

The SCC Programmer’s Guide

Revision 1.0

Please read the SCC Documentation Disclaimer on the next page.

January 27, 2012 Page 2 of 43 Intel Labs

IMPORTANT - READ BEFORE COPYING, DOWNLOADING OR USING

Do not use or download this documentation and any associated materials (collectively,

“Documentation”) until you have carefully read the following terms and conditions. By

downloading or using the Documentation, you agree to the terms below. If you do not

agree, do not download or use the Documentation.

USER SUBMISSIONS: You agree that any material, information or other communication,

including all data, images, sounds, text, and other things embodied therein, you transmit or post

to an Intel website or provide to Intel under this agreement will be considered non-confidential

("Communications"). Intel will have no confidentiality obligations with respect to the

Communications. You agree that Intel and its designees will be free to copy, modify, create

derivative works, publicly display, disclose, distribute, license and sublicense through multiple

tiers of distribution and licensees, incorporate and otherwise use the Communications, including

derivative works thereto, for any and all commercial or non-commercial purposes.

THE DOCUMENTATION IS PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED

WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY,

NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. Intel does not

warrant or assume responsibility for the accuracy or completeness of any information, text,

graphics, links or other items contained within the Documentation.

IN NO EVENT SHALL INTEL OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES

WHATSOEVER (INCLUDING, WITHOUT LIMITATION, LOST PROFITS, BUSINESS

INTERRUPTION, OR LOST INFORMATION) ARISING OUT OF THE USE OF OR IN-

ABILITY TO USE THE DOCUMENTATION, EVEN IF INTEL HAS BEEN ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS PROHIBIT

EXCLUSION OR LIMITATION OF LIABILITY FOR IMPLIED WARRANTIES OR

CONSEQUENTIAL OR INCIDENTAL DAMAGES, SO THE ABOVE LIMITATION MAY

NOT APPLY TO YOU. YOU MAY ALSO HAVE OTHER LEGAL RIGHTS THAT VARY

FROM JURISDICTION TO JURISDICTION.

Copyright © 2010, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

January 27, 2012 Page 3 of 43 Intel Labs

Revision History for Document

0.6 Rewrote the Power Management section to describe new version of the Power

Management API.

0.61 Rewrote the section on Building SCC Linux. The sources already exist on MCPC

and do not need to be downloaded, and their directory structure does not contain

rck.

0.62 Clarified terminology in the first two sections. Updated for sccKit 1.2.0.

0.63 Corrected description of –p pssh switch.

Provide link to public SCC SVN repository.

Provide link to SCC Bugzilla database.

0.64 Updated for sccKit 1.2.3.

0.65 Updated information about power management

0.70 Changed the start index for voltage levels.

0.72 Cut/paste code errors in Appendix

0.73 Added shared memory calls to table

0.74 Bug in processorID calc in readTILEID.c

0.75 Correct the description of sccReset

0.80 Updated the first 4 sections

0.85 Updated sections 5, 6, and 7

0.86 Bug 256

0.9 Updated section 8, removed section 9, renamed 10 to 9 and 11 to 10

1.0 Updated section 8; added information about the emulator.

January 27, 2012 Page 4 of 43 Intel Labs

Table of Contents
1 Introduction ... 6

2 The Linux Platform ... 7

3 SCC Architecture and Performance Considerations ... 7

3.1 Latencies ... 9

3.2 processorID, tileID, and coreID .. 9

4 The Management Console ... 10

4.1 How to Get Copies of the Latest MCPC Tools ... 10

4.2 Installing sccKit ...11

4.3 Using sccKit .. 14

4.4 MCPC Tools .. 20

4.5 Installing MCPC Tools.. 21

5 Power Management ... 21

6 Some Simple SCC Programs ... 24

6.1 Hello World ... 24

6.2 Reading and Writing Core Configuration Registers ... 26

7 Building RCCE .. 28

7.1 Building the RCCE Emulator ... 28

7.2 Building RCCE for SCC Hardware .. 29

7.3 RCCE Build Options... 30

8 Running RCCE Applications ... 30

8.1 Characteristics of RCCE Programs ... 31

8.2 Two Important Cautions When Using RCCE ... 32

8.2.1 Initial State of the Message Passing Buffers and Test-and-Set Registers 32

8.2.2 Empty Messages do not Synchronize.. 32

8.3 RCCE has Basic and Gory Interfaces and Power Management 33

8.4 The STENCIL Example .. 35

8.5 RCCE Basic .. 36

8.6 RCCE Gory ... 36

8.7 Power Management .. 36

8.7.1 Power Domains ... 38

8.7.2 Changing the Power .. 38

8.7.3 Changing the Frequency.. 40

9 Building your own Linux Image ... 41

January 27, 2012 Page 5 of 43 Intel Labs

10 Appendix ... 42

10.1 SCChello.c .. 42

10.2 readTileID.c .. 42

List of Tables

Table 1: Core Latency Table ... 9
Table 2 The SCC Mesh Showing tileIDs, processorIDs, and (x,y) Coordinates. 10
Table 3 sccKit Commands ... 14

Table 4: Cross Compiler and Library Versions that Run on the SCC Cores 21
Table 5 Base Addresses for Core Configuration Registers .. 26
Table 6 Bit Pattern for the TileID Register .. 28
Table 7 RCCE Calls Belonging to the Basic and Gory Interfaces ... 34

Table 8 RCCE Power Management Routines .. 35
Table 9 Voltage and Frequency Values .. 39
Table 10 Tile Frequencies and RCCE Frequency Dividers ... 40

List of Figures

Figure 1: Available MCPC Tools ..11

Figure 2: The Back of the SCC Unit, Showing the PCIe and eMAC Connections 12
Figure 3: An SCC/RockyLake System Showing the Connection for the Ethernet Cables and the

PCIe cable ... 13
Figure 4: The SCC GUI .. 14

Figure 5: Changing the SCC Location with SCC GUI .. 15
Figure 6: Selecting the SCC Performance Meter ... 16

Figure 7: The SCC Performance Meter ... 16
Figure 8 Selecting System Reset.. 17

Figure 9: Result of sccKonsole 0..3 ... 19
Figure 10: Initialize the SCC Platform .. 21
Figure 11: Choosing a Voltage/Frequency Setting ... 22
Figure 12: Voltage and Frequency Domains .. 23
Figure 13: RCCE vs SCC Power Domains ... 38

January 27, 2012 Page 6 of 43 Intel Labs

1 Introduction
The Single-chip Cloud Computer (the SCC) is a research chip created by Intel Labs to study

many-core CPUs, their architectures, and the techniques used to program them. It has 24

dual-core tiles arranged in a 6x4 mesh. Each core is a P54C core and hence supports Intel

architecture. For an overview of the SCC platform, refer to the SCC Platform Overview.

The SCC hardware is a circuit board that contains the SCC chip, memory, and a system

interface. The SCC usage model will evolve over time, but currently two platforms are

supported.

The first platform is the Linux platform. It runs a version of opensource Linux on each

core. You load your application on one or more cores and the program runs with operating

system support, much as you’d expect on a node in a cluster. The other platform is the

baremetal platform. Here the cores do not have an operating system. Your application runs

directly on the cores without any operating system support. At this stage in SCC’s lifetime,

the Linux platform described in Section 2 is the most mature.

Section 3 SCC Architecture and Performance Considerations defines some terminology used

when configuring and programming the SCC. It also discusses some performance

considerations. Key SCC features are a large address space and a large number of IA (Intel

Architecture) cores that support a message-passing programming model. A unique feature of

the SCC is its ability to adjust the voltage and frequency of the tiles, both at startup and

dynamically during operation. Refer to Section 5 Power Management.

With the current usage model, you connect a PC called the Management Console PC

(MCPC) to the system interface on the SCC platform. The MCPC runs a version of Ubuntu,

greater than 10.0. A typical MCPC has Ubuntu 10.04.3 LTS. Refer to Section 4 The

Management Console .

You then use Intel-provided software that runs on the MCPC to configure the SCC platform,

compile your application, and then load your application on the SCC cores. Your

application’s I/O is through the MCPC. Section 4 The Management Console also describes

the software that runs on the Management Console.

However, it is important to note that this is only an initial usage model. Intel Labs has

designed the SCC with flexibility and potential in mind. How you actually use the SCC

platform is determined by your own imagination and experience.

When you compile programs that run on the MCPC, you typically use gcc/g++. When you

compile for the SCC platform, you should use an older version of icc/icpc or gcc/g++. The

Intel compiler you need is an older version because the SCC cores are based on the P54C

architecture, the Pentium® architecture before the introduction of the streaming SIMD

extensions (SSE) and out-of-order execution.

This document assumes that you are an experienced parallel programmer. Most likely you

already have a parallel application that you are interested in porting to the SCC. Some of

the issues you may face when porting to the SCC platform are the lack of caching coherence

among the cores and the idiosyncrasies of the older P54C architecture.

This document also shows how to run some very simple “from-scratch” programs on the

SCC platform. These programs range from a simple “hello-world” to short programs that

January 27, 2012 Page 7 of 43 Intel Labs

read and write SCC configuration registers. Section 6 Some Simple SCC Programs describes

how to write, compile, and run such simple programs.

Intel also provides RCCE. RCCE (pronounced “rocky”) is a many-core communication

environment for SCC application programmers. With RCCE, you can write message-passing

application programs for either the Linux or baremetal platforms. The RCCE package also

contains a number of sample applications, ranging from simple (such as two cores just

exchanging messages) to complex (such as a subset of the NAS parallel benchmarks).

Section 8 Running RCCE Applications describes how to run some of these applications.

Section 7 Building RCCE describes how to build RCCE. You can build RCCE as an

emulator or as a library intended for SCC hardware. When you use RCCE as an emulator,

you can create RCCE applications that run on any standard Linux or Windows computer not

connected to the SCC platform. The RCCE emulator is built on top of OpenMP.

The RCCE library is useful and highly performing in and of itself, but Intel also provides the

complete source code for RCCE. You can look at how RCCE does what you want to do and

write your own versions.

Please make yourself a Bugzilla account on http://marcbug.scc-dc.com/bugzilla3/. If you

experience a usage issue with the SCC, you may find a solution in this Bugzilla database. In

addition, please enter bugs for new issues you may experience. The SCC support team

monitors this Bugzilla database very closely.

