® VLSI TECHNOLOGY, INC.

PRELIMINARY

V1.86C020

32-BIT RISC MICROPROCESSOR WITH CACHE MEMORY

FEATURES

= On-chip 4 Kbyte (1K x 32 bits) cache
memory

— Instructions and data in a single
memory

~ B4-way set associative with
random replacement

~ Line size of 16 bytes (4 words)

Compatible with existing support
devices

Upwardly software compatible with
VL86C010

+ Semaphore instruction added for
multiprocessor support

Full-speed operation up to 20 MHz
using typical DRAM devices

» Low interrupt latency for real-time
application requirements

» CMOS implementation - low power
consumption

= 160-pin plastic quad flatpack package
(PQFP)

DESCRIPTION

The VL86C020 Acorn RISC Machine
(ARM) is a second generation 32-bit
general purpose microprocessor
system. The device contains both a
general purpose CPU and a full cache
memory subsystem in the same pack-
age. Several benefits are attained by
having the CPU and cache within the
same device. First, the processor clock
is effectively decoupled from the
memory system. This lowers the
processor bandwidth demands on the
memory and allows most memory
cycles to remain on-chip whers buffer
delays are minimized. Second, a high
level of integration is maintained as
external components are not required to
implement the cache subsystem.

Third, package sizes are reduced as
bus widths can remain at reasonable
widths. Fourth, memory system design
is greatly simplified because most
critical timings are handled internally to
the device.

The processor is targeted for use in
microcomputer and embedded control-
ler applications that require high per-
formance and high integration solutions.
Applications where thé processor is
best applied are: laser printers,
graphics engines, network protocol
adapters, and any other system that
requires quick response to external
events and high processing throughput.

Since the VL86C020 typically utilizes
only about 14% of the: available bus
bandwidth, it is particularly well suited
to applications where the memory is
shared with another high bandwidth
device, e.g. a graphids system where
the screen refresh oceurs from the
same memory devices. In addition,
systems with more than one processor
attached to a single memory system
become feasible and are supported with
the new semaphore instruction., The
instruction performs an indivisible read-
modify-write cycle to the memory to
allow for management of globally
allocated resources reliably.

BLOCK DIAGRAM ORDER INFORMATION
Part Clock
ABE A25-A0 ALE -WAIT MCLK FCLK -TEST -RESET Number Frequency | Package
Ay I I et .
" - L__J L~ wrea VLBBCO20-20FC| 20MHz | Plastic Quad
I ADDRESS BUS INTERFACE cLock |~ seq Flatpack (PQFP)
GENERATOR l«— ABORT o
D Plastic Pin
iINTERNAL ADDRESS BUS %gngL je— -Ra VL860020-20GC| 20 MHz Giid Array (PGA)
let— -FIQ *
M _TRANS Note: Operating temperature range is:0°C to +70°C.
1> -M1,-M0
- AW
CACHE |~ -BW
4 bmge cPU L=~ LOCK
DATA AND - LINE
INSTRUCTION) e
g o
| cPCLK
L= CPSPV
@ _ |—» -OPC
PROCESSOR | }—= —cPI
g INTERNAL DATA BUS S INTERFACE
<> f N ¢>0P031-
cPDO
DATA BUS INTERFACE V] [<— CPA
l«— cPB

D31-DO

3-3

& VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

PIN DIAGRAM - PLASTIC QUAD FLATPACK

VL86C020
[4
GVDDDDD DDDGD DDDDDVGVYDDD G v P
ND2 222 2 N221N1TN1T1111DNDi111DNDDDDNNDDDDDTODD
DD6 5432 C109D8C786¢6 43DDD21009¢C8e7 65 0DC43 210D
nnnannonooonononoanoounoooonnooooogoonnononm
/1 111111111 1111111ttt 11 1111111111111 1
6 5565 556555 65 4 4 4444 44443333 333333222222222
0987 6643210068765 43210898765 4321098766432 1
D274 1 120 §1 CPD1
DasrH2 119 |3 €PD2
D293 118 |1 cPD3
D30 4 117 |1 CcPD4
D315 118 |1 GND
-Bwrle 116 |1 CPDS5
-RW 37 114 =3 CPDB
NCE38 113 A NC
~TRANS 4 9 112 | cPp7
LINE g 10 111 j21 CPD8
LocK 3 11 110 |3 CPD9
-Mo=g2 109 | CPD10
vDD = 13 108 {=1 CPD11
NCf 14 107 2 Ne
GND 415 106 |3 CPD12
M1 16 105 |3 CPD13
~-FlQaeg 17 104 |21 CPD14
-Ra] 18 TOP VIEW 103 |1 GND
MSECf 18 102 33 VDD
SEQH 20 101 | CPD15
-MREQ 7 21 100 |1 CPD16
FCLK = 22 99 |1 CPD17
MCLK o 23 98 |1 CPD18
GND 24 97 |1 CPD19
VDD =326 96 |y CPD20
CBEH 28 95 |3 cPD21
NC 27 94 1 NC
ABEI] 28 93 |1 cPD22
ALE =] 29 92 |1 cPD23
DBE] 30 91 |5 cPD24
ABORT . 31 90 |9 GND
-RESET . 32 89 |1 CPD25
NC =33 88 | NC
-WAIT . 34 87 |1 VoD
—TEST] 35 86 |21 GND
A0 =436 85 1 CPD26
A1]37 84 =1 CPD27
A2 38 83 | CPD28
GND =] 39 82 |1 CPD29
M40, 4 4 4 4 4 4 4 4555560565 550666606606 6667777777777 8sbdCPN
123 4567 8901234586789 012345867890 1234586782890
googopooguguponooudoooopuogioouurgogounoooronogoomol
VAAAAAANAAAAGNVYAAAAAAAAAAANAGGCGCCN-OGCCCGCVY CG
D456 7 89C1111NCD?Y1111122222C2NPPPCGPPPPDEPN
D 012 3D D4567 890 12 34 5D<L:§| CeABDgD
KV 1

3-4

& VLSI TECHNOLOGY, INC. PRELIMINARY

VL86C020

PIN DIAGRAM - PLASTIC PIN GRID ARRAY

1 2 3 4 5 6 7 8 9 0 1 12 18 14 15
/GND D24 D20 Di9 Di8 Di4 D13 VDD Di1 D0 D7 GND D3 DO CPDi]

A @144 ©140 @136 ©)135 (©133 (©)129 ©128 (©125 @123 ©122 @119 116 @114 @111 (©)108
D20 VDD D23 D21 GND D16 D15 D12 D8 D6 D4 DI VDD CPD2 GND
B ©3 (@143 (@139 (@137 (©)134 (©)131 (@130 (124 (120 118 (@115 @112 (110 (@107 (9104
-BW D28 D26 D25 D22 D17 VDD GND D9 D5 D2 GCPDO CPD3 CPD5 CPD8
c @6 (@2 (@142 @141 (@138 @132 127 (@126 (@121 (117 113 (2)109 (@105 (2)103 (©)100
-TRANS D30 D27 CPD4 CPD7 CPD9

