
qFORTH Compiler

05.01 17

104 Undefined ROM–Segment

The name of the defined ROM segment is unknown.

105 Expected $ENDSEG – $ENDSEG inserted

If routines or ROM constants are to be placed into specific ROM segment blocks, they have to be enclosed by
the compiler directives $BEGINSEG $ENDSEG. During compilation, the ROM segment directive
$ENDSEG was expected because the compiler has found the beginning of an additional ROM segment defini-
tion. The directive $ENDSEG was inserted automatically.

106 No previous $BEGINSEG

The compiler found the directive $ENDSEG of a ROM segment definition without a ROM segment block being
introduced by the directive $BEGINSEG.

107 Overriding previous Segment assignment

A routine within a $BEGINSEG $ENDSEG block overlapped with a SEGMENT directive for a single place-
ment of a ROM constant or subroutine.

108 Expected SEGMENT – SEGMENT added

During compilation, the word SEGMENT was expected into the $DEFSEG directive. The compiler inserted
the word SEGMENT automatically.

109 Defined Segment does not fit into parent segment

The defined ROM space area is greater than the ROM space area of the superior ROM segment block.

110 ROM–Segment of $AUTOSLEEP, $RESET, and INTx routines cannot be changed

The $AUTOSLEEP, $RESET and INTx routines have fixed addresses in the ROM base bank and can not move
into another ROM segment.

153 Unexpected end of source file

The end of a source file was found before a definition in the source code was completed. Maybe a <CR>
following a ‘j’or ENDCODE statement is missing in the last line of a source file.

160 Only “@” or “!” operations are allowed with external objects

If you use external storage, the only operations on external objects, which have been declared as EXTERNAL
before, are store and fetch operations. This means, for example, you can not push the address of an external
object onto the stack and manipulate it.

161 Global labels in macros are not allowed

The use of global labels (beginning with _$) is forbidden, as this label would cause multiple definition problems
when this macro is called.

163 $EXTMEMSIZE value is insufficient

The size of the external memory is too small, i.e., not all external objects can be placed.

164 You can not call that

The only thing that can be called by CALL-assembler-instructions are subroutines, defined by COLON
definitions or labels within assembler subroutines.

165 Do not redefine assembler words

Assembler words can not be redefined.

MARC4 User’s Guide
qFORTH Compiler

05.0118

166 Optimize XYTRACE : Not enough memory in partition list (****)

An internal list of the qFORTH compiler is too small.

167 Fatal error during XYTRACE (****)

A fatal internal compiler error occured during XYTRACE optimization. Please submit your source code to
Atmel Wireless & Microcontrollers for failure analysis.

168 Partition–pointer–list too small (****)

An internal list of the qFORTH compiler is too small.

169 Invalid Context–Save/Context–Restore Macros

An internal compiler error occured during the compilation of a new system library.

170 Found operator where operand was expected

171 Found operand where operator was expected

172 String constant truncated to 80 characters

If a string constant with more than 80 characters is defined, the string constant is truncated after 80 characters.

197 Use $Bank_Switch FULL

Replace the default argument RESTRICTED of the compiler directive $BANK_SWITCH <arg> by the
argument FULL.

198 Panic: Could not place subtree of SCALL–Routine in BB

To organize the base bank efficiently, the compiler has to place all routines with fixed ROM addresses into the
zero page (INTx, $RESET, ...). The next step of the compiler is to place all routines and subroutines into the
base bank which will be forced to a SCALL address. After that, the zero page is filled up with SCALL routines.
This error occurs, if there is not enough memory space to place the corresponding routines into the base bank.
You have to rearrange your source code .

199 TBL not actualized

Stack operation error caused by SWAP and DROP instruction. This failure may occur during compilation of
a new system library.

200 Internal consistency check failed!

Internal compiler error! Please contact your Atmel Wireless & Microcontrollers sales person for immediate sup-
port.