2 The Linux Platform
The MCPC contains an Intel-provided Linux image that runs on the SCC cores. You can

build and use your own Linux image modeled after the one that Intel provides.

SCC Linux has been designed to run on the SCC cores. It will evolve as the SCC platform

develops. For example, currently, I/O calls in a core program are redirected to a memory-

mapped interface, and the output then appears at the Management Console.

You run the sccGui to configure the SCC platform. Configuring means training the system

interface and the DDR3 memory on the SCC platform, setting values in SCC configuration

registers, and loading Linux on one or more cores.

You can also perform these configuration actions from a command line on the MCPC.

3 SCC Architecture and Performance Considerations
Each of the 24 tiles has two cores. Each core has L1 and L2 caches. Each core has a 16KB

LI instruction cache and a 16KB L1 data cache. The L1 caches are on the core. Each core

also has a 256KB L2 cache. The L2 caches are on the tile.

Each tile also has a message passing buffer (MPB). This message passing buffer is 16KB of

SRAM, local to the tile. This memory is shared among all the cores on the chip. Each tile

has its own local MPB. Conventionally, it assigns 8KB to one of its cores and 8KB to the

other. Although assigned to a particular core, the MPB is accessible to all cores. This

http://marcbug.scc-dc.com/bugzilla3/

January 27, 2012 Page 8 of 43 Intel Labs

convention is configurable. The total MPB for all the tiles is 384KB.

When a message-passing program sends a message from one core to another, internally it is

moving data from the L1 cache of the sending core to the MPB and then to the L1 cache of

the receiving core. The MPB allows L1 cache lines to move between cores without having

to use the off-chip memory.

The off-chip DRAM is accessed through four on-die memory controllers. This off-chip

DRAM is divided into memory private to each core and memory shared by all cores. The

maximum off-chip DRAM is 64GB. A core has a 32-bit address space and hence can address

4GB. A core accesses a 32-bit core address which must be translated into a system address.

Each core also has a lookup table (LUT). This LUT translates the core address into a system

address. A core also accesses its configuration registers via memory-mapped I/O, and the

LUT translates a core address into the addresses needed for memory-mapped I/O.

System memory is divided into memory private to a core and memory shared by all the

cores. Where this division occurs is determined by the core’s LUT and the core’s own

pagetables. When you load SCC Linux on the cores, the LUTs are filled with default values.

Refer to the SCC EAS for a listing of these default values. You can modify the values in the

LUT dynamically after loading SCC Linux.

Message-passing data are typed as message-passing buffer type (MPBT). Data typed as

MPBT bypass the L2 cache. If you write to data that are already resident in the cache, the

cache line may (if L1 is configured as write-through) or may not (if L1 is configured as

write-back) be moved to memory.

It is important to note that there is no cache coherence protocol among the cores. This means

that when a core reads MPBT data, it gets the values in the L1 cache even when the data are

stale. Cores may not get the latest MPBT data unless they invalidate the MPBDT data in

their own LI cache.

To solve this problem, the SCC has a new instruction called CL1INVMB. This instruction

invalidates all lines in the L1 cache that contain message buffer data, that is, data typed as

MPBT.

A mesh interface unit (MIU) on each tile catches a cache miss and then using the LUT to

decode the core address into a system address. If the data are typed MPBT, this is an L1

cache miss.

The LUT translates a 32-bit core address into a 46-bit system address. The most significant

bit (bit 45) of the system address is the bypass bit. Ignore the bypass bit; do not use it. There

is a hardware bug with the bypass bit that will not be fixed.

The next eight bits (bits 44 through 37) determine the tile, which might be the same tile

whose core is requesting access. The next three bits (bits 36 through 34) determine whether

the access is to a non-local MPB, a configuration register, a memory controller, or the

system interface. When the access is to off-chip DRAM, the lower 34 bits (bits 33 through

0) go to the memory controller on the specified tile. Each memory controller uses those 34

bits to address up to 16GB.

Messages employ XY routing. Messages go from the sending core to the receiving core first

along the X direction and then along the Y direction. When this rule is followed, note that

January 27, 2012 Page 9 of 43 Intel Labs

when a message goes back and forth between cores, the “back” path is different from the

“forth” path.

3.1 Latencies

Table 1 lists some approximate latencies experienced when a core reads a 32-byte cache

line. The table shows both core cycles and mesh cycles. A core and the mesh may run at the

same frequency, but because of the SCC’s power management capability, these frequencies

may also be different. It is even possible that individual cores may run at different

frequencies. In the table, core cycles refers to the cycles of the core making the request.

Latency Table Approximate latency to read a cache line

(output from the core to input back to core)

L2 access 18 core cycles

Local MPB access

with bypass

15 core cycles

Local MPB access

no bypass

45 core cycles + 8 mesh cycles

Remote MPB

access

45 core cycles + 4*n*2 mesh cycles

DDR3 access 40 core cycles + 4*n*2 mesh cycles + 30 on-die

memory controller (400MHz)+ 16 cycles(400MHz

off-die DDR3 latency)

 n=number of hops to the MPB or the memory

controller (0<n<10)

Table 1: Core Latency Table

3.2 processorID, tileID, and coreID

There are three IDs associated with a core: the processorID, the tileID, and the coreID. In

Table 2, the number in the lower left of each tile is the tileID. The (x,y) coordinates are in

the lower right.

You can get this information by reading the TileID register. The lower 11 bits of this register

are valid. Bits 10:07 contain the Y value; bits 05:03 contain the X value. Bits 02:00 contain

the subID of the requesting agent. If the requesting agent is a core, its subID is the coreID.

If instead of running a program on the core to access the TileID register, you are using the

sccGui, the coreID is always 101b. When you are using the sccGui, the requesting agent is

the system interface whose subID is 101b.

Note that a core’s tileID is not the same as the value of a core’s TileID register. The tileID is

an 8-bit value; the TileID register has 11 valid bits.

January 27, 2012 Page 10 of 43 Intel Labs

Because a core’s tileID is an 8-bit hex value, it is not continuous. Its value is just the upper

eight bits of the TileID register. If you have a core’s (x,y) coordinates, get the tileID as 0xyx.

Numerically, this is tileID = 16*y + x.

Calculate the processorID as ((x + (6 * y)) * 2) + coreID. The processorID goes from 0

through 47.

37

36

0x30 (0,3)

39

38

0x31 (1,3)

41

40

0x32 (2,3)

43

42

0x33 (3,3)

45

44

0x34 (4,3)

47

46

0x35 (5,3)

25

24

0x20 (0,2)

27

26

0x21 (1,2)

29

28

0x22 (2,2)

31

30

0x23 (3,2)

33

32

0x24 (4,2)

35

34

0x25 (5,2)

13

12

0x10 (0,1)

15

14

0x11 (1,1)

17

16

0x12 (2,1)

19

18

0x13 (3,1)

21

20

0x14 (4,1)

23

22

0x15 (5,1)

1

0

0x00 (0,0)

3

2

0x01 (1,0)

5

4

0x02 (2,0)

7

6

0x03 (3,0)

9

8

0x04 (4,0)

11

10

0x05 (5,0)
Table 2 The SCC Mesh Showing tileIDs, processorIDs, and (x,y) Coordinates.

The tileID is best shown as an 8-bit hex value, with the core’s y-coordinate

in the upper four bits and the core’s x-coordinate n the lower four bits; this

convention means that the tileID is not numerically continuous.

4 The Management Console
The Management Console is a PC that communicates with the SCC platform over a PCIe

bus. The PCIe bus connects to a System FPGA interface on the SCC board which connects

to a System Interface on the SCC itself. Users typically VNC into the Management Console

from their own workstation.

The management console (MCPC) runs Ubuntu Linux. Currently, most MCPCs are running

Ubuntu 10.04.3 LTS.

You should ensure that your MCPC has pssh and Python. You can use pssh to load

programs on the cores or execute commands on the cores. The script rccerun that loads

RCCE applications on the cores uses pssh internally.

4.1 How to Get Copies of the Latest MCPC Tools

The public SVN repository is located at http://marcbug.scc-dc.com/svn/repository/. This

repository has anonymous read.

Click on tarballs. A list of available MCPC tools appear as compressed tar files as shown

in Figure 1. The file list you see may be different as files are added or removed. Currently,

the latest version of sccKit is 1.4.1.3. Click on a file to download it.

http://marcbug.scc-dc.com/svn/repository/

January 27, 2012 Page 11 of 43 Intel Labs

Figure 1: Available MCPC Tools

Some source code is also available. Instead of tarballs, click on trunk or tags. The tags

directory contains snapshots of the trunk labeled with a specific release number. The trunk

contains the very latest code, which in most cases is equal to the latest tag.

4.2 Installing sccKit

The very latest instructions on how to install sccKit are on the Marc coummunity site in the

subcommunity called Your MCPC http://communities.intel.com/community/marc/yourmcpc

in the How To section. Click on the Documents tab or click on the name of the document in

the How To pane. This section gives an overview of the installation. Please look at the

website for complete instructions.You need to have root access to be able to install sccKit.

The sccKit is distributed as two tar files: sccKit_base.tar.bz2 and

sccKit_1.4.1.3.tar.bz2. As of September 5, 2011, sccKit 1.4.1.3 is the latest version.

 sccKit_base.tar.bz2 contains the basic sccKit components and will change

infrequently. It also contains the Qt libraries that sccKit needs. If you install the Qt

SDK, you don’t need the libraries from this tar file because you already have them.

 sccKit_1.4.1.3.tar.bz2 contains the actual sccKit release.

http://communities.intel.com/community/marc/yourmcpc

January 27, 2012 Page 12 of 43 Intel Labs

The MCPC has a driver called crbif that implements communication with the SCC. The

crb stands for Copperridge Board. The SCC chip curently resides on the RockyLake board;

the Copperridge board is an older version. The crbifdriver has two components:

 The PCIe interface to the sccKit software components (for example, the sccGui and

sccKit commands)

 The Ethernet device that communicates with the SCC core (Ethernet over PCIe or

Ethernet over eMAC).

 Prior to sccKit 1.4.0, only the PCIe connection and Ethernet over PCIe were supported.

Beginning with 1.4.0, sccKit supported the eMAC connection. Figure 2 shows back of the

SCC unit with the PCIe and Ethernet connections.

There are four eMAC connections, labeled left to right as ABCD. You cannot enable all four.