D @8 @4+ @1 © (@105 (@101 (@99
-MO -RW D3t \ CPD6 CPD10 CPD11

E @1 @7 ©s (mgglslg ©102 @98 (@97
-M1 LOCK LINE CPD12 CPD13 GND

F @14 @10 @9 (@96 (@95 ()3

-FIQ VDD GND CPD15 CPD14 VDD

G @15 @12 @18 @91 @9 (@92
MSE -IRQ SEQ CPD16 CPD18 CPD17

H ©@17 @18 (@118 TOP VIEW ©9 (@©@ss (@89
FCLK GND -MREQ CPD2} CPD22 CPD19

J ©@20 @©@22 (@19 (@85 (o84 (0)87
MCLK VDD CBE GND CPD24 CPD20

K @21 @238 (@24 (@81 (@82 ()88
ABE ALE -WAIT CPD25 VDD CPD23

L @ @26 @ @77 @7 (©@ss
DBE -RESET A1 CPD30 CPD27 GPD25

M @27 @20 (@3 @1 @7 (@80

ABORT -TEST A2 VDD A7 A1 VDD A18 A19 A24 -OPC CPB VDD CPD28 GND

N @28 @31 ©34 ©37 @41 ©45 @49 ©54 ©)55 60 (@66 @60 (@70 @74 ()78
A0 GND A4 A6 A9 A2 GND A6 A2 A28 GND -CPl CPE CPD31 CPD28

P @32 @35 (@38 (@40 (@48 @46 (D48 (52 (D8 @5 (@62 @65 @67 @71 (@75

A3 A5 A8 A10 A18 A4 AI5 A17 A20 A2 A25 CPCLK CPSPV CPA GND

Q (@338 @3 @42 @4 @47 @5 @51 @53 (@56 ©57 @61 (@63 (@64 (@68 ()72

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

CPU BLOCK DIAGRAM

ADDRESS

?}

]

I ADDRESS REGISTER | <
<z |
M
P E
c ADDRESS N
B INCREMENTER T
U B
! S u
A S
L
U REGISTER BANK
(27 32-BIT REGISTERS)
S _ INSTRUCTION
s — DECODER
AND
CONTROL
N sootHs Loaic

| MULTIPLIER

F

BARREL
SHIFTER

AR
t 2BTAL S

s 7~ 4y

INSTRUGTION PIPELINE
IWR'TE DATA REG'STERl | & READ DATA REGISTER |
o) Zas o)

DATA

ncCcw >
nwCco @

3-6

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020
FUNCTIONAL DIAGRAM
e ») Aopness
FCLK
CLOCKS (MCLK |) DATA
—WAIT BUS
| -Rw
_ -B/W
INTERRUPTS (—_L:g——-" LoCK CONTROL
— =] LINE A
—TRANS
—MAEQ MEMORY
SEQ MANAGEMENT
ALE ABORT INTERFACE
ABE
BUS DBE CPCLK
CONTROLS CBE CPSPV
MSE —OPC
CPE - —CPI COPROCESSOR
CPA INTERFACE
CPB
VDD(11)
POWER (SND(14))

37

® VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK

Signal
Name

Pin
Number

Signal
Type

Signal
Description

A0-A25

ABE

ABORT

ALE

CBE

CPA

CPB

CPCLK

42-47, 49-52,
56-66, 68, 36,
38-40

28

31

29

26

76

77

70

ocz

ITP

ITP

0ocz

ITP

ITP

ITP

0ocz

Processor Address Bus - If ALE (address latch enable) is high, the
addresses change while MCLK is high, and remain valid while
MCLK is low; their stable period can be modified by using ALE.

Address Bus Enable - When this input is low, the address bus drivers (A0-
A25) are put into a high impedance state (Note 1). ABE may be left
unconnected when there is no system requirement to turn off the address
drivers (ABE is pulled high internally - see Note 2).

Memory Abort - This input allows the memory system to signal the proces-
sor that a requested access is not allowed. This input is only monitored
when the VLB86C020 is accessing external memory.

Address Latch Enable - This input is used to control transparent latches on
the address outputs. Normally the addresses change while MCLK is high.
However, when interfacing directly to ROMs, the address must remain
stable throughout the whole cycle; taking ALE low until MCLK goes low will
ensure that this happens. If the system does not require address lines to
be held in this way, ALE may be left unconnected (it is pulled high internally
- see Note 2). The ALE latch is dynamic, and ALE should not be held low
indefinitely.

NOT Byte/Word - This is an output signal used by the processor to indicate
to the external memory system when a data transfer of a byte length is
required. ~B/W is high for word transfers and low for byte transfers, and is
valid for both read and write operations. The signal changes while MCLK is
high, and is valid by the start of the active cycle to which it refers.

Control Bus Enable - When this input is low, the following control bus
drivers are put into a high impedance state (Note 1):

—B/W, LINE, LOCK, -M1, -M0, —-R/W, -TRANS

CBE may be left unconnected when there is no-system requirement to turn
off the control bus drivers (CBE is pulled high internally - see Note 2).

Coprocessor Absent - A coprocessor which is capable of performing the

operation which the VL86C020 is requesting (by asserting —CPI) should

take CPA low immediately. The VL86C020 samples CPA when CPCLK

and —CPI are both low, the VL86C020 will busy-wait until CPB is low and
then complete the coprocessor instruction. If no coprocessors are fitted,
CPA may be left unconnected (it is pulled high internally - see Note 2).

Coprocessor Busy - A coprocessor which is capable of performing the
operation which the VL86C020 is requesting (by asserting ~CP1), but
cannot commit to starting it inmediately, should indicate this by taking CPB
high. When the coprocessor is ready to start it should take CPB low. The
VL86C020 samples CPB when CPCLK and —CPl are both low. If no
coprocessors are fited, CPB may be left unconnected (it is pulled high
internally - see Note 2).

Coprocessor Clock - This pin provides the clock by which all VL86C020
coprocessor interactions are timed. CPCLK is derived from MCLK or FCLK
depending on whether the processor is accessing external memory or the
cache; the coprocessors must, therefore, be able to operate at FCLK
speeds.

3-8

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (cont.)

Signal Pin Signal Signal
Name Number Type Description
CPD0-CPD31 121-117,115, ITOTZ Coprocessor Data Bus - These are bidirectional signal paths which are
114, 112-108, used for data transfers between the processor and external coprocessors,
106-104, 101- as follows:
221:13'%’ 8o, « For processor instruction fetches (when —OPC = 0), the opcode is sent
! to the coprocessors by driving CPD0-CPD31 while CPCLK is high.
Coprocessor instructions are broadcast unaltered, but non coprocessor
instructions are replaced by &FFFFFFFF.
 During data transfers from VL86C020 to a coprocessor, the data is
driven onto CPD0-CPD31 while CPCLK is high.
« During register and data transfers from the coprocessor to VL86C020,
CPDO0-CPD31 are inputs, and the data must be setup to the falling edge
of CPCLK.
CPE 75 ITP Coprocessor Bus Enable - When this input is low, the following coproces-

sor bus driversiare put into a high impedance state (see Note 1):
CPCLK, CPD0-CPD31, —-CPI, CPSPV, -OPC

CPE is provided to allow the coprocessor outputs to be disabled while
testing the VL86C020 in-circuit, and CPE should be left unconnected for
normal operation (it is pulled high internally - see Note 2). If no coproces-
sor is to be connected to the VL86C020, CPE may be tied low, but CPCLK,
CPDO0-CPD31, ~CPl, CPSPV and —OPC must not be left floating.

-CPI 72 ocz NOT Coprocassor Instruction - When VL86C020 executes a coprocessor
instruction, it will take this output low and wait for a response from the
appropriate coprocessor. The action taken will depend on this response,
which the coprocessor signals on the CPA and CPB inputs. —CPI changes
while CPCLK is low.