201 WARNING –– Different RET stack effect than in previous block

When processing a CASE .. OF .. ENDOF .. ENCASE statement, the current block has a different return stack
effect than the previous block. This causes the stack effects of the current COLON/MACRO definition to be
uncomputable.

202 WARNING –– Different EXP–stack effect than in previous block

When processing a CASE .. OF .. ENDOF .. ENCASE statement, the current block has a different EXP stack
effect than the previous block. This causes the stack effects of the current COLON/MACRO definition to be
uncomputable.

203 Illegal word will be ignored

When processing a COLON/MACRO definition, an improper keyword was found (such as THEN without a
prior IF or an UNTIL without a prior BEGIN ...) or within a ROMCONST definition an unusable word was

MARC4 User’s Guide
qFORTH Compiler

05.01 19

found. Within ROMCONST definitions, only numbers, constants, strings, and names of arrays, variables are
allowed.

204 End of file reached while reading a string

When processing a string, the end of the source file was found before the end of the string was reached.

205 ’,’ expected

When defining a look-up table with ROMCONST, each item has to be followed by a blank and a comma, the
last item too.

206 Index out of range

When indexing an array, the index was less than 0 or greater than the maximum index.

207 WARNING –– Index expected

Everytime an opening square bracket after an array name is found, the compiler assumes to read an array index
which has to be a number or a constant of the appropriate range.

208 WARNING –– Value not in range 1 .. 16

The maximum index when defining a short byte or short nibble array has to be less than or equal to 15 and greater
than or equal to 0. The index for any short array has to be a nibble. When defining an array, the bracketed number
is the number of array elements whose index starts at 0 !

209 Value not in range 1 .. 256

The maximum index when defining a long byte or nibble array has to be less than or equal to 255 and greater
than or equal to 0. The same range is valid when indexing a short array. The index for a long array has to be
a byte.

210 WARNING –– Unknown or invalid option

An unknown option was found when specifying an option list after a block within a COLON or MACRO defini-
tion.

211 WARNING –– No INTERRUPT routine has been defined

Each program has to contain at least one definition of an interrupt service routine. The interrupt service routines
are named INT0 to INT7. The compiler uses the defined interrupt routines to compute the set of used subroutines
by following the execution path for every interrupt routine.

212 Recursion in CODE definitions not permitted

A macro definition can not be used in its own definition.

213 WARNING –– Recursive stack effects unpredictable

The stack effects of a recursive COLON definition can not be computed. Nevertheless you can specify them
in the option list using ‘[ExRy]’.

214 Inconsistent assembler definitions in system library (****)

This error indicates inconsistency in the definitions of assembler words in the system library.

215 WARNING –– Forcing to an address overrides forcing to ZERO PAGE

If a COLON definition is forced to the zero page by the ’Z’ option and forced to a specific address by AT, the
AT overrides the ’Z’.

216 DPMI: General Protection Fault (****)

Internal compiler error! Please contact your Atmel Wireless & Microcontrollers sales person for immediate sup-
port.

MARC4 User’s Guide
qFORTH Compiler

05.0120

217 Unable to place $RESET routine in ROM

The compiler was unable to place the $RESET routine at address 008h or there is not enough space to place
the whole $RESET routine. Reduce the size of the $RESET routine.

 218 Unable to place INTERRUPT routine in ROM

The compiler was unable to place an interrupt routine at a predefined address as there was not enough space
to place the routine. The reason and the steps to avoid this are the same as described in error 217.

219 FATAL ERROR – Routine became longer when optimizing (****)

This means that a subroutine increased in length when it was optimized.

220 Insufficient ROM for placing ROM constant values

There was not enough space left in ROM when the compiler tried to place the ROM constant look-up table
definition. The ROM constants are placed after all subroutines have been placed. If this error occurs, increase
the size of the on-chip ROM (using $ROMSIZE) or break ROM constants and subroutines into smaller parts,
so they can fit into smaller ROM holes not used.