You can enable AB or CD. Not all SCC units have four functional eMAC connections. Most

SCC installations enable only one eMAC connection. Some SCC units only have one

functional eMAC connection. The Ethernet cable in Figure 2 is connected to eMAC D.

When you install sccKit 1.4.x, you need to add a Gigibit switch to the installation. Figure 3

illustrates how the SCC and the MCPC are connected. The IP addresses in the figure are just

examples. The figure shows two Ethernet cables coming from the SCC chassis. The MCPC also

has two Ethernet cables and two NICs. The eth0 cable connects to the Internet, most likely

through your own router and firewall. The eth1 cable connects to the BMC. Typically, users

configure eth1 to have a virtual ethernet connection eth1:1 as well. This allows the BMC and

the MCPC to be on the same subnet so that you can telnet into the BMC from the MCPC.

.

Figure 2: The Back of the SCC Unit, Showing the PCIe and eMAC Connections

January 27, 2012 Page 13 of 43 Intel Labs

Figure 3: An SCC/RockyLake System Showing the Connection for the Ethernet Cables and the PCIe cable

sccKit 1.4.0, however, experienced a bug related to eMAC, http://marcbug.scc-

dc.com/bugzilla3/show_bug.cgi?id=264 . SCC cores would lose connectivity, then regain it,

then lose it again. The system remained functional if eMAC was disabled. This bug was

fixed in sccKit 1.4.1, but this release turned out to be unstable.

You should run at least sccKit 1.4.1.2. This release is 1.4.1 with patches 1 and 2,

sequentially applied; patch 2 does not contain patch 1, and pathc1 must be applied before

patch 2. Patch 3 corrects a production test program that does not affect user operation.

 sccKit 1.4.1.3 does have some outstanding bugs. Beta fixes exist and will either be

incorporated into a patch 4 or a new release.

 sccWrite See http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=304

 sccGui does not update the clock configuration register (although the reigster’s is

actually changed). See http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=271

Even when the CPU frequency is changed, SCC Linux still reports 800 MHz. Consequently

SCC Linux system calls return the wrong value. This is also part of http://marcbug.scc-

dc.com/bugzilla3/show_bug.cgi?id=271

Check that the file systemSettings.ini in sccKit’s top-level directory contains the correct

IP address of the SCC BMC. This address is printed on the top of the BMC. The port is

always 5010. You can telnet to the BMC as follows. Use your own BMC IP address.

telnet 172.28.248.241 5010

To access the sccKit binaries, put /opt/sccKit/current/bin in your path. You also need

to set the environment variable LD_LIBRARY_PATH to /opt/sccKit/lib so that you can

access the shared Qt libraries. The script setup in sccKit’s top-level directory sets your path

and LD_LIBRARY_PATH for either the bash or tcsh shells.

sccKit also contains an integrated production test. You need to be root to run this command.

You need to have patch 3 installed. If you are using the SCC through the Intel Labs data

center, do not run the test. Data center managers have that responsibility. You can choose to

run the test on a local MCPC, when you install a new SCC board and after you run

install.sh successfully.

sccProductionTest

http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=264
http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=264
http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=304
http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=271
http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=271
http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=271

January 27, 2012 Page 14 of 43 Intel Labs

4.3 Using sccKit

The sccKit has both a GUI and a command line. The capabilities of the sccGui overlap

significantly but not completely with those available from the command-line.

For example, you can re-initialize the SCC platform by issuing the command, sccBMC –i.

You can also bring up sccGui, click on the BMC tab, and choose (Re-)initialize platform.

To invoke the SCC GUI, issue the command, sccGui&. Figure 4 shows the initial SCC GUI

screen.

Figure 4: The SCC GUI

Table 3 lists the SCC functions available from the command line. Each command has online

help. Issue the command with the –h option to get help information.

SccKit Command Description

sccBMC Initialize the SCC platform. Send commands to the BMC.

sccBoot Boot Linux on one or more cores.

sccCmdline Patch either the merged ore pre-merged linux image with

command-line parameters.

sccDisplay Start a virtual display with one tab per available core. Needs

desktop (even for –h).

sccDump Specify a tileID as in yx format and read memory or

memory-mapped registers from that tile.

sccKonsole Start up a Konsole on one or more cores. Needs a desktop.

sccMerge Creates a merged obj file, for each memory controller.

sccReset Reset one or more cores. You can reset/release, reset, or

release one or more cores.

sccPerf Display the SCC performance meter. Needs a desktop.

sccPowercyle Performs a hard SCC power cycle. Load a new FPGA

bitstream

sccWrite Writes memory content (or memory-mapped registers) to the

SCC.

Table 3 sccKit Commands

January 27, 2012 Page 15 of 43 Intel Labs

You can bring up SCC Linux on the cores with either sccGui or the command line. To load

SCC Linux with the SCC GUI, click on the blue Boot Linux button. Another window comes

up that allows you to choose the cores on which you want to load SCC Linux. The default

location of the SCC Linux image is /opt/sccKit/current/resources. You can change

this default location by selecting SettingsLinux boot settingsChoose Linux image, as

shown in Figure 5.

Figure 5: Changing the SCC Location with SCC GUI

When the SCC Linux boot is successful, the blue Boot Linux button changes to a green

Linux okay button.

You can also boot SCC Linux from the command line with sccBoot. Without arguments,

you just get the help message. Boot SCC Linux with the –l option. Use the –g option to

specify a custom obj directory. For example, the command below loads mylinux.obj on

cores 0 through 7.

sccBoot –l 0..7 /home/username/mylinux.obj

With the –s option, you can check that the cores have successfully booted.

username@mrllab1002:~$ sccBoot -s

INFO: Welcome to sccBoot 1.1.0 (build date Apr 29 2010)...

Status: The following cores can be reached with ping (booted): 8 cores

(PIDs = 0x00, 0x01, 0x02, 0x03, 0x0c, 0x0d, 0x0e and 0x0f)...

username@mrllab1002:~$

You can also ping the SCC cores. The cores are called rckpid where pid is the core’s pid and

goes from 0 to 47. The pid here is the same as the processorID shown in Table 2.

username@mrllab1002:~$ ping rck01

PING rck01.in.rck.net (192.168.0.2) 56(84) bytes of data.

64 bytes from rck01.in.rck.net (192.168.0.2): icmp_seq=1 ttl=64

time=0.240 ms

With sccGui, you can look at the performance meter. Bring up the performance meter by

selecting WidgetsSCC Performance Meter as shown in Figure 6. You can also start up the

SCC performance meter from the command line with sccPerf. Note, however, that sccPerf

must connect to an X server. You cannot run it from an ssh window; either work directly on

the MCPC or VNC into the MCPC (the more common method).

January 27, 2012 Page 16 of 43 Intel Labs

Figure 6: Selecting the SCC Performance Meter

You can tell that SCC Linux is running on a core if the core has a green arrow. Figure 7

shows the SCC performance meter with eight green arrows because SCC Linux is running

on eight cores in the lower left 2x2 tile array.

Figure 7: The SCC Performance Meter

When you click on the green Linux okay button, you can restart SCC Linux on the cores

currently running SCC Linux. The “Boot Linux on selected cores …” window comes up

with the cores currently running SCC Linux selected.

username@marc101:~$ sccBoot -s

INFO: Welcome to sccBoot 1.4.1 (build date Jul 4 2011 - 16:14:13)...

Status: The following cores can be reached with ping (booted): 8 cores

(PIDs = 0x00, 0x01, 0x02, 0x03, 0x0c, 0x0d, 0x0e and 0x0f)...

You can choose at this point to reboot the cores that are running SCC Linux or to add

additional cores.

If you deselect the cores in the lower left 2x2 array and select those in its adjacent 2x2 array,

you boot SCC Linux on eight more cores. SCC Linux continues to run on the original eight

January 27, 2012 Page 17 of 43 Intel Labs

cores, and so now you have SCC Linux running on 16 cores.

username@marc101:~$ sccBoot -s

INFO: Welcome to sccBoot 1.4.1 (build date Jul 4 2011 - 16:14:13)...

Status: The following cores can be reached with ping (booted): 16

cores (PIDs = 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x0c,

0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12 and 0x13)...

Note that booting on additional cores does not affect the cores that already have SCC Linux

running. To stop SCC Linux from running on a core, reset that core. To do that, select

ToolsSystem reset as shown in Figure 8 . By default, you reset all the cores. Select cores

to reset with ToolsChange selected reset(s).

Figure 8 Selecting System Reset

With the command line, you can choose to reset individual cores. You can see what cores are

in reset with the –s option. For example, the command below shows 32 cores in reset. This

is because we have SCC Linux running on the two 2x2 arrays in the lower row; SCC Linux

is running on 16 cores, leaving 32 in reset.

username@marc101:~$ sccReset -s

INFO: Welcome to sccBoot 1.4.1 (build date Jul 4 2011 - 16:14:13)...

Status: The following resets are active (pulled): 32 cores (PIDs =

0x08, 0x09, 0x0a, 0x0b, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a,

0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,

0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e and 0x2f)...

For example, you can choose ToolsChange selected reset(s). You will see all the cores

selected except for those that have Linux running. You can then select cores 0..3 and click

Okay. Note that now four more cores are in reset.

username@marc101:~$ sccReset -s

INFO: Welcome to sccBoot 1.4.1 (build date Jul 4 2011 - 16:14:13)...

Status: The following resets are active (pulled): 36 cores (PIDs =

0x00, 0x01, 0x02, 0x03, 0x08, 0x09, 0x0a, 0x0b, 0x14, 0x15, 0x16,

0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21,

0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c,

0x2d, 0x2e and 0x2f)...

You can also use the command line. The –p resets the core and holds the reset. The pid

numbers can be in decimal or hex, but when in hex, they should be preceded with 0x.

January 27, 2012 Page 18 of 43 Intel Labs

username@marc101:~$ sccReset -p 0xc..0xf

INFO: Welcome to sccBoot 1.4.1 (build date Jul 4 2011 - 16:14:13)...

INFO: Resets have been pulled: 4 cores (PIDs = 0x0c, 0x0d, 0x0e and

0x0f)...

username@marc101:~$ sccReset -s

INFO: Welcome to sccReset 1.3.0 (build date Aug 25 2010 - 15:55:54)...

Status: The following resets are active (pulled): 40 cores (PIDs =

0x00, 0x01, 0x02, 0x03, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e,

0x0f, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d,

0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28,

0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e and 0x2f)...

We now have put 8 cores into reset and have Linux running on 8 cores.