CPSPV 7 ocz Coprocessor Supervisor Mode - As instructions are broadcast to the
coprocessors on CPD0-CPD31, this output reflects the mode in which
each instruction was fetched by the processor (CPSPV = 1 for supervisor/
IRQ/FIQ mode fetches, CPSPV = 0 for user mode fetches). The coproces-
sors may use this information to prevent user-mode programs executing
protected coprocessor instructions. CPSPV changes while CPCLK is high.

D0-D31 123-127,130- ITOTZ Data Bus - These are bidirectional signal paths which are used for data

133, 135-138, transfers between the processor and external memory, as follows:
142-148, 148,

150-152, 154- « For read operations (when —R/W = 0), the input data must be valid
168, 1-6 before the falling edge of MCLK.

= For write operations (when —R/W = 1), the output data will become valid
while MCLK is low.

DBE 30 ITP Data Bus Enable - When this input is low, the data bus drivers (D0-D31)
are put into a high impedance state (Note 1). The drivers will always be
high impedance except during write operations, and DBE may be left
unconnected in systems which do not require the data bus for DMA or
similar activities (DBE is pulled high internally - see Notei2).

FCLK 22 IC Fast Clock Input - When the VL86C020 CPU is accessing the cache, per-
forming an internal cycle, or communicating directly with the coprocessor, it
is clocked with the fast clock, FCLK. This is a free-running clock which is
independent of MCLK; the maximum FCLK frequency is determined by the
speed of the processot/coprocessor combination.

® VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (cont.)

Signal
Name

Pin
Number

Signal
Type

Signal
Description

-FlQ

-IRQ

LINE

LOCK

-Mo, -M1

MCLK

~MREQ

MSE

-OPC

—RESET

17

18

10

11

12, 16

23

21

19

74

32

IT

ocz

oczZ

ocz

ocz

ITP

ocz

NOT Fast Interrupt Request - If FIQs are enabled, the processor will
respond to a low level on this input by taking the FIQ interrupt exception.
This is an asynchronous, level-sensitive input, and must be held low until a
suitable response is received from the processor.

Not Interrupt Request - As —FIQ, but with lower priority. May be taken low
asynchronously to interrupt the processor when the —IRQ enable is active.

Line Fetch Operation - This signal is driven high to signal that the CPU is
fetching a line of information for the cache. Line fetch operations always
read four words of data (aligned on a quad-word boundary), so the LINE
signal may be used to start a fast quad-word read from memory. The
signal changes while MCLK is high, and remains high throughout the line
fetch operation.

Locked Operation - When LOCK is high, the processor is performing a
“locked” memory access, and the memory manager should wait until LOCK
goes low before allowing another device to access the memory. LOCK
changes while MCLK is high, and remains high for the duration of the
locked memory accesses (data swap operation).

NOT Processor Mode - These output signals are the inverses of the
internal status bits indicating the processor operation mode (-MO, —M1):
11 = User Mode, 10 = FIQ Mode, 01 = IRQ Mode, 00 = Supervisor Mode).
-Mo0, -M1 change while MCLK is high.

Memory Clock Input - This clock times all VL86C020 memory accessses.
The low period of MCLK may be stretched when accessing slow peripher-
als; alternatively, the ~-WAIT input may be used with a free-running MCLK
to achieve the same effect.

NOT Memory Request - This is a pipelined signal that changes while
MCLK is low to indicate whether the following cycle will be active (proces-
sor accessing external memory) or latent (processor not accessing
external memory). An active cycle is flagged when -MREQ = 0.

Memory Request/Sequential Enable - When this input is low, the -MREQ
and SEQ cycle control outputs are put into a high impedance state (Note
1). MSE is provided to allow the memory request/sequential outputs to be
disabled while testing the VL86C020 in-circuit, and it should be left uncon-
nected for normal operation (MSE is pulled high internally - see Note 2).

Opcode Fetch - ~OPC is driven low to indicate to the coprocessors that an
instruction will be broadcast on CPD0-CPD31 when CPCLK goes high.
—OPC is held valid when CPCLK is low, and changes when CPCLK is
high.

NOT Reset - This is a level sensitive input signal which is used to start the
processor from a known address. A low level will cause the instruction
being executed to terminate abnormally, and the cache to be flushed and
disabled. When —RESET becomes high, the processor will re-start from
address 0. —RESET must remain low for at least two FCLK clock cycles,
and eight MCLK clock cycles. During the low period the processor will
perform dummy instruction fetches from external memory with the address
incrementing from the point where —~RESET was activated. The address
value will wrap around to zero if -RESET is held beyond the maximum
address limit.

3-10

® VLSI TECHNOLOGY, INC.

VL86C020

PRELIMINARY

SIGNAL DESCRIPTIONS FOR PLASTIC QUAD FLATPACK (cont.)

Signal Pin Signal Signal

Name Number Type Description

~-RW 7 ocz NOT Read/Write - When high this signal indicates a processor write
operation; when low, a read operation. The signal changes while MCLK is
high, and is valid by the start of the active cycle to which'it refers.

SEQ 20 ocz Sequential Address - This signal is the inverse of -MREQ, and is provided
for compatibility with existing ARM memory systems (VL86C020 has a
subset of VL86CO010 bus operations; see Memory Interface section).

-TEST 35 ITP NOT Test - When this input is low, the VL86C020 entersia special test
mode which is only used for off-board testing. —TEST must not be driven
low while the VL86C020 is in-circuit, but may be left unconnected as it is
pulled high internally (see Note 2),

~TRANS 9 0ocz NOT Memory Translate - When this signal is low it indicates that the
processor is in user mode, or that the supervisor is using a single transfer
instruction withithe force translate bit active. It may be used to tell memory
management hardware when translation of the addresses should be turned
on, or as an indicator or non-user mode activity.

~-WAIT 34 ITP NOT Wait - When accessing slow peripherals, the VL86C020 can be made
to wait for an integer number of MCLK cycles by driving ~WAIT low. Inter-
nally, —-WAIT is ANDed with the MCLK clock, and must ohly change when
MCLK is low. If ~WAIT is not used in a system, it may be left unconnected
(it is pulled high internally - see Note 2).

VDD 13, 25, 41, 55, Power supply: +5 V

78, 87,102, 122,
139, 141, 159
GND 15, 24, 39, 53, Ground
69, 80, 86, 90,
103, 116, 129,
140, 149, 160
NC 8, 14,27, 33, No connect
48, 54, 67, 73,
88, 94, 107, 113,
128, 134, 147, 153
Key to Signal Types:
IC CMOS-level input
IT TTL-level input
ITP TTL-level input with pull-up resistor (Note 2)
0ocz 3-state CMOS-level output
ITOTZ Bidirectional: 3-state TTL-level output; TTL-level input

Notes:

1. When output pads are placed in the high impedance state for long periods, care must be taken to ensure that they do not
float to an undefined logic level, as this can dissipate a lot of power, especially in the pads,

2. The “ITP" class of pads incorporate a pull-up resistor which allows: signals with normally high inputs to be left unconnected.
The value of the pull-up resistor will fall within the range 10 kQ - 100 kQ.

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

PROGRAMMERS' MODEL
The VL86C020 processor has a 32-bit
data bus and a 26-bit address bus. The
processor supports two data types,
eight-bit byte and 32-bit words, where
words must be aligned on four byte
boundaries. Instructions are exactly
one word, and data operations (e.g.
ADD) are only performed on word
quantities. Load and store operations
can transfer either bytes or words. The
VL86C020 supports four modes of
operation, including protected supervi-
sor and interrupt handling modes.