221 FATAL ERROR during optimization (****)

A fatal error occured when optimizing the intermediate object code.

222 FATAL ERROR during ROM placement (****)

A fatal error occured when carrying out the ROM placement. Typical error if the ROM size is too small.

223 RET stack does not fit into RAM

The size of the return stack is greater than on-chip RAM. Increase the on-chip RAM or decrease the size of the
return stack allocation.

224 EXP stack does not fit into RAM

The size of the EXP stack is greater than the size of on-chip RAM. Increase the on-chip RAM, decrease the size
of the EXP stack or return stack allocation.

225 RET and EXP stack will overlap

You forced the EXP stack to a specific address so that both stacks do not use disjointed parts of RAM. Do not
force the EXP stack to a specific address.

226 Not the name of a colon definition

You tried to use an assembler mnemonic or another reserved word of a colon definition.

227 WARNING –– Unkown interrupt source of current routine – Stack effects 0,0 assumed

You have defined a SWI-instruction in the current routine, but the compiler cannot find out the interrupt which
will activate this routine.

228 Insufficient $ROMSIZE for placing subroutines

Not all necessary subroutines could be placed in the MARC4’s ROM. The actual ROM size is given to the
compiler by the predefined constant $ROMSIZE. If this directive is not found in the source, a default ROM size
is taken.

229 WARNING –– RET stack size not set – Using default value

The return stack size was not set by the sequence VARIABLE R0 <xx> ALLOT where <xx> is the size in
nibbles. The default value is 48 nibbles. The number of return stack entries is calculated by (<xx> /4) + 2.

MARC4 User’s Guide
qFORTH Compiler

05.01 21

230 WARNING –– EXP–stack size not set – Using default value

The EXP stack size was not set by the sequence VARIABLE S0 <xx> ALLOT where <xx> is the size of the
expression stack –1. The default value is 16 nibbles.

231 WARNING –– Cannot determine target of SWI instruction

You have called an interrupt before the interrupt service routine is defined. Please try to rearrange your source
code.

232 WARNING –– Not all Z–optioned routines could be placed

There is not enough space in the zero page. Thus, not all subroutines, which are forced to a short-call address
by the Z-option, could be placed on a short-call address. Decrease the length of interrupt or $RESET routines
or use less forcing to a zero–page address by AT or Z-option.

233 WARNING –– Using default value for $ROMSIZE

You did not set the predefined constant $ROMSIZE. The default value of 1.5K is taken.

234 WARNING –– Using default value for $RAMSIZE

You did not set the predefined constant $RAMSIZE. So the default value of 111 nibbles is taken.

235 WARNING –– Using default value for $EXTMEMSIZE

You defined external memory objects, but did not specify the size of the external memory. So a default value
is taken. The default value is set to 255 nibbles. This warning is issued only if external objects have been defined.

236 WARNING –– Using default value for $EXTMEMPORT

The predefined constant $EXTMEMPORT needs the port address for external memory accesses. The default
value is Fh.

237 WARNING –– Using default value for $EXTMEMTYPE

If external memory is used, the types RAM or EEPROM are valid parameters. RAM is the default parameter.

238 Unkown CRC–Algorithm. Valid are DEFAULT, SIMPLE and HARDWARE

The compiler supports three CRC algorithm which influence the checksum generation differently. Only
DEFAULT, SIMPLE and HARDWARE are valid parameters. If there is no $CRC-directive defined in your
source-code, the CRC algorithm is DEFAULT.

239 Unknown Bank switch method. Valid are Restricted and FULL

The compiler has found an invalid argument for the directive of the ROM bank switch. Only RESTRICTED
and FULL are valid arguments. If there is no $BANK_SWITCH <arg> directive defined in your source-code,
the $BANK_SWITCH argument is RESTRICTED.

241 No previous $IFDEF

When using conditional compilation, the compiler found a $ELSE or a $ENDIF but no previous $IFDEF.