The sccReset command also gives you the option of releasing the reset with the –r option.

Releasing the reset will not reboot Linux.

The example below releases the reset on cores 0 though 3. Note that we have 36 cores in

reset. Linux is running on 8 cores. We released reset on 4 cores, but have not rebooted Linux

on those cores..

username@marc101:~$ sccReset -r 0..3

INFO: Welcome to sccBoot 1.4.1 (build date Jul 4 2011 - 16:14:13)...

INFO: Resets have been released: 4 cores (PIDs = 0x00, 0x01, 0x02 and

0x03)...

username@marc101:~$ sccReset -s

INFO: Welcome to sccBoot 1.4.1 (build date Jul 4 2011 - 16:14:13)...

Status: The following resets are active (pulled): 36 cores (PIDs =

0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x14, 0x15, 0x16,

0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21,

0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c,

0x2d, 0x2e and 0x2f)...

What does it mean to release reset on a core? It means that the core starts running. Letting

the core run is different than starting Linux. The sccReset –r started the boot process on a

“used” version of Linux with unknown results. However, the command turns out to be

useful for baremetal applications and for applications using mixed operating systems. You

would use it in combination with the sccGui entry ToolsPreload object file.

If you are thinking of investigating mixed operating systems, please look at

http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=254 .

With sccKonsole, you can open up an ssh connection to one or more cores. To start a

console on cores whose pids are 0,1,2,3, issue

sccKonsole 0..3

Each tabbed konsole is a separate connection. If you want input from one konsole to be

recognized by another, select EditCopy Input ToAll Tabs in Current Window. Figure 9

shows the four tabbed windows created with sccKonsole 0..3. The konsole rck01 was

configured to send its input to all konsoles; that’s why the red !. The konsole rck01 is

selected and shows an ls –a command that was issued in rck01.

http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=254

January 27, 2012 Page 19 of 43 Intel Labs

Figure 9: Result of sccKonsole 0..3

You can also create tabbed konsoles with sccGui. Bring up tabbed konsoles by selecting

WidgetsStart konsole (one tab per booted core) as shown in Figure 6. With the SCC GUI,

you always create one tab per booted core. Use the command line if you want to select what

cores get a konsole. As with sccPerf, sccKonsole requires connection to an X server.

The command sccDump is useful when debugging. With sccDump you can read memory (off-

chip DRAM), the message-passing buffer, the configuration registers, and the lookup tables.

It corresponds to the memory reader widget in sccGui. Select the memory reader widget

with WidgetsMemory reader widget as shown in Figure 6.

For example, to display the configuration registers and lookup tables for the tile in the upper

left corner and save the output to a file called sccDump_c_0x31.txt, enter

sccDump –c 0x30

sccDump identifies the tile with its tileID. Recall that the tileID is an 8-bit number with the y

coordinate in the upper four bits and the x coordinate in the lower four bits; the tileID is not

continuous over the mesh. Instead of 0x30, you could have specified the decimal number 38.

The output of sccDump looks as follows:

INFO: Packet tracing is disabled...

INFO: Initializing System Interface (SCEMI setup)....

INFO: Successfully connected to PCIe driver...

INFO: Welcome to sccDump 1.4.1 (build date Jun 28 2011 - 16:02:28)...

===

Dumping CRB registers of Tile 0x30

===

GLCFG0 = 0x00348df8

GLCFG1 = 0x00348df8

L2CFG0 = 0x000006cf

L2CFG1 = 0x000006cf

SENSOR = 0x00000000

GCBCFG = 0x00a8e2f0

MYTILEID = 0x00000185

LOCK0 = 0x00000001

LOCK1 = 0x00000001

Restoring locks: LOCK0 and LOCK1

===

Dumping LUTs of Tile 0x30

Format: Bypass(bin)_Route(hex)_subDestId(dec)_AddrDomain(hex)

January 27, 2012 Page 20 of 43 Intel Labs

===

LUT0, Entry 0x00 (CRB addr = 0x0800): 0_0x20_6(PERIW)_0x078

LUT0, Entry 0x01 (CRB addr = 0x0808): 0_0x20_6(PERIW)_0x079

LUT0, Entry 0x02 (CRB addr = 0x0810): 0_0x20_6(PERIW)_0x07a

LUT0, Entry 0x03 (CRB addr = 0x0818): 0_0x20_6(PERIW)_0x07b

LUT0, Entry 0x04 (CRB addr = 0x0820): 0_0x20_6(PERIW)_0x07c

LUT0, Entry 0x05 (CRB addr = 0x0828): 0_0x20_6(PERIW)_0x07d

LUT0, Entry 0x06 (CRB addr = 0x0830): 0_0x20_6(PERIW)_0x07e

LUT0, Entry 0x07 (CRB addr = 0x0838): 0_0x20_6(PERIW)_0x07f

LUT0, Entry 0x08 (CRB addr = 0x0840): 0_0x20_6(PERIW)_0x080

LUT0, Entry 0x09 (CRB addr = 0x0848): 0_0x20_6(PERIW)_0x081

LUT0, Entry 0x0a (CRB addr = 0x0850): 0_0x20_6(PERIW)_0x082

LUT0, Entry 0x0b (CRB addr = 0x0858): 0_0x20_6(PERIW)_0x083

LUT0, Entry 0x0c (CRB addr = 0x0860): 0_0x20_6(PERIW)_0x084

LUT0, Entry 0x0d (CRB addr = 0x0868): 0_0x20_6(PERIW)_0x085

LUT0, Entry 0x0e (CRB addr = 0x0870): 0_0x20_6(PERIW)_0x086

LUT0, Entry 0x0f (CRB addr = 0x0878): 0_0x20_6(PERIW)_0x087

LUT0, Entry 0x10 (CRB addr = 0x0880): 0_0x20_6(PERIW)_0x088

LUT0, Entry 0x11 (CRB addr = 0x0888): 0_0x20_6(PERIW)_0x089

LUT0, Entry 0x12 (CRB addr = 0x0890): 0_0x20_6(PERIW)_0x08a

LUT0, Entry 0x13 (CRB addr = 0x0898): 0_0x20_6(PERIW)_0x08b

LUT0, Entry 0x14 (CRB addr = 0x08a0): 0_0x64_1(CORE1)_0x141

:

:

LUT0, Entry 0xfe (CRB addr = 0x0ff0): 1_0x88_0(CORE0)_0x0a4

LUT0, Entry 0xff (CRB addr = 0x0ff8): 0_0x20_6(PERIW)_0x0fa

LUT1, Entry 0x00 (CRB addr = 0x1000): 0_0x20_6(PERIW)_0x08c

LUT1, Entry 0x01 (CRB addr = 0x1008): 0_0x20_6(PERIW)_0x08d

These are the LUT values for tile 0x30. The tile numbers are in 0xYX format, so this is the

tile in the upper left corner. The LUT values for memory are shown with four fields: for

example, 0_0x20_6(PERIW)_0x078. The first field is always zero (the bypass bit); the

second field identifies the location of the memory controller used by the core (the memory

controllers are at 0x00, 0x20, 0x05, and 0x50); the third field identifies the direction of the

memory controller (6 for West and 4 for East); the fourth field contains the 10 bits

prepended to the address. Please refer to the EAS for details,

sccMerge reads a configuration mt file (for example, linux.mt) and creates merged objects,

one for each memory controller. For a discussion about how to use sccMerge and an

example, refer to How to Map Cores to Memory Controllers

4.4 MCPC Tools

In addition to the sccKit, MCPC tools consist of C and Fortran cross compilers, a version of

the Math Kernel Library (MKL), and an .ssh2 directory.

You can use any C compiler you want for programs intended to run on the MCPC. Typical C

compilers are gcc/g++ and the latest version of Intel’s icc/icpc. The RCCE emulation

library builds and runs with either compiler.

The C and Fortran cross compilers are older versions of Intel’s compilers that work on the

P54C architecture. The P54C architecture is the Pentium architecture before the introduction

of streaming SIMD instructions and out-of-order execution. The MKL is also an older

version for use on the P54C architecture.

http://communities.intel.com/docs/DOC-5852
http://communities.intel.com/servlet/JiveServlet/previewBody/18922-102-1-22074/HowtoMapCorestoMemoryControllers.pdf

January 27, 2012 Page 21 of 43 Intel Labs

 If you are building an application to run on the cores themselves, you must use the Intel-

provided cross compilers. Table 4 lists the versions that work with the SCC platform.

Cross Compiler/Library Version

gcc/g++ 3.4.5

icc/icpc 8.1.038

ifort 8.1.034

mkl 8.1.1.004

Table 4: Cross Compiler and Library Versions that Run on the SCC Cores

Ensure that you have an acceptable .ssh2 directory. SCC applications run on the cores as

root, and the .ssh2 directory lets that happen.

The sccKit consists of the sccGUI and some command line utilities. With the sccGui, you

can perform such actions as booting Linux on one or more cores, reading memory, and

reading/writing configuration registers.

4.5 Installing MCPC Tools

If you are using one of the MCPCs in the Intel Labs data center, the compilers and other

tools are already installed.

If you have your own MCPC and SCC unit, please refer to the Marc Community site for

instructions How Set up the Licensed Intel Compiler .

5 Power Management
The SCC platform contains a voltage regulator controller (VRC) that allows you to

independently change the voltage of an eight-core voltage island. You can also change the

frequency of individual cores. You can do this dynamically from within a program running

on the cores.

When you initialize the SCC platform, you can choose the initial frequency settings. Do this

by selecting the re-initialize button. Refer to Figure 10. The re-initialize button is the black-

and-yellow button that looks like a radiation hazard warning.

Figure 10: Initialize the SCC Platform

http://communities.intel.com/docs/DOC-5522

January 27, 2012 Page 22 of 43 Intel Labs

When you click the re-initialize button, you get the screen in Figure 11. With the dropdown

box, you can choose from among the following five settings. The numbers refer to clock

frequencies measured in MHz. Core is the frequency of the core; router is the frequency of

the mesh; and MC is the frequency of the memory. The default is

Tile533_Mesh800_DDR800. It specifies that the cores run at 533MHz and that the mesh and

the memory run at 800MHz. The voltage for all settings is nominally 1.1v. Choose

Tile533_Mesh800_DDR800 for normal operation.