BYTE SIGNIFICANCE

Some programming techniques may
write a 32-bit (word) quantity to mem-
ory, but will later retrieve the data as a
sequence of byte (8-bit) items. For
these purposes, the processor stores
word data in least-significant-first (LSB

first) order. This means that the least
significant bytes of a 32-bit word
occupies the lowest byte address. (The
VLSI Technology, Inc. assemblers,
none the less, display compiled data in
MSBs-first order, but for the sake of
clarity only. The internal machine
representation is preserved as L.SBs-
first.)

REGISTERS

The processor has 27 registers (32-bits
each), 16 of which are visible to the pro-
grammer at any time. The visible
subset depends on the current proces-
sor mode; special registers are
switched in to support interrupt and
supervisor processing. The register
bank organization is shown in Table 1.

User mode is the normal program
exacution state; registers R15-R0 are
directly accessible.

All registers are general purpose and
may be used to hold data or address
values, except that register R15
contains the Program Counter (PC) and
the Processor Status Register (PSR).
Special bits in some instructions allow
the PC and PSR to be treated togsther
or separately as required. Figure 1
shows the allocation of bits within R15.

R14 is used as the subroutine link
register, and receives a copy of R15
when a Branch and Link instruction is
executed. It may be treated as a
general purpose register at all other
times. R14_svc, R14_irq and R14_fiq
are used similarly to hold the return
values of R15 when interrupts and
exceptions arise, or when Branch and
Link instructions are executed within
supervisor or interrupt routines.

TABLE 1. REGISTER ORGANIZATION
Typical Use
RO General —
R1 General
R2 General
R3 General
R4 General
R5 General
General Usage
Re General
R7 General
R8s General FIQ
R9 General FiQ
R10 General FlQ
R11 General FlQ 1
R12 (FP) General FlQ Data Frame (by convention)
R13 (SP) General Supervisor IRQ FlQ Stack Pointer (by convention)
R14 (LK) General Supervisor IRQ FiQ R15 Save Area for BL or Interrupts
R15 (PC) (Shared by all Modes) System Program Counter
TABLE 2. BYTE ADDRESSING Word
Address
a1 o Value
Byte Addr. 0003 Byte Addr. 0002 Byte Addr. 0001 Byte Addr. 0000 0000
Byte Addr. 0007 Byte Addr. 0006 Byte Addr. 0005 Byte Addr. 0004 0001

3-12

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

FIQ Processing - The FIQ mode
(described in the Exceptions section)
has seven private registers mapped to
R14-R8 (R14_fig-R8_fiq). Many FlQ
programs will not need to save any
registers.

IRQ Processing - The IRQ state has
two private registers mapped to R14
and R13 (R14_irq and R13_irq).

Supervisor Mode - The SVC mode
(entered on SWI instructions and other
traps) has two private registers mapped
to R14 and R13 (R14_svc and
R13_svc).

The two private registers allow the IRQ
and Supervisor modes each to have a
private stack pointer and line register.
Supervisor and IRQ mode programs
are expected to save the user state on
their respective stacks and then use the
user registers, remembering to restore
the user state before returning.

In user mode only the N, Z, C and V
bits of the PSR may be changed. The |,
F and Mode flags will change only when
an exception arises. In supervisor and
interrupt modes, all flags may be ma-
nipulated directly.

EXCEPTIONS

Exceptions arise whenever there is a
need for the normal flow of program
execution to be broken, so that (for
instance) the processor can be diverted
to handle an interrupt from a peripheral.

The processor state just ptior to
handling the exception must be
preserved so that the original program
can be resumed when the exception
routine has completed. Many excep-
tions may arise at the same time.

The processor handles exceptions by
using the banked registers'to save
state. The old PC and PSR are copied
into the appropriate R14, and the PC
and processor mode bits are forced to a
value which depends on the exception.
Interrupt disable flags are set where
required to prevent unmanageable
nestings of exceptions. Inthe case of a
re-entrant interrupt handler, R14 should
be saved onto a stack in main memory
before re-enabling the interrupt. When
multiple exceptions arise simuitane-
ously, a fixed priority determines the
order in which they are handled.

FIQ - The FIQ (Fast Interrupt Request)
exception is externally generated by
taking the —FIQ pin low. This input can
accept asynchronous transitions, and is
delayed by one clock cycle: for synchro-
nization before it can affect the proces-
sor execution flow. It is designed to
support a data transfer or channel
process, and has sufficient private
registers to remove the need for
register saving in such applications, so
that the overhead of context switching
is minimized. The FIQ exception may
be disabled by setting the F flag in the

FIGURE 1. PROGRAM COUNTER AND PROCESSOR STATUS REGISTER

31 26 25 16 15 210
T 17 11 T 11 T 1 T T 1 T 1 1 T T
Infzlc|v[ife] " T ! ! ! v
L I
Program Counter ‘Mod
FIQ Disable (Word Aligned) Progassor Mode
0 = Enable = User Mode
1 = Disable 01 = FIQ Mode
= 10 = [RQ Mode
IRQ Disable 11 = Supervisor Mode
0 = Enable
1 = Disable
Overflow
Carry/Not Borrow/Rotate Extend
L—. Zoro

Negative/Signed Less Than

PSR (but note that this'is not possible
from user mods). If the F flag is clear,
the processor checks for a low level on
the output of the FIQ synchronizer at
the end of each instruction.

The impact upon execttion of an FIQ
interrupt is defined in Table 3. The
return-from-interrupt sequence is also
defined there. This will resume
execution of the interrupted code
sequence, and restore the original
processor state.

IRQ - The IRQ (Interrupt Request)
exception is a normal interrupt caused
by a low level on the —-IRQ pin. It has a
lower priority than FIQ, and is masked
out when a FIQ sequence is entered.
Its effact may be masked out at any
time by setting the | bit in the PC (but
note that this is not possible from user
mode). If the I flag is clear, the proces-
sor checks for a low level on the output
of the IRQ synchronizer at the end of
each instruction.

The impact upon execution of an IRQ
interrupt is defined in Table 3. The
return-from-interrupt sequence is also
defined there. This will cause execution
to resume at the instruction following
the interrupted one, restore the original
processor state, and re-enable the IRQ
interrupt.

Address Exceptlon Trap - An address
exception arises whenever a data
transfer is attempted with a calculated
address above 3FFFFFFH. The
VL86C020 address bus is 26-bits wide,
and an address calculation will have a
32-bit result. If this result has a logic
one in any of the top six bits, it is as-
sumed that the address: is an error and
the address exception trap is taken.

Note that a branch cannot cause an
address exception, and'a block data
transfer instruction which starts in the
legal area but increments into the illegal
area will not trap. The check is
performed only on the address of the
first word to be transferred.

When an address exception is seen,
the processor will respond as defined in
Table 3. The return-from-interrupt
sequence is also defined there. This
will resume execution of the interrupted
code sequence, and restore the original
processor state.

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

Normally, an address exception is
caused by erroneous code, and it is
inappropriate to resume execution. If a
return is required from this trap, use
SUBS PC, R14_svc, 4, as defined in
Table 3. This will returnto the instruc-
tion after the one causing the trap.

Abort - The ABORT signal comes from
an external memory management
system, and indicates that the current
memory access cannot be completed.
For instancs, in a virtual memory
system the data corresponding to the
current address may have been moved
out of memory onto a disc, and consid-
erable processor activity may be
required to recover the data before the
access can be performed successfully.
The processor checks for an abort at
the end of the first phase of each bus
cycle. When successfuily aborted, the
VL86C020 will respond in one of three
ways:

1. If the abort occurred during an
instruction prefetch (a prefetch
abort), the prefetched instruction is
marked as invalid; when it comes
to execution, it is reinterpreted as
below. (If the instruction is not
executed, for example as a result
of a branch being taken while it is
in the pipeline, the abort will have
no effect.)