242 Unmatched $IFDEF(s), possibly $ENDIF missing

When using conditional compilation, there were unmatched $IFDEF(s) left at the end of the source, i.e., there
were more $IFDEFs than $ENDIFs.

244 Program aborted via <CTRL+C>

This error message is issued when the compiler is terminated via <CTRL+C> keyboard break.

245 – 247 TURBO–RT: TURBO runtime error (****)

This TURBO-runtime errors are caused by an incorrect compiler code. Please contact your Atmel Wireless &
Microcontrollers’ sales person for immediate support.

MARC4 User’s Guide
qFORTH Compiler

05.0122

248 WARNING –– Protect only assembler words in Colon or Code Definitions

The compiler directive $PROTECT must be used only to protect assembler words in colon or code definitions
by creating a new library.

250 WARNING –– $(NO)EXPAND meaningless in Colon definition

This compiler directive is only a macro expansion control.

251 TURBO–RT: TURBO runtime error (****)

This TURBO runtime error is caused by an incorrect compiler code. Please contact your Atmel Wireless & Mi-
crocontrollers’ sales person for immediate support.

252 WARNING –– Expansion mode has already been set globally

If the compiler directive $(NO)EXPAND is set on the outside of a code definition, the expansion mode is set
globally. This global expansion mode can be set once in your source code only.

1.6.2 Uncoded Error and Warning Messages

Error message file <path> qFORTH2.MSG not found

The compiler’s error message file is not available in the compiler’s directory.

User library <name> not found

An user library was not found. Check, whether you supplied the correct extension, or if your user libraries have
the default extension .LIB, whether you supplied the correct path or, if no path was supplied, whether they are
stored in the same directory as the source file.

<name> is never called

You forced a routine to an address or to the zero page, which is never called directly by any other routine. You
may omit this routine, or, if you do not force it, the compiler will not place it in ROM area.

ERROR –– Illegal environment found by the compiler (****)

The compiler reads the program’s environment to determine the path where the compiler overlay can be found.
Use an MS-DOS operating system release 3.3 or above.

<list of files> : List is ignored

Do not pass more than one source file to be compiled. All except the first will be ignored.

<list of qualifiers> : List of qualifiers not allowed

The list of qualifiers <qualifix> is not allowed here and will be ignored.

Contradicting switch <switch> is ignored

You supplied two contradicting switches such as LIST and NOLIST. Omit one of them.

<qualified switch> : qualifying not allowed

You qualified a switch which does not allow qualifying.

<qualifix> : unknown qualifier

You specified an invalid qualifier after the /STATISTICS switch. Valid are only: NO, BRIEF, NORMAL and
FULL (or abbreviations of these)

MARC4 User’s Guide
qFORTH Compiler

05.01 23

XY@!–optimizing requires XYLOAD –optimizing

You cannot optimize indirect–X/Y-fetch/store unless the loading of the X and Y register is optimized.
XY@! optimizing is not completed.

XYTRACE optimizing requires XY@! –optimizing

You cannot carry out a register trace optimizing unless ‘XY@!’ is optimized. XYTRACE optimizing is not
executed.

Unable to place <name> (<length> Bytes) (****)

The remaining space in ROM is too small to place the flagged object. Use less forcing to zero page or to an
address or break large routines into smaller pieces. This warning will also produce a severe error.

This word is redefined (see <place of first definition>)

You defined the same object twice. This might cause problems when referenced by other routines. Rename or
remove one object from your source code.

X@/Y@ in <name> : content could be changed by the optimizer

Within <name> you used the Y register, although XYTRACE optimization is done. This might change the
normal content of the X or Y register. Don not use these registers by direct assembler instructions.

Call <routine> in <name> : Don’t pass parameters in registers

<routine> uses the X or Y register. The compiler assumes that parameters to <routine> are passed in the regis-
ters. If XYTRACE optimization is carried out in <name>, the original content of these registers might change.