Tile533_Mesh800_DDR800 (Default)

Tile800_Mesh1600_DDR1066

Tile800_Mesh1600_DDR800

Tile800_Mesh800_DDR1066

Tile800_Mesh800_DDR800

To see the actual voltages for the power domains, you can telnet into the BMC from the

MCPC, specifying port 5010. Then, issue the status command.

Console. From a prompt on the Management Console, type the command

telnet <BMC IP address> 5010

The BMC IP address is assigned to the platform when you receive it. The default value is

192.168.2.127. It’s most likely written on a sticker attached to the BMC.If this is a Data

Center system, we changed this value. The BMC IP address is shown in

/opt/sccKit/systemSettings.ini. For information about how to change the BMC IP

address, refer to http://communities.intel.com/docs/DOC-5592 .

Figure 11: Choosing a Voltage/Frequency Setting

The default is Tile533_Mesh800_DDR800, and this is the recommended setting. The other

possibilities, shown in the dropdown box, are Tile533_Mesh1600_DDR1066,

Tile800_Mesh1600_DDR800, Tile800_Mesh800_DDR800, and Tile800_Mesh800_DDR800.

The goal is, of course, to improve performance while minimizing power and not killing the

chip. Running the cores at a frequency that is too high for the existing voltage may cause the

system to crash.

Dynamic power is proportional to frequency * voltage squared. Here are some guidelines.

http://communities.intel.com/docs/DOC-5592

January 27, 2012 Page 23 of 43 Intel Labs

 If your program is computation CPU bound, its performance is proportional to the

frequency.

 Only reduce the frequency for programs that are not computation bound; that is,

programs that are accessing I/O or memory.

 Try to minimize both frequency and voltage. If you cannot, minimize the frequency.

 Remember to take into account the latency when changing the voltage. This latency

is on the order of milliseconds. The latency for changing the frequency is much

smaller, about 20 cycles.

SCC cores are divided into seven voltage domains. Six of those are 2x2 arrays of tiles, as

shown in Figure 12. The seventh is the entire mesh. Currently, the RCCE API does not

provide the ability to access the “entire-mesh” domain. When you change the voltage, you

choose a voltage domain and change the voltage for all the cores in that domain.

The SCC has 24 frequency domains, one for each core. You can change the frequency of

each individual core. However, the power management calls in the RCCE API do not

currently support the control of all frequency domains independently. Instead, RCCE only

allows stepping of the frequency on the cores within a voltage domain. Effectively for

RCCE, frequency and voltage domains coincide and are jointly called power domains.

Figure 12: Voltage and Frequency Domains

One usage possibility is initially to set up areas of voltage and frequency values and then

move tasks to the area where it has the best performance while minimizing power

consumption. Because tasks share no state, they can easily be mapped to different cores.

You can control the voltage of a voltage domain by writing the VRC control register. You

can change the frequency by writing the GCU (Global Clock Unit) register. The best way,

however, is to use the power management API that RCCE provides. See Section 8.7 Power

Management for information about using the RCCE power management functions.

January 27, 2012 Page 24 of 43 Intel Labs

6 Some Simple SCC Programs
This section shows how to run some simple C programs on the SCC platform. These

programs are not RCCE programs, so you should not load them with the rccerun script that

comes with RCCE. rccerun makes some assumptions that do not hold for arbitrary SCC

programs. Rather you should use pssh (the parallel ssh). You can use Ubuntu’s Synaptic

Package Manager to install pssh. Note that the pssh executable is then called parallel-ssh,

and you must create a link called pssh. RCCE expects the executable to be called pssh.

This section shows two examples. The first is just a “hello world.” Its purpose is to show

how you would create the pssh hosts file and then compile and load the application. The

second example is also very simple, but more realistic. It shows how you would read and

write a core configuration register.

6.1 Hello World

This example assumes that you’ve loaded SCC Linux on at least two cores, namely cores 00

and 01.

Make a pssh hosts file. Name it anything you want. The format must be as follows

rck00 root

rck01 root

rck02 root

rck03 root

rck04 root

rck05 root

 :

Each line has two fields. The first identifies the core as rckprocessorID, and the second

identifies the user on the cores. The user is always root.

The code is in the file SCChello.c. It just includes stdio.h and has a main() that calls

printf(). Compile it as follows.

 icc -DSCC -static -mcpu=pentium -gcc-version=340 helloSCC.c

The macro SCC specifies that you are compiling for SCC hardware. The switch

–mcpu=pentium indicates that you are compiling for the P54C architecture. For this reason,

you must also use an older version of icc (8.1.038).

YourUsername@YourComputer:/shared/YourUsername> which icc

/shared/icc-8.1.038/bin/icc

YourUsername@YourComputer:/shared/YourUsername>

icc/icpc does require that you have gcc/g++ installed. The version of icc/icpc that you

need for SCC is validated for gcc 3.4.0. You can try a later version of gcc. The MCPC that

this example ran on has gcc 4.1.2; but the icc/icpc 8.1 validation stopped at gcc 3.4.0. You

must use the switch –gcc-version=340 to ensure that icc/icpc does not use any gcc

features beyond 3.4.0.

Copy the resulting a.out to the /shared directory on the MCPC. Typically, users create a

subdirectory under /shared and name it with their username. Then, use pssh to load a.out

January 27, 2012 Page 25 of 43 Intel Labs

on SCC cores.

You must put your executable under /shared for it to be recognized by the cores. The

directory /shared is mounted on the cores. In addition, it’s best to let the RCCE configure

script create your directory under /shared for you. It puts some scripts and files in there that

you will find useful later.

The RCCE configure script is part of the RCCE download. The RCCE download is stored in

the trunk of our public SVN at http://marcbug.scc-dc.com/svn/repository/trunk/rcce/ . To

download RCCE and run configure, issue the following commands. The directory name

sandbox is arbitrary.

cd

mkdir sandbox

svn co http://marcbug.scc-dc.com/svn/repository/trunk/rcce/

cd rcce

./configure SCC_LINUX

How many cores you load the program on depends on the pssh hosts file and the pssh –p

switch. In this example the pssh hosts file (called pssh.hosts) has only two lines

rck00 root

rck01 root

The –p switch specifies the number of threads. The pssh command runs one thread per core.

So with two lines in the pssh hosts file, you see “hello” printed by each core.

If the pssh hosts file had four entries, you would see “hello” printed four times, but the

programs would run first on two cores and, when the first two cores complete, the program

then runs on the next two cores in the list. This is different from –p 4 because then the

program would run on four cores at once.

The switch –p actually specifies the maximum number of threads. So, if your pssh hosts file

has two lines and you enter –p 4, the program would still load and run, but run on only two

cores.

YourUsername@YourComputer:/shared/YourUsername> pssh -h pssh.hosts -t

-1 -P -p 2 /shared/YourUsername/a.out

rck00: hello

rck00: [1] 08:43:43 [SUCCESS] rck00 22

rck01: hello

rck01: [2] 08:43:43 [SUCCESS] rck01 22

YourUsername@YourComputer:/shared/YourUsername>

Note that the pssh command line specifies the full pathname for a.out, even though a.out

is in the working directory. If you don’t specify the full pathname, you get an error.

YourUsername@YourComputer:/shared/YourUsername> pssh -h pssh.hosts -t

-1 -P -p 2 a.out

rck00: sh: rck01: sh: rck00: rck00: a.out: not found

rck01: a.out: not found

rck01: [1] 08:46:51 [FAILURE] rck00 22 Received error code of 127

[2] 08:46:51 [FAILURE] rck01 22 Received error code of 127

YourUsername@YourComputer:/shared/YourUsername>

http://marcbug.scc-dc.com/svn/repository/trunk/rcce/

January 27, 2012 Page 26 of 43 Intel Labs

The –t switch specifies the timeout in seconds, and -1 means it never times out. The –P

switch specifies that the program prints output as it is received.

6.2 Reading and Writing Core Configuration Registers

This example shows how a core program can access core configuration registers. It can

access its own configuration registers as well as those of other cores using memory-mapped

I/O. The core program performs memory-mapped I/O in the standard Linux way using the

mmap() function. A good reference for how to perform memory-mapped I/O is Advanced

Programming in the Unix Environment by W. Richard Stevens and Stephen A. Rago.

The configuration registers for each tile are given a base address in the core’s LUT. The

RCCE header file config.h defines macros for these base addresses. Realize, however, that

these are the base addresses that result from the default LUT configuration. Note that there is

a special address that a core can use to identify its own base address.

The base address for the configuration registers for the tile at (x=0, y=0) is 0xe0000000. The

configuration registers for each tile are offset by 0x01000000 from 0xe0000000 as you

travel along the x axis. Following this convention, the base address for the tile at (x=1, y=0)

is 0xe1000000, that for the tile at (x=2, y=0) is 0xe2000000, etc. The tile after (x=5, y=0) is

(x=0, y=1), etc. Continuing with this method, the base address for the final tile at (x=5, y=3)

is 0xf7000000. Table 5.shows the base addresses for the configuration registers for the SCC

tiles.

Base Address Tile (x,y)

F8000000 Base address for Calling Core

F7000000 System Configuration Registers -- Tile (x=5,y=3)

F6000000 System Configuration Registers -- Tile (x=4,y=3)

: :

E2000000 System Configuration Register s-- Tile (x=2,y=0)

E1000000 System Configuration Registers -- Tile (x=1,y=0)

E0000000 System Configuration Register s-- Tile (x=0,y=0)

Table 5 Base Addresses for Core Configuration Registers

The base address 0xf8000000 is the special one. When a core specifies this base address, it

specifies its own base address. A core can reference its own base address in this way to read

its own TileID register and obtain its own (x,y) coordinates, tileID, coreID, and processorID.

Appendix contains a sample code listing that a core can use to read its TileID register. The

The key points of that program are shown below. For the file descriptor of the file to be

mapped, use the device /dev/rckncm. Open the device /dev/rckncm and get its file

descriptor.. Call mmap() and specify this file descriptor and map a page. Dereference the

returned pointer to get the value of the TileID register.

typedef volatile unsigned char* t_vcharp;

int tileID;

unsigned int alignedAddr, pageOffset;

t_vcharp MappedAddr;

 :

if ((NCMDeviceFD=open("/dev/rckncm", O_RDWR|O_SYNC))<0) {

 perror("open"); exit(-1);

}

January 27, 2012 Page 27 of 43 Intel Labs

alignedAddr = 0xf8000000;

pageOffset = 0x100;

MappedAddr = (t_vcharp) mmap(NULL, PAGE_SIZE, PROT_WRITE|PROT_READ,

 MAP_SHARED, NCMDeviceFD, alignedAddr);

if (MappedAddr == MAP_FAILED) {

 perror("mmap"); exit(-1);

}

tileID = *(int*)(MappedAddr+pageOffset);

 :

Compile with icc. Then copy the resulting executable to /share/YourUsername.

icc -DSCC -static -mcpu=pentium -gcc-version=340 readTileID.c

As with the “hello-world” example, the file pssh.hosts determines what processors the

program runs on. For this example, pssh.hosts looks as follows.

rck10 root

rck11 root

This file causes the program to run on processors 10 and 11. Run the program with the pssh

command.