2. If the abort occurred during a data
access (a data abort), the action
depends on the instruction type.
Data transfer instructions (LDR,
STR, SWP) are aborted as though
the instruction had not executed.
The LDM and STM instructions
complete, and if write back is set,
the base is updated. If the
instruction would normally have
overwritten the base with data (i.e.
LDM with the base in the transfer
list), this overwriting is prevented.
All register overwriting is prevented
after the abort is indicated, which
means in particular that R15 (which
is always last to be transferred) is
preserved in an aborted LDM
instruction.

3. If the abort occurred during an
internal cycle it is ignored.

Then, in cases (1) and (2), the proces-
sor will respond as defined in Table 3.

The return from Prefetch Abort defined
in Table 3 will attempt to execute the
aborting instruction (which will only be
effective if action has been taken to
remove the cause of the original abort).
A Data Abort requires any auto-
indexing to be reversed before returning
to re-execute the offending instruction.
The return is performed as defined in
Table 3.

The abort mechanism allows a demand
paged virtual memory system to be
implemented when a suitable memory
management unit (such as the
VL86C110) is available. The processor

is allowed to generate arbitrary ad-
dressaes, and when the data at an
address is unavailable the memory
manager signals an abort. The
processor traps into system software
which must work out the cause of the
abort, make the requested data
available, and retry the aborted
instruction. The application program
needs no knowledgs of the amount of
memory available to it, nor is its state in
any way affected by the abort.

Software Interrupt - The software
interrupt is used for getting into supervi-
sor mode, usually to request a particu-
lar supervisor function. The processor

TABLE 3. EXCEPTION TRAP CONSIDERATIONS

Trap Type CPU Trap Activity

Program Return Sequence

. Save R15 in R14 (SVC).

4
Reset 2. Force M1, M0 to SVC mode,
and set F & | status bits in PC.

3. Force PC to 0x000000.

(va)

Undsfined . Save R15in R14 (SVC).

Instruction

N =

w

. Force PC to 0x000004.

. Force M1, M0 to SVC mode,
and set | status bit in the PC.

MOVS PC,R14 ;SVC'sRi14.

Software . Save R15 in R14 (SVC).

Interrupt

N =

w

. Force PC to 0x000008.

. Force M1, MO to SVC mode,
and set | status bit in the PC.

MOVS PC,R14 ;SVC'sR14.

Prafalch . Save R15 in R14 (SVO).

Prefetch Abort:

and Data
Aborts

N =

. Force M1, M0 to SVC mode,

and set | status bit in the PC.

. Force PC to 0x000010-data.

Force PC to 0x0000C-Pre-.

SUBS PC,R14,4 ;SVC's R14.

Data Abort:

SUBS PC,R148 ;SVC'sRi4.

Address
Exception

. Convert Stores to Loads.
. Complets the instruction {see

text for details).

Save R15 in R14 (SVC).
Force M1, MO to SVC mode,
and set | status bit in the PC.

. Force PC to 0x000014.

SUBS PC,R14,4 ;SVC'sR14.

(Returns CPU to address following
the one causing the trap.)

IRQ

. Save R15 in R14 (IRQ).
. Force M1, M0 to IRQ mode,

and set | status bit in the PC.
Force PC to 0x000018.

SUBS PC,Ri144 ;IRQ'sRi4.

FlQ

N =

3.

Save R15in R14 (FIQ).
Force M1, MO to FIQ mode,
and set the F and | status bits
in the PC.

Force PC to 0x00001C.

SUBS PC,R144 ;FIQ'sRi4.

314

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

response to the (SWI) instruction is
defined in Table 3, as is the method of
returning. The indicated return method
will return to the instruction following the
SWI.

Undefined Instruction Trap - When
VL86C020 executes a coprocessor
instruction or the undefined instruction,
it offers it to any coprocessors which
may be present. If a coprocessor can
perform this instruction but is busy at
that moment, the processor will wait
until the coprocessor is ready. If no
coprocessor can handle the instruction
the VL86C020 will take the undefined
instruction trap.

The trap may be used for software
emulation of a coprocessor in a system
which does not have the coprocessor
hardware, or for general purpose
instruction set extension by software
emulation.

When the undefined instruction trap is
taken the VL86C020 will respond as
defined in Table 3. The return from this
trap (after performing a suitable
emulation of the required function),
defined in Table 3 will return to the
instruction following the undefined
instruction.

Reset - When —RESET goes high, the
processor will stop the currently
executing instruction and start execut-
ing no-ops. When —RESET goes low
again it will respond as defined in Table
3. There is no meaningful return from
this condition.

Vector Table - The conventional
means of Implementing an interrupt
dispatch function is to provide a table of
jumps to the appropriate processing
table, as follows:

Address Eunction

0000000 Reset

0000004 Undefined Instruction
0000008 Software Interrupt
000000C Abort (Prefetch)
0000010 Abort (Data)
0000014 Address Exception
0000018 IRQ

000001C FiQ

These are byte addresses, and each
contains a branch instruction pointing to
the relevant routine. The FIQ routine
might reside at 000001C onwards, and
thereby avoid the need for (and
execution time of) a branch instruction.

Exception Priorities - When multiple
exceptions arise at the same time, a
fixed priority system determines the
order in which they will be handled:

Reset (highest priority)
Address Exception, Data Abort
FIQ

IRQ

Prefetch Abort

Undefined Instruction, Software
Interrupt (lowest priority)

oarLN~

Note that not all exceptions can occur
at once. Address exception and data
abort are mutually exclusive, since if an
address is illegal, the processor ignores
the ABORT input. Undefined instruc-
tion and software interrupt are also
mutually exclusive since they each
correspond to particular (non-overlap-
ping) decodings of the current instruc-
tion.

If an address exception or data abort
occurs at the same time as a FIQ, and
FIQs are enabled i.e. the F flag in the
PSR is clear, the processor will enter
the address exception or data abort
handler and then immediately proceed
ta the FIQ vector. A normal return from
FIQ will cause the address exception or
data abort handler to resume execution.
Placing address exception and data

abort at a higher priority than FIQ is
necessary to ensure that the transfer
error does not escapsa detection, but the
time for this exception entry should be
reflected in worst case FIQ latency cal-
culations.

Interrupt Latencles - The worst case
latency for FIQ, assuming that it is
enabled, consists of the longest time
the request can take to pass through
the synchronizer (Tsyncmax), plus the
time for the longest instruction to
complete (Tldm, the longest instruction
is load multiple registers), plus the time
for address exception or data abort
entry (Texc), plus theitime for FIQ entry
(Ttig). Atthe end of this time the
processor will be executing the instruc-
tion at 1C.

Tsyncmax is 2.5 procassor cycles, Tldm
is 18 cycles, Texc is three cycles, and
Tiiq is two cycles. The total time is,
therefore, 25.5 processor cycles, which
is just over 2.5 microseconds in a
system using a continuous 10 MHz
processor clock. In ai DRAM based
system running at 4 and 8 MHz, for
example using the VL'86C110, this time
becomes 4.5 microsetonds, and if bus
bandwidth is being used to support
video or other DMA agtivity, the time will
increase accordingly.

The maximum IRQ latency calculation
is similar, but must allow for the fact
that FIQ has higher priority and could
delay entry into the IRQ handling
routine for an arbitrary length of time.