<name> can’t be forced, because ROM address is fixed

Interrupt routines have fixed ROM addresses:

$AUTOSLEEP 000h INT3 100h

$RESET 008h INT4 140h

INT0 040h INT5 180h

INT1 080h INT6 1C0h

INT2 0C0h INT7 1E0h

Unexpected end of file in library

When reading the system or a user library, an end of file was found before the library was read completely. Copy
the qFORTH system library from the installation disk to your working directory. If the error still occurs, recom-
pile your user library/libraries.

Illegal <record–type> record in library

The library file is destroyed by any reason or you are trying to read an old library with a new compiler version.
Use the new system library, if you have a new compiler version, re-install the system library from the installation
disk to your working directory. If the error still occurs, recompile your user-library/libraries.

<predefined value> is already set

A predefined value is set in more than one user library. This is not allowed. Recompile, so that the value is set
in one user library only.

Duplicate label <labelname> in User Library

Two user libraries contain the same label name. Rename one of them.

MARC4 User’s Guide
qFORTH Compiler

05.0124

<name> : name not found when reading cdrflist (****)

A part of your user library is lost by damaging the user library. Recompile it, if the error still occurs, send your
files to Atmel Wireless & Microcontrollers for failure analysis.

No more room for intermediate code (****)

You have read in too many user libraries. Reduce the number of user libraries or split them up into a larger
number and omit all libraries you do not need in this application program.

Your user library is inconsistent

You are trying to read an old user library in conjunction with a new version of the qFORTH system library.
Recompile all your user libraries.

Switch <switch> is ambiguous

The switch <switch> is ambiguous, i.e., it is not possible to determine exactly which qualifier is meant
(e.g., \LI is ambiguous (LIST or LIBRARY)).

Switch <switch> does not care me

You supplied an unknown switch.

Source file not found

The compiler did not find the specified source file. Maybe you specified an invalid path or the extension of your
source file is not the default extension .SCR or .INC for an include file and you did not specify it.

System library QFORTH2.LIB not found

The compiler is looking for the system library in the same directory the compiler is stored in. Make sure that
the system library is available as QFORTH2.LIB in that directory.

Qualifier <qualifix> is ambiguous

The qualifier <qualifix> in a qualifier list is ambiguous, i.e., it is not possible to determine exactly which
qualifier you mean.

Qualifier <qualifix> does not care me

You supplied an unknown qualifier <qualifix> in the qualifier list. Indirect recursion not allowed. By
re-definition of one or more objects you got an indirect recursion. This is not allowed.

<name> does not fit into ROM–hole

You forced a ROM item into a too small ROM hole by forcing another item near to this item in the ROM. Use
less forcing or supply larger distances between the items.

<name> there is already something in ROM

You tried to force two items in the ROM. As result, they are overlapping. Move one of them to another location
or use less forcing with AT.

<name> – defining occurence not found

An external labels was not defined. When an external label is used, its name has to be preceeded by ’_$’. The
name at the defining occurence must not be preceeded by these characters.

<predefined variable> –– Value not set (****)

Indicates that a predefined variable was not set, not even with its default value.

<object> has not been defined

An external object (arguments of assembler instructions with operands or parts of a ROM constant) was not
defined until the end of the source code.

MARC4 User’s Guide
qFORTH Compiler

05.01 25

<name> – out of address space (****)

A call of <name> or a branch to <name> exceeds of the maximum 4K address space

<array><index> : out of RAM space

An array fits only partially into RAM. Use less forcing with AT.

Conflict between RET–stack and <ram–object>

The RET stack and another RAM object do not occupy disjoint RAM. Use less forcing via AT or move one
object.

Conflict between EXP–stack and <ram–object>

See above

Conflict between <ram–object> and an other RAM object

See above

<external object> is not in available external storage

An external object was forced via AT to a location outside the available external memory area.

Conflict between <name> and another external object

Two external objects do not occupy disjoint memory areas. Use less forcing via AT or move one object.