YourUsername@YourComputer:/shared/YourUsername> pssh -h pssh.hosts -t

-1 -P -p 2 a.out

The output called tileID prints first in hexadecimal and then in decimal.

rck11: tileID = 29 41

rck11: [1] 17:33:16 [SUCCESS] rck11 22

rck10: tileID = 28 40

rck10: [2] 17:33:16 [SUCCESS] rck10 22

From the tileID that is returned you can obtain the tile’s (x,y) coordinates and the core’s

coreID by shifting and masking. Then, the core’s tileID is 16*y + x. Its processorID is

(x+(6*y))*2 + coreID.

The (x,y) coordinates for this example are (5,0). The TileID register has y in bits 10:07, x in

bits 06:03 and the coreID (which is 0 or 1) in bits 02:00. To be completely accurate, bits

02:00 contain the subID of the requesting agent; and if the requesting agent is a core, its

subID is the coreID. Note, though, that if a core reads the TileID register of another core, it

is the core doing the read that is the requesting agent.

 If you are using the sccGui to access a TileID register, the requesting agent is the System

Interface whose subID is 101b.

The TileID register for processorID 10 is 0x28, and the Tile ID register for processorID 11 is

0x29. Table 6 shows the bit pattern of the TileID register and how the values 0x28 and 0x29

populate its fields

January 27, 2012 Page 28 of 43 Intel Labs

Y

X

CoreID

1

0987

6543

210

Hex

Value

0000 0101 000 0x28

0000 0101 001 0x29

Table 6 Bit Pattern for the TileID Register

7 Building RCCE
Get the latest RCCE source code by checking RCCE out from an Intel-provided SVN

repository. You may choose to svn export rather than svn co if you don’t want all those

.svn directories.

Type ./configure <PLATFORM> where <PLATFORM> is either SCC_LINUX or emulator.

Use SCC_LINUX when you are building for SCC hardware; use emulator when you are

building the RCCE emulator.

The command is silent. The option SCC_LINUX creates your username directory under

/shared and populates it with the file allhosts and the two scripts: killcorePIDS and

killit. Use the killit script to kill programs running on the cores. Control-C issued

from the MCPC only kills the pssh script, not a core program.

Do not create /shared on your own. By using the configure script, you get all the needed

files under /shared.

The configure script also modifies the common/symbols file to make it appropriate for

your installation. The symbols file sets compiler flags and determines whether to build

RCCE for SCC hardware or the emulator. The default is to build all the libraries for the

emulator.

Do not edit the symbols file. It is constructed by configure from symbols.in. If you want

to have a new symbols file, edit symbols.in and reconfigure.

If you build the RCCE emulator on the MCPC, be sure to use the native compiler and not

the cross compiler.

7.1 Building the RCCE Emulator

First, edit common/symbols.in to choose the compiler you want. Don’t use the cross

compiler that comes with an SCC system. The cross compiler is intended to build

applications that run on SCC hardware. The emulator runs on a modern Linux system,

typcially the MCPC, It should run on Windows and MAC OS as well, but those platforms

don’t get a lot of use.

Then, run the configure script as

./configure emulator

If you want to include the capability for power management, run the configure script as

January 27, 2012 Page 29 of 43 Intel Labs

./configure emulator ADD_POWER_API

One of the results of the configure script is to create a common/symbols from

common/symbols.in. It’s not good practice to edit common/symbols directly because the

next time you run configure, your edits will be overwritten.

To build all the libraries for the emulator, use the makeall command . This means that if

you are on your Linux desktop and you just type ./makeall, you will build the following

libraries under bin/OMP.

$ ls -l

total 268

-rw-r--r-- 1 user group 65538 2011-09-06 14:50 libRCCE_bigflags_gory_nopwrmgmt.a

-rw-r--r-- 1 user group 64768 2011-09-06 14:50 libRCCE_bigflags_nongory_nopwrmgmt.a

-rw-r--r-- 1 user group 66546 2011-09-06 14:50 libRCCE_smallflags_gory_nopwrmgmt.a

-rw-r--r-- 1 user group 65760 2011-09-06 14:50 libRCCE_smallflags_nongory_nopwrmgmt.a

Note that there are four libraries. The power management libraries in this example are not

included. You have a library with bigflags and a library with smallflags. Each of those can

have either a gory or a nongory interface.

Note that RCCE routines may use some C99 syntax, and so you may need to modify the

CCOMPILE line in common/symbols.in to include the switch –std=c99 so that these

routines can build. This is the CCOMPILE definition when OMP_EMULATOR is 1, which is its

default.

Refer to Section 7.3 RCCE Build Options for information about the difference between

bigflags and smallflags and the difference between the gory and nongory interfaces.

If you issue just make, you get the library libRCCE_bigflags_nongory_nopwrmgmt.a in

bin/OMP.

7.2 Building RCCE for SCC Hardware

Build the RCCE library for SCC hardware on the MCPC. You don’t have to build it on the

MCPC, but if you do, you are assured of access to the correct cross-compiler. You are

building for the SCC cores, not the MCPC.

Check out (or export) RCCE source from the SCC public svn repository. If you issue

configure with no options, you get the list of options as follows.

$./configure

Usage: ./configure emulator

 ./configure SCC_LINUX

 ./configure SCC_BAREMETAL

See README for power management options

Choose SCC_LINUX. This option will create the RCCE libraries for SCC hardware without

the power management API. The libraries are created in the directory bin/SCC_LINUX.

Ensure that the crosscompilers (both icc and gcc) is in your path and that

LD_LIBRARY_PATH is defined.

$ which icc

/opt/icc-8.1.038/bin/icc

$ which gcc

/opt/i386-unknown-linux-gnu/bin/gcc

January 27, 2012 Page 30 of 43 Intel Labs

$ env |grep LD_

LD_LIBRARY_PATH=/opt/icc-8.1.038/lib:/opt/i386-unknown-linux-gnu/lib

RCCE configured for baremetal has not been tested for the latest RCCE software. The

baremetal framework most users now use is the one contributed by ETI

(http://www.etinternational.com/). Refer to

http://communities.intel.com/message/108074#108074 .

The power mnagement API remains an experimental feature. Please consult the RCCE

README file. To build RCCE libraries with the power management API, configure as

./configure SCC_LINUX ADD_POWER_API

Refer to Section 7.3 RCCE Build Options for information about the difference between

bigflags and singlebitflags, the difference between the gory and nongory interfaces, and

whether to include the power management API.

7.3 RCCE Build Options

The gory and nongory interfaces are aptly named. If you want to write RCCE applications

and get down into the nitty gritty of how message passing is implemented, use the gory

interface (API=gory on the make line). Otherwise choose, the nongory interface

(API=nongory on the make line, which is the default).

Flags are used to coordinate interaction between units of execution. You can choose flags to

have low latency and be somewhat wasteful of memory or flags that have a higher latency

and consume less memory. The memory referred to here is message passing buffer memory.

The first choice (lower latency, higher memory use) occurs when you specify

SINGLEBITFLAGS=0 on the make command line. With bigflags, each flag takes up a byte;

there are eight flags per 32-byte cache line. The second choice (higher latency, lower

memory use) occurs when you specify SINGLEBITFLAGS=1 on the make command line. With

singlebitflags, flags are stored as a single bit.

Having the power management routines in the library does not affect the performance of the

RCCE library, but sometimes you want the library to include only what you plan on using.

8 Running RCCE Applications
The SCC Platform Overview showed how to run an RCCE example using the RCCE

emulator. The example was pingpong, which just sends messages back and forth between

two cores.

The RCCE distribution contains several examples in its apps directory. The point of entry

for all units of execution (UEs) into a RCCE applications is RCCE_APP(). Recall that a UE

refers to a process, thread or other agent of execution that moves the program counter

forward. For RCCE applications, the number of UEs is the number of cores (when running

on SCC hardware) or the number of simulated cores (when running under the RCCE

emulator).

The call RCCE_APP() is really intended for the RCCE emulator, which runs on top of

http://www.etinternational.com/
http://communities.intel.com/message/108074#108074

January 27, 2012 Page 31 of 43 Intel Labs

OpenMP. When you are programming for actual SCC hardware, you can replace

RCCE_APP() with main(). You do not have to perform this replacement because the file

RCCE.h does it for you as shown below. When you are running the RCCE emulator, _OPENMP

is defined.

// little trick to allow the application to be called "RCCE_APP" under

// OpenMP, and "main" otherwise

#ifndef _OPENMP

 #define RCCE_APP main

#endif

To start a RCCE application, use rccerun. The options for rccerun are as follows.

rccerun [-emulator] -nue nbrUEs [-f hostfile] [-clock GHz] executable

[parameters]

You must specify the number of UEs and a hostfile. The hostfile is a file that lists the

processorIDs of the cores that rccerun will load the application on. It contains one line for

each SCC core as follows.

00

01

02

03

:

When rccerun loads your RCCE application, it chooses the number of cores specified by

–nue starting with the processorID on the first line.

-clock specifies the frequency that RCCE uses for timing measurements. It does not change

the actual frequency of the SCC tiles. If you specify a frequency with –clock on the

rccerun command line that is different from the actual tile frequency, the timing results

returned by RCCE examples will be incorrect.

rccerun either uses the RCCE emulator to run your application or loads your application on

SCC hardware, depending on what you set <PLATFORM> to when you ran configure.

Specify the name of your RCCE executable. If this RCCE executable is not in your current

working directory, give its pathname, which can be relative.

If you want to execute your RCCE program on SCC hardware, the SCC must have access to

the executable. Users usually place the RCCE executable under /shared on the MCPC. The

directory /shared exists on the MCPC and is mounted on the SCC cores.