The minimum lag for interrupt recogni-
tion for FIQ or IRQ consists of the
shortest time the request can take
through the synchronizer (Tsyncmin)
plus Tfig. This is 8.5 processor cycles.
The FIQ should be held until the mode
bits indicate FIQ mode. It may be
safely held until cleared by an I/O
instruction in the FIQ service routine.

3-15

® VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

INSTRUCTION SET

All VL86C020 instructions are condi-
tionally executed, which means that
their execution may or may not take
place depending on the values of the N,
Z, C and V flags in the PSR at the end
of the preceding instruction.

If the ALways condition is specified, the
instruction will be executed irrespective
of the flags, and likewise the Never
condition will causs it not to be exe-
cuted (it will be a no-op, i.e. taking one
cycle and having no effect on the proc-
essor state).

The other condition codes have
meanings as detailed above, for
instance, code 0000 (EQual) causes
the instruction to be executed only if the
Zflag is set. This would correspond to
the case where a compare (CMP)
instruction had found the two operands
were different, the compare instruction
would have cleared the Z flag, and the
instruction would not be executed.

FIGURE 2. CONDITION FIELD

31 24 23 16 15 8 7 0
L II’IT I II 1 I1FITIT.I‘[| ot ‘ LA DL
Condx (Any Instruction) l

|: Condition Field

0000 = EQ - Z set (equal)

0001 = NE - Z clear (not equal)

0010 = CS - C set (unsigned higher or same)

0011 = CC - C clear (unsigned lower)

0100 = MI - N set (negative)

0101 = PL - N clear (positive or zero)

0110 = VS - V set (overflow)

0111 = VC - V clear (no overflow)

1000 = HI - C set and Z clear (unsigned higher)

1001 = LS - C clear or Z set (unsigned lower or same)

1010 = GE - N set and V set, or N clear and V clear (greater or equal)

1011 =LT - Nsetand V clear, or N clear and V set (less than)

1100 = GT - Z clear, and either N set and V set, or N clear and V clear (greater than)
1101 = LE - Z set, or N set and V clear, or N clear and V set (less than or equal)
1110 = AL - Always

1111 =NV - Never

Branch and Branch with Link (B, BL)
The B, BL instructions are only exe-
cuted if the condition field is true.

All branches take a 24-bit offset. The
offset is shifted left two bits and added
to the PC, with overflows being ignored.
The branch can therefore reach any
word aligned address within the
address space. The branch offset must
take account of the prefetch operation,
which causes the PC to be two words
ahead of the current instruction.

Link BIt - Branch with Link writes the
old PC and PSR into R14 of the current
bank. The PC value written into the link

FIGURE 3. BRANCH AND BRANCH WITH LINK (B, BL)
31 28 27 24 23 0

Lé:o#dx[ﬂloﬁlﬂljljr]T ’lll,ITl |II|

I
PC-Relative Offset
Condition

Field

Link Bit-
0 = Branch
1 = Branch With Link (Subroutine cal)

Return from Subroutine - When
returning to the caller, there is an option
to restore or to not restore the PSR.
The following table illustrates the
available combinations.

register (R14) is adjusted to allow for
the prefetch, and contains the address
of the instruction following the branch
and link instruction.

Restoring PSR:
Not Restoring PSR:

Assembler Syntax:
B(L){cond}
where L

<expression>

MOVS PC,R14
MOV PC,R14

LDM Rnl, (PC)*
LDM Rnl, (PC)

is used to request the Branch-with-Link form of the instruction.

If absent, R14 will not be affected by the instruction.

cond

is a two-character mnemonic as shown in Condition Code section (EQ, NE,

VS, etc.). If absent then AL (Always) will be used.

expression

is the destination. The assembler calculates the relative (word) offset.

Items in {} are optional. ltems in <> must be present.

3-16

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

Examplos: ‘

Here BAL Here ; Assembles to EAFFFFFE. (Note effect of PC offset)
B There ; Always condition used as defauit
CMP R1,0 ; Compare register one with zero, and branch to Fred if
BEQ Fred ; register one was zero. Else continue next instruction.
BL ROM + Sub ; Unconditionally call subroutine at computed address.
ADDS Rfi,1 ; Add one to register one, setting PSR flags on the result.
BLCC Sub ; Gall Sub if the C flag is clear, which will be the case unless

; R1 contained FFFFFFFFH. Else continue next instruction.

BLNV Sub ; Never call subroutine (this is a NO-OP).

3-17

® VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

FIGURE 4. ALU INSTRUCTION TYPES

31 28 25 20 16 15 12 11 0
T 1 1 T 1 1 T 11 T 1.1 T T T I T T T 1 I
I Condx |0 0| I| Opcode ISI Rn ‘ Rd I Operand 2
i I || | L il
Destination Register
Condition
Code 1st Operand Reglster

Set Condition Codes
0 = Do not alter condition codes
1 = Set condition codes (S suffix)

Immediate Value
0 = Operand 2 Is a register.
1 = Operand 2 is'an
immediate value.
Operation Code ~———
0000 = AND - Rd = Op1 AND Op2
0001 = EOR - Rd = Op1 EOR Op2
0010 = SUB - Rd = Op1 - Op2
0011 = RSB - Rd = Op2 - Op1
0100 = ADD - Rd = Opt + Op2
0101 = ADC - Rd = Op1 + Op2 + C
0110 = SBC - Rd = Op1 -Op2 + C
0111 =RSC-Rd=0p2-Op1 +C
1000 = TST - set condition codes on Op1 AND Op2
1001 = TEQ - set condition codes on Opt EOR Op2
1010 = CMP - set condition codes on Op1 - Op2
1011 = CMN - set condition codes on Op1 + Op2

Imm =1 --> Operand 2 Is an immediate value.

11 8 7 0
T 11 T 1 7 1T T 11
— I Rotate | Immediate l

Unsigned 8-bit inmediate value

Right-rotate amount to be applied
to 8-bit Imm (2-bit shift units).

Imm = 0 --> Operand 2 is in a register.
11 4 3 0

LI L AL
L—I Shift Field

1100 = ORR - Rd = Op1 OR Op2
1101 = MOV -Rd = Op2

1110 = BIC -Rd = Op1 AND not Op2
1111 = MVN - Rd = not Op2

11

|ITT

11

|

I|l

manan

|) |
|

ARAR

Shift Amount
Shift amount is a 5-bit
unsigned integer.

Shift Amount
Shift amount is specified
in bottom byte of Rs.

Ty

Rm
[2nd Operand Register

Shift applied to Rm (as shown
in below expansion figures).

l——- Shift Type

00 = Logical Left

01 = Logical Right
10 = Arithmetic Right (ASR)
11 = Rotate Right

(LSL)
(LSR)

(ROR)

ALU Instructions - The ALU-type
instruction is only executed if the
condition is true. The various condi-
tions are defined in Condition Field
Section.

The instruction produces a result by
performing a specified arithmetic or
logical operation on one or two oper-
ands. The first operand is always a

register (Rn). The second opsrand may
be a shifted register (Rm) or a rotated
8-bit immediate value (Imm) according
to the value of the | bit in the instruction.
The condition codes in the PSR may be
preserved or updated as a result of this
instruction, according to the value of the
S bit in the instruction. Certain opera-
tions (TST, TEQ, CMP, CMN) do not

write the result to Rd. They are used
only to perform tests and to set the
condition codes on the result, and
therefore, should always have the S bit
set. (The assembler treats TST, TEQ,
CMP and CMN as TSTS, TEQS, CMPS
and CMNS by default.)