If you’ve configured for the emulator and neglect to specify –emulator on the rccerun

command line, you get Error Code 127.

Be sure to use the rccerun that is created in the same directory as the configure script. Put

this rccerun in your path. If you use a rccerun from a different RCCE build, you may see

an Error Code 139 when you run your RCCE application.

8.1 Characteristics of RCCE Programs

From a programmer’s point of view, RCCE applications are message passing applications.

January 27, 2012 Page 32 of 43 Intel Labs

Because of the lack of cache coherence among the cores, the programming model is most

naturally and most efficiently based on the ability to send messages between the cores.

Recall that SCC has an on-chip message-passing buffer (MPB). Each of the 24 tiles has

16KB of MPB, totaling 384KB for the chip itself. Each of the 48 cores is assigned 8KB of

this MPB, but each core has access to the entire MPB. A core can send a message to another

core by moving data from its own L1 cache to the MPB. Then, the receiving core can take

the data from the MPB and move it into its own L1 cache.

Note that messages are passed from one core to another without a core having to use any

off-chip memory. Note also that messages bypass a core’s L2 cache. The sending core puts

the message from its L1 cache into the sending core’s MPB. Then, the receiving core gets

the message from the sending core’s MPB. This is the “put” model.

The “push” model is when the sending core puts the message from its L1 cache into its own

MPB. Then the receiver gets the message from the sener’s MPB.

However, referring to the MPB as sender’s MPB and receiver’s MPB is somewhat artificial

because the MPB address space is accessible by all cores. RCCE manages the MPB by

assigning 8KB regions to each core, but any core can write anywhere in the MPB.

As described above, RCCE is based on one-sided put and get primitives. RCCE also

provides two-sided synchronous message passing calls. Internally, these high-level message

passing calls are implemented as one-sided primitives with flags to control access to the

MPB.

8.2 Two Important Cautions When Using RCCE

The first cautions against assuming that the initial state of the message passing buffer and

test-and-set registers are clean. The second cautions against assuming that the synchronizing

calls with empty messages actually synchronize.

8.2.1 Initial State of the Message Passing Buffers and Test-and-Set
Registers

There is no guarantee that the MPBs are in a clean state, at the beginning of a RCCE

execution. You can explicitly wipe the MPBs by executing mpb –c on the cores. Run it on

each core whose MPB you want to clear. You can also use the SCC GUI and select

ToolsClear MPB(s).

Similarly, there is no guarantee that the test-and-set registers are in a clean state. You can

reset the test-and-set registers by executing mpb –cl on the cores. Run it on each core

whose test-and-set register you want to clear.

If the application dies and needs to be killed, the state of all registers and on-chip memory is

indeterminate. However, even in a correctly executing code, it is possible to leave debris in

the MPBs and the test-and-set registers.

8.2.2 Empty Messages do not Synchronize

Note that if the synchronizing calls, RCCE_send() and RCCE_recv(), have empty messages,

they are not synchronizing. If the message size is zero, the send and receive calls are

January 27, 2012 Page 33 of 43 Intel Labs

effectively no-ops and hence senders and receivers do not need to be matched.

This is different from MPI where even an empty message is not really empty. In MPI, the

payload is accompanied by a header, allowing MPI programmers to use an empty message

for synchronization. RCCE communication calls only have payload. When the message is

null, there is no need to communicate and no synchronization occurs. With RCCE, do not

use RCCE_send() and RCCE_recv() with an empty message for synchronization

8.3 RCCE has Basic and Gory Interfaces and Power
Management

The RCCE libraries are distributed as C source code. Recall from Building RCCE that you

can build the RCCE library with either the basic or the gory interface. The gory interface

exposes the RCCE one-sided primitives. The gory interface is not a strict superset of the

basic interface. It contains some routines with the same name as those in the basic interface

but with a different set of parameters. These routines are called auxiliary routines, and they

are made up from some of the elementary gory routines.

Table 7 lists the RCCE calls belonging to the basic and gory interfaces. This table does not

contain the entire set of RCCE calls. RCCE also contains some power management routines,

which are shown in Table 8 RCCE Power Management Routines

The remainder of this section describes the RCCE routines in more detail.

January 27, 2012 Page 34 of 43 Intel Labs

Basic Gory

Core Core

RCCE_init() RCCE_int()

RCCE_finalize() RCCE_finalize()

RCCE_ue() RCCE_ue()

RCCE_debug_set() RCCE_debug_set()

RCCE_debug_unset() RCCE_debug_unset()

RCCE_error_string() RCCE_error_string()

RCCE_wtime()

RCCE_comm_rank()

RCCE_comm_size()

Communication Communication

RCCE_send() Auxiliary RCCE_send()

RCCE_recv() Auxiliary RCCE_recv()

RCCE_recv_test() Auxiliary RCCE_recv_test()

RCCE_reduce() RCCE_reduce()

RCCE_allreduce() RCCE_allreduce()

RCCE_bcast() RCCE_bcast()

RCCE_comm_rank() RCCE_comm_rank()

RCCE_comm_size() RCCE_comm_size()

RCCE_comm_split() RCCE_comm_split()

 RCCE_put()

 RCCE_get()

 RCCE_flag_write()

 RCCE_flag_read()

Synchronization Synchronization

RCCE_barrier() RCCE_barrier()

RCCE_fence() RCCE_fence()

 RCCE_wait_until()

Memory Management Memory Management

RCCE_shmalloc() RCCE_shmalloc()

RCCE_shfree() RCCE_shfree()

RCCE_shflush() RCCE_shflush()

RCCE_malloc() RCCE_malloc()

 Auxiliary RCCE_malloc_request()

 RCCE_free()

 RCCE_flag_alloc()

 RCCE_flag_free()

Table 7 RCCE Calls Belonging to the Basic and Gory Interfaces

January 27, 2012 Page 35 of 43 Intel Labs

RCCE Power Management

RCCE_power_domain()

RCCE_power_domain_master()

RCCE_power_domain_size()

RCCE_iset_power()

RCCE_wait_power()

RCCE_set_frequency()

Table 8 RCCE Power Management Routines

8.4 The STENCIL Example

The next two sections illustrate the use of the RCCE basic and gory interfaces. The RCCE

release comes with a number of examples in the apps directory. The STENCIL example is

in apps/STENCIL.

<TBD>

Provide an overview of what the STENCIL example actually does … what problem is it

intended to solve?

</TBD>

RCCE provides two versions of the STENCIL example. One (RCCE_stencil_synch.c)

uses the basic interface, and the other (RCCE_stencil.c) uses the gory interface.

In STENCIL, a matrix is partitioned among the cores. The first and last rows of the array are

fixed. The first row is fixed at 1.0, and the last row is fixed at 2.0. That’s how STENCIL

prints out the matrix, but internally, a core refers to other cores at its right and left. So you

can also think of the matrix as having its first column fixed at 1.0, and its last column fixed

at 2.0.

RCCE_num_ues() returns the number of cores (n) participating in the calculation. A core’s ID

(also called its sequence number or its rank) goes from 0 to RCCE_num_ues() -1 (n-1).

The matrix never exists completely on one core. In STENCIL, the matrix a is declared as a

one-dimensional array of dimension NX*NY. There are NX columns on each core. For each

core, the row starts at a[offset]. For core 0, offset is 0; for core n-1, offset is NX*(NY-

1).

Consider the example when NX=8, NY=10, and the number of cores is 4. This array is

distributed among the four cores as follows.

Core 0 9 rows (elements of top row are fixed 1.0)

Core 1 8 rows

Core 2 8 rows

Core 3 9 rows (elements of bottom row are fixed 2.0)

All other elements are zero. As the calculation proceeds and the stencil is applied, the 1.0

and 2.0 flow toward the center and approach stabilization.

January 27, 2012 Page 36 of 43 Intel Labs

8.5 RCCE Basic

To build the basic version of STENCIL, enter the directory apps/STENCIL and type

make stencil_synch

To run the resulting executable on four cores and perform 50 iterations, enter

rccerun –nue 4 –f ../../hosts/rc.hosts stencil_synch 50

The default number of iterations is 10, but you can override this default from the command

line as shown above.

The command rccerun also has an option that specifies the clock. The default is 1GHz. If

the cores were running at 748 MHz, you would add –clock 0.748 to the rccerun

invocation. The stencil programs print out some timing information and use the value

provided with –clock.

<TBD>

Provide a description of use of RCCE_send() and RCCE_recv() and describe how/why they

are synchronous.

</TBD>

8.6 RCCE Gory

To build the gory version of STENCIL, enter the directory apps/STENCIL and type

make API=gory stencil

To run the resulting executable on four cores and perform 50 iterations, enter

rccerun –nue 4 –f ../../hosts/rc.hosts stencil 50

<TBD>

Provide a description of use of RCCE_put(), RCCE_get(), RCCE_flag_write(),

RCCE_wait_until(), RCCE_flag_alloc().

</TBD>

8.7 Power Management

Although you can manage SCC power by writing the VRC configuration register directly

through memory-mapped I/O, it’s highly recommended that you use the RCCE power

management calls. When you use these RCCE calls, you run less risk of crashing the SCC

platform. RCCE provides you with power management capabilities, but it does not provide

you with access to everything that the VRC can do. Note that the VRC (voltage regulator

controller) is called the RPC (Rock Creek power controller) in some older documentation.

For information about how to access the VRC directly (not through RCCE), refer to How to

Change the Voltage Directly.

To use RCCE’s power management functions, you must first configure RCCE for power

management and then build RCCE

./configure SCC_LINUX ADD_POWER_API

http://communities.intel.com/docs/DOC-19003
http://communities.intel.com/docs/DOC-19003

January 27, 2012 Page 37 of 43 Intel Labs

./makeall

Then, when you compile a RCCE application that uses the power management API, specify

PWRMGMT=1 on the make line as in

make PWRMGMT=1 powertest

RCCE assumes that the 2x2 voltage domains and the frequency domains are identical.

RCCE does not recognize the “all-mesh” power domain. As far as RCCE is concerned, there

are six 2x2 power domains, labeled 0 to 5.

RCCE assigns a single core in a power domain as a power domain master. This designation

is not user configurable. Only the power domain master can communicate with the SCC

power management facility. Power management calls issued by other cores are ignored and

return immediately with the return value RCCE_SUCCESS.

For maximum impact on the power budget, RCCE modifies the frequency in concert with

the voltage, through the combined power command, RCCE_iset_power(). The input to the

function specifies the desired tile frequency divider (an integer ranging from 2 to 16).

The frequency is defined relative to a global reference clock that is set when the SCC

platform first starts up. This reference clock can vary, but in almost all cases it is 1.6Ghz.

Changing it to a different value is an advanced procedure that is not recommended.

RCCE_iset_power() sets the tile frequency to the reference clock divided by the supplied

divisor. For example, if the divider is 4, the tile frequency is then 1.6GHz/4 = 400MHz.

RCCE_iset_power() then determines the lowest voltage level that is consistent with the

input value of the frequency divider and initiates the voltage change. RCCE_iset_power()

provides output values that define the actual settings for the frequency divider and the

voltage level.

The returned voltage level is an integer from 0 to 6. The actual voltage (in volts) is 0.7 +

voltage_level * 0.1. This means that the minimum voltage is 0.7v and the maximum voltage

is 1.3v. These are nominal voltages.

Because changing the voltage has such a high latency, RCCE_iset_power() is not a

blocking call. When you issue RCCE_istep_power(), you get a request ID. The call does

not block, and your program continues. Later you can issue the call RCCE_wait_power()

and specify a request ID.

The intent is for RCCE_wait_power() to block until the preceding request from

RCCE_iset_power() is satisfied. ." What the call initiallydid was just reissue the power

change request; the belief was that it would block until the first request was processed. Later

some work showed that this was not sufficient ... that one must issue the request yet again

and wait for the third request to return. Look inside RCCE_power_management.c for details.

RCCE_set_frequency_divider() sets the frequency of the cores in the domain of the

calling core without changing the voltage. As with RCCE_iset_power(), you supply a

frequency divider. RCCE_set_frequency_divider() will not let you set the frequency to a

value that is too high for the current voltage.

Because changing the frequency has a low latency, RCCE_set_frequency() is a blocking

January 27, 2012 Page 38 of 43 Intel Labs

call. As with RCCE_iset_power(), the call only has an effect when executed by the power

domain master. Non-master cores do nothing and just return with RCCE_SUCCESS.

The file Using RCCE Power Management contains an example program. Note that RCCE

and the SCC label the power domains differently as shown in Figure 13.

RCCE: 3

SCC: 0

RCCE: 4

SCC: 1

RCCE: 5

SCC: 3

RCCE: 0

SCC: 4

RCCE: 10

SCC: 5

RCCE: 2

SCC: 7

Figure 13: RCCE vs SCC Power Domains

The consequence is that if you use the BMC status command to read the voltage, VCC4

refers to RCCE power domain 0. For example, if you use RCCE to change the voltage in

RCCE power domain 0 to 0.8 volts, the sccBmc –c status command returns

Tertiary supplies:

 OPVR VCC0: 1.0948 V

 OPVR VCC1: 1.0939 V

 OPVR VCC2: 1.0913 V

 OPVR VCC3: 1.0936 V

 OPVR VCC4: 0.8421 V

 OPVR VCC5: 1.0897 V

 OPVR VCC7: 1.0870 V

8.7.1 Power Domains

RCCE provides three informational calls that deal with power domains.

 RCCE_power_domain() returns the number of the power domain that contains the

calling core. The power domain number does not change; it is hard linked to the

position of the core in the mesh. As shown in Figure 12 and Figure 13, there are six

power domains, and each contains four tiles in a 2x2 array. The power domain in the

lower left is 0. The domain immediately to its right is 1 and then 2. The upper row

contains domains 3, 4, and 5, with 5 being the domain in the upper right.

 RCCE_power_domain_master() returns the rank of the domain master in the local

power domain. RCCE refers to a core’s processorID as its sequence number or its

rank. Table 2 shows how the processorIDs are arranged in the mesh. These

processorIDs start with 0 and end with 47.

 RCCE_power_domain_size() returns the number of cores in the local power domain

that are participating in the computation. Note, however, that when you change the

power for cores in a domain, you change the power for all the cores, even those that

are not participating in the computation.

8.7.2 Changing the Power

RCCE_iset_power() takes four parameters. The first is an input parameter called Fdiv that

specifies the desired frequency divider. The second is an output parameter that will contain

a request ID. The third and fourth parameters are also output parameters that tell you what

http://communities.intel.com/docs/DOC-18982

January 27, 2012 Page 39 of 43 Intel Labs

the frequency divider and voltage level got set to. Most likely this output frequency divider

is equal to your input frequency divider.

Table 9 shows the maximum frequency allowed for a particular voltage level. For example,

if the voltage is 1.1v, the voltage level is 4, and a frequency above 875MHz may damage the

chip. If the voltage is 0.9v, the voltage level is 2, and a frequency above 644MHz may

damage the chip.

Voltage

Level

Voltage (volts) Maximum

Frequency (MHz)

0 0.7 460

1 0.8 598

2 0.9 644

3 1.0 748

4 1.1 875

5 1.2 1024

6 1.3 1198
Table 9 Voltage and Frequency Values

When you start up the SCC platform with the sccGui, you can choose to have the tiles run at

either 800MHz or 533MHz. These two values correspond to frequency dividers of 2 and 3

respectively. Table 10 lists the tile frequencies corresponding to all the possible frequency

dividers.

With RCCE_iset_power(), you specify a desired frequency divider. The call creates a

temporary variable equal to the reference clock divided by that frequency divider. The call

then traverses Table 9 starting with voltage level 0 and finds the first voltage level whose

maximum frequency is greater that the value of this temporary variable. The call then sets

the voltage to that value and sets its output values to that voltage level and frequency

divider.

For example, if you choose a frequency divider of 3, the temporary variable equals 533MHz.

The call sets the voltage level to 1. If you choose a frequency divider of 2, the temporary

variable equals 800MHz. The call then sets the voltage level to 4.

A consequence of the way RCCE sets voltage and frequency is that if you set the frequency

divider to the very same value you initialized with, the voltage decreases, and you cannot return

the voltage to its original value with RCCE. You can return to the default voltage by cycling the

SCC power or setting the voltage directly.

January 27, 2012 Page 40 of 43 Intel Labs

Tile Frequency

(MHz)

RCCE Frequency

Divider

RCCE Voltage

Level
800 2 4

533 3 1

400 4 0

320 5 0

266 6 0

228 7 0

200 8 0

178 9 0

160 10 0

145 11 0

133 12 0

123 13 0

114 14 0

106 15 0

100 16 0

Table 10 Tile Frequencies and RCCE Frequency Dividers

Here is another example. Assume that you issue

RCCE_iset_power(4, &request, &newVoltageDiv, &newFreqDiv)

Then, the temporary variable equals 400MHz, newVoltageDiv is 0, and newFreqDiv is 4.

The actual voltage is 0.7v + 0*0.1v = 0.7v. The actual frequency is 1.6GHz/4 = 400MHz.

When you go to a power level that has a larger frequency, RCCE increases the voltage first

and then the frequency. When you go to a power level that has a lower frequency, RCCE

decreases the frequency first and then the voltage.

Only one RCCE_istep_power() can be “in flight” at the same time for a power domain. If

you issue another RCCE_istep_power() before the first one is satisfied, the second request

is denied, and it returns an error code.

8.7.3 Changing the Frequency

Use RCCE_set_frequency_divider() to change the frequency. Because changing the

frequency has low latency, the call is blocking. The call takes two parameters. The first is an

input parameter that is the requested frequency divider; the second is an output parameter

that is the frequency divider that actually results. Table 10 lists the available frequency

dividers and the tile frequencies they correspond to.

A frequency divider less than 2 returns an error. A frequency divider greater than 16 gets set

to 16.

January 27, 2012 Page 41 of 43 Intel Labs

9 Building your own Linux Image
Intel Labs provides a Linux image of SCC Linux that you can load on the cores. This default

Linux image is called linux.obj and is stored in /opt/sccKit/current/resources on the

management console (MCPC). It is a hex-encoded ASCII file describing the operating

environment for SCC.

You have the ability to create your own Linux image. You may want essentially the default

Linux image, but you want to add other utilities or apply a kernel patch.

For information about how to build a custom SCC Linux refer to How to Build SCC Linux

1.4.1.x .

http://communities.intel.com/docs/DOC-6869
http://communities.intel.com/docs/DOC-6869

January 27, 2012 Page 42 of 43 Intel Labs

10 Appendix

10.1 SCChello.c
#include <stdio.h>

main() {

 printf("hello\n");

}

10.2 readTileID.c
#include <stdio.h>

#include <unistd.h>

#include <sys/mman.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdlib.h>

#define CRB_OWN 0xf8000000

#define MYTILEID 0x100

main() {

typedef volatile unsigned char* t_vcharp;

int PAGE_SIZE, NCMDeviceFD;

// NCMDeviceFD is the file descriptor for non-cacheable memory (e.g. config regs).

unsigned int result, tileID, coreID, x_val, y_val,

 coreID_mask=0x00000007, x_mask=0x00000078, y_mask=0x00000780;

t_vcharp MappedAddr;

unsigned int alignedAddr, pageOffset, ConfigAddr;

 ConfigAddr = CRB_OWN+MYTILEID;

 PAGE_SIZE = getpagesize();

 if ((NCMDeviceFD=open("/dev/rckncm", O_RDWR|O_SYNC))<0) {

 perror("open"); exit(-1);

 }

 alignedAddr = ConfigAddr & (~(PAGE_SIZE-1));
 pageOffset = ConfigAddr - alignedAddr;

 MappedAddr = (t_vcharp) mmap(NULL, PAGE_SIZE, PROT_WRITE|PROT_READ,

 MAP_SHARED, NCMDeviceFD, alignedAddr);

 if (MappedAddr == MAP_FAILED) {

 perror("mmap");exit(-1);

 }

 result = *(unsigned int*)(MappedAddr+pageOffset);

 munmap((void*)MappedAddr, PAGE_SIZE);

 printf("result = %x %d \n",result, result);

 coreID = result & coreID_mask;

 x_val = (result & x_mask) >> 3;

 y_val = (result & y_mask) >> 7;

 tileID = y_val*16 + x_val;

 printf("My (x,y) = (%d,%d)\n", x_val, y_val);

January 27, 2012 Page 43 of 43 Intel Labs

 printf("My tileID = 0x%2x\n",tileID);

 printf("My coreID = %1d\n",coreID);

 printf("My processorID = %2d\n",(x_val +(6*y_val))*2 + coreID);

}