3-18

& VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

DATA PROCESSING OPERATIONS

Assembler
Mnemonic Opcode
AND 0000
EOR 0001
sSuB 0010
RSB 0011
ADD 0100
ADC 0101
SBC 0110
RSC o111
TST 1000
TEQ 1001
CMP 1010
CMN 1011
ORR 1100
MOV 1101
BIC 1110
MVN 1111

Bit-wise logical AND of operands
Bit-wise logical Exclusive Or of operands
Subtract operand 2 from operand 1
Subtract operand 1 from operand 2

Add operands

Add operands plus carry (PSR C flag)

Subtract operand 2 from operand 1 plus carry
Subtract operand 1 from operand 2 plus carry

as AND, but result is not written
as EOR, but result is not written
as SUB, but result is not written
as ADD, but result is not written
Bit-wise logical OR of operands
Move operand 2 (operand:1 is ignored)

Bit clear (bit-wise AND of operand 1 and NOT operand 2)
Move NOT operand 2 (operand 1 is ignored)

PSR Flags - The operations may be
classified as logical or arithmetic. The
logical operations (AND, EOR, TST,
TEQ, ORR, MOV, BIC, MVN) perform
the logical action on all corresponding
bits of the operand or operands to
produce the result. If the S bit is set
(and Rd is not R16), the V flag in the
PSR will be unaffected, the C flag will
be set to the carry out from the barrel
shifter (or preserved when the shift
operation is LSL 0}, the Z flag will be
set if and only if the result is all zeros,
and the N flag will be set to the logical
value of bit 31 of the result.

The arithmetic operations (SUB, RSB,
ADD, ADC, SBC, RSC, CMP, CMN)
treat each opsrand as a 32-bit integer
(either unsigned or 2's complement
signed, the two are equivalent). If the S
bit is set (and Rd is not R15) the V flag
in the PSR will be set if an overflow
occurs into bit 31 of the result; this may
be ignored if the operands were
considered unsigned, but warns of a
possible error if the operands were 2's
complement signed. The C flag will be
set to the carry out of bit 31 of the ALU,
the Z flag will be set if and only if the
result was zero, and the N flag will be
set to the value of bit 31 of the result
(indicating a negative result if the
operands are considered to be 2's
complement signed).

Shifts - When the second operand is
specified to be a shifted register, the

operation of the barrel shifter is
controlled by the shift fieldiin the in-
struction. This field indicates the type
of shift to be performed (logical left or
right, arithmetic right or rotate right).
The amount by which the register
should be shifted may be contained in
an immediate field in the instruction, or
in the bottom byte of another register as
shown in Figure 4.

When the shift amount is specified in
the instruction, it is contained in a 5-bit
field which may take any value from 0

to 31. Alogical shift left (LSL) takes the
contents of Rm and moves each bit by
the specified amount to: a more signifi-
cant position. The least significant bits
of the result are filled with zeros, and
the high bits of Rm whi¢h do not map
into the result are discarded, except
that the least significant discarded bit
becomes the shifter carry output which
may be latched into the C bit of the
PSR when the ALU operation is in the
logical class. (See Data Processing
Operations above.) For example, the
offect of LSL 5 is:

FIGURE 5. LOGICAL SHIFT LEFT (LSL)

31 24 23 16

15 8 7 0

IC I‘__IIIIIIll'lIIIIIIIIIIIIIIIIIIIIIII 0
an

Contents of Rm, which will appear (shifted) in Operand 2

Carry Flag 31

16 15

24 23
[TTT T

Ifsitﬂ‘_lllllll

11
Lower 27 bits of Rm

0
[Illlllllloil"l_l

0000

Example of shifted result in Operand 2 (shifted content of Rm)

Note that LSL 0 is a special cass,
where the shifter carry outiis the old
value of the PSR C flag. The contents
of Rm are used directly asithe second
operand.

A Logical Shift Right (LSR) is similar,
but the contents of Rmiare moved to
less significant positions in the result.
LSR 5 has the effect shown in Figure 6.

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

FIGURE 6. LOGICAL SHIFT RIGHT (LSR)

31 2423 1615 8 7 0
FrtTTTrriTT T rTrrirTrTd FrrTrrrrrrerer T
o—» l | | 1 —» [cam]
Contents of Rm, which will appear (shifted) in Operand 2
31 2423 1615 8 7 o CayFlag
] l | T IR EE rrrrrri
Io 00 | | Upper 27 bits of Rm | | — I Bit 4 |
Example of shifted result in Operand 2 (shifted content of Rm)
The form of the shift field which might converts LSR 0, and ASR 0, and ROR the sign bit (bit 31) of the Rm register,
be expected to correspond to LSR 0 is 0 into LSL 0, and allows LSR 32 to be instead of zeros. This signed shift
used to encode LSR 32, which has a specified. preserves the correct representation of

zero result with bit 31 of Rm as the
carry output. Logical shift right zero is
redundant as it is the same as logical
shift left zero. Therefore, the assembler

The Arithmetic Shift Right (ASR) is a (eigned) negativo Integertobe
similar to logical shift right, except that Ivided by powers of tWo via a rig

the high bits are filled with replicates of ~ Shift. For example, ASR 5 has the
following effect:

FIGURE 7. ARITHMETIC SHIFT RIGHT (ASR)

31 24 23 16 15
rrrirrrfrrrov v rirerrrrprrrrrrT
: [! ' l] ’ ICarry]
sign
g Contents of Rm, which will appear (shifted) in Operand 2
extend
Carry Flag
31 24 23 16 15 8 7 0
3talalglalsl | IR REENAEEEEEE
|1 111 1|o ' (SLextended) upper 27 bits of Rm I —’I Bit4|
Example of shifted result in Operand 2 (shifted content of Rm)
The form of the shift field which might operand 2 is also equal to the sign bit Rotate Right (ROR) operations reuse
be expected to give ASR 0 is used to (bit 31) of Rm. The result is, therefore, the bits which "overshoot" in a logical
encode ASR 32. Bit 31 of Rm is again all ones or all zeros according to the shift right operation by wrapping them
used as the carry output, and each bitof value of bit 31 of Rm. around at the high end of the result.

For example, the effect of a ROR 5 is:

FIGURE 8. ROTATE RIGHT (ROR)
31 24 23 16 15 8 7 0

L | IR | L I L J lCarryl
Contents of Rm, which will appear (shifted) in Operand 2
31 24 23 1615 87 o CanyFlag
otolololofal | | FTrr i FTTT T T EVTd Iol I . |
|4 32 10 '1 Upper 27 bsts of Rm value 5 Bit 4

Example of shifted result in Operand 2 (shifted content of Rm)

3-20

® VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

The form of the shift field which might
be expected to give ROR 0 is used to
encode a spacial function of the barrel

shifter, rotate right extended (RRX).
This is a rotate right by one-bit position

of the 33-bit quantity formed by append-

ing the PSR C flag to the most signifi-
cant end of the contents of Rm:

FIGURE 9. ROTATE RIGHT EXTENDED (RRX)

31 24 23 16

15 8 7 0

lllIIII]ITIIIIIIIIIIIIIIIIII

III|

I Carry

Contents of Rm, which will appear (shifted) in Operand 2

Register-Based Shift Counts - Only
the least significant byte of the contents
of Rs is used to determine the shift
amount. If this byte is zero, the un-
changed contents of Rm will be used as

Shift
LSL by 32

LSL by more than 32

LSR by 32

LSR by more than 32

ASR by 32 or more
ROR by 32

ROR by more than 32

Note:

the second operand, and the old value
of the PSR C flag will be passed on as
the shifter carry output.

If the byte has a value between 1 and
31, the shifted result will exactly match

Action

that of an instruction specified shift with
the same value and shift operation.

Shifts of 32 or More - The result will
be a logical extension ofithe shifting
processes descrtibed above:

Result zero, carry out equal to bit zero of Rm.

Result zero, carry out zero.

Result zero, carry out equal to bit 31 of Rm.

Result zero, carry out zaro.

Result filled with, and catrry out equal to, bit 31 of Rm.

Result equal to Rm, and carry out equal to, bit 31 of Rm.

Same result and carry out as ROR by n-32. Therefore, repeatedly
subtract 32 from count until within the range one to 32.

to be a multiply or an undefined instruction.

The zero in bit 7 of an instruction with a register controlled shift is compuisory; a one in this bit will cause the instruction

Immediate Operand Rotation - The
immediate operand rotate field is a 4-bit
unsigned integer which spacifies a shift
operation on the 8-bit immediate value.
The immediate value is zero extended
to 32 bits, and then subject to a rotate
right by twice the value in the rotate
field. This enables many common
constants to be generated, for example
all powers of 2. Another example is
that the 8-bit constant may be aligned
with the PSR flags (bits 0, 1, and 26 to
31). Allthe flags can thereby be
initialized in one TEQP instruction.

Writing to R15 - When Rd is a register
other than R15, the condition code flags
in the PSR may be updated from the
ALU flags as described above. When
Rd is R15 and the S flag in the instruc-
tion is set, the PSR is overwritten by the

corresponding bits in the ALU result, so
bit 31 of the result goes to the N flag, bit
30 to the Z flag, and 29 to the C flag
and bit 28 to the V flag. In user mode
the other flags (I, F, M1, MO) are
protected from direct change, but in
non-user modes these will also be
affected, accepting copies of bits 27,
26, 1 and 0 of the result respectively.

When one of these instructions is used
to change the processor made (which is
only possible in a non-user mode), the
following instruction should not access
a banked register (R8-R14)during its
first cycle. A no-op should be inserted if
the next instruction must actess a
banked register. Accesses to the
unbanked registers (R0-R7 and R15)
are safe. This restriction is required for
the VL86C010 processor and does not

apply to VL86C020, but should be
adhered to for compatibility.

if the S flag is clear when Rd is R15,
only the 24 PC bits of R15 will be
written. Conversely, if the instruction is
of a type which does not normally
produce a result (CMP, CMN, TST,
TEQ) but Rd is R15 andithe S bit is set,
the result will be used to:update those
PSR flags which are notiprotected by
virtue of the processor mode.

Setting PSR Bits - It isisuggested that
TEQP be used to set PSR bits in SVC
mode. Because these bits are not
presented to the ALU input (even when
R15 Is the operand), the TEQP's
operands replace all current PSR bits.
For example, to remain in SVC mode
but set the interrupt-disable bits, use a
"TEQP PC, 0x C000003" instruction.

3-21

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

R15 as an Operand - If R15 is used as
an operand in a data processing
instruction it can present different
values depending on which operand
position it occupies. It will always
contain the value of the PC. It may or
may not contain the values of the PSR
flags as they were at the completion of

When R15 appears in the Rm position it
will give the value of the PC together
with the PSR flags to the barrel shifter.

When R15 appears in either of the Rn
or Rs positions it will give the value of
the PC alone, with the PSR bits
replaced by zeros.

The PC value will be the address of the
instruction, plus 8 or 12 bytes due to
instruction prefetching. If the shift
amount is specified in the instruction,
the PC will be 8 bytes ahead. If a
register is used to specify the shift
amount, the PC will be 8 bytes ahead
when used as Rs, and 12 bytes ahead

the previous instruction. when used a Rn or Rm.

Assembler Syntax:
MOV, MVN single operand instructions:
<opcodex{cond}{S} Rd,<Op2:

CMP, CMN, TEQ, TST - instructions not producing a result:
<opcode>{cond}{P} Rn,<Op2>

AND, EOR, SUB, RSB, ADD, ADC, SBC, RSC, ORR, BIC:
<opcodex>{cond}{S} Rd, Rn, <Op2>

whereOp2 Is Rm{<shift>} or, <expression>
cond Two-character condition mnemonic, see Condition Code section.
S Set condition codes if S present (implied for CMP, CMN, TEQ, TST).
P Make Rd = R15 in instructions where Rd Is not specified, otherwise Rd will
default to RO. (Used for changing the PSR directly from the ALU result.)
Rd, Rnand Rm Are any valid register name, such as R0-R15, PC, SP, or LK.
<shift> Is <shiftnamex <registers or <shiftname= expression, or RRX (rotate right

one bit with extend).
Are any of: ASL, LSL, LSR, ASR, or ROR.

Note: If <expression is used, the assembler will attempt to generate a shifted immediate eight-bit field to match the expression.
If this Is impossible, it will give an error.

<shiftname>s

Examples:

ADDEQ R2, R4, RS ; Equivalent to: if (ZFLAG) R2 = R4+R5.

TEQS R4,3 ; Test R4 for equality with 3 (The S is redundant, as the assembler
; assumes it). Equivalent to: ZFLAG = R4==3.

suB R4, RS, R7 LSRR2 ; Logical Right Shift R7 by the number in the bottom byte of R2, subtract
; the result from RS5, and put the answer into R4.
: Equivalent to: R4 = R5 - (R7>>R2).

TEQP R15, 0; ; (Assume non-user made here). Change to
; user mode and clear the N,Z,C,V,I, and F
; flags. Note that R15 is in the Rn position, so
; it comes without the PSR flags.
; Equivalent to: R15 = FLAGS = 0.

MOVNV Ro, RO ; Is a no-op, avoiding mode-change hazard.
; Equivalent to: RO = RO.

MOV PG, LK ; Equivalentto: PC =LK, or PC = R14.
; Return from subroutine (R14 is an active one).

MOVS PC, R14 ;-Equivalentto: PC, PSR = R14.

; Return from subroutine, restoring the status.

3-22

w VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

FIGURE 10. MULTIPLY AND MULTIPLY-ACCUMULATE (MUL, MLA)

31 28 27 22 19

16 15 8 7

0

| Conex Jo'0'0'0loofals] "Rd' | "Rn | Rs l1oot]

Am._|

I_T—I

]|
[[

Conditional Execution
Control Field

Operand registers

MUL: Rd=Rm*Rs (Rnls Ignorad)
MLA: Rd=Rm* Rs + Rn

Set Conditlon Codes
0 = Do not alter Condition Codes
1 = Set Condition Codes

— Accumulate bit (MLA specifier)

0 = Multlply (MUL)
1 = Multiply and Accumulate (MLA)

-

The multiply and multiply-accumulate
instructions use a 2-bit Booth's algo-
rithm to perform integer multiplication.
They give the least significant 32 bits of
the product of two 32-bit operands, and
may be used to synthesize higher
precision multiplications.

The multiply form of the instruction
gives Fid = Rm*Rs. Rn is ignored, and
should be set to zero for compatibility
with possible future upgrades to the
instruction set.

The multiply-accumulate form gives
Rd = Rm"Rs+Rn, which can save an
explicit ADD instruction in some
circumstances.

Both forms of the instruction work on
operands which may be considered as
signed (2's complement) or unsigned
integers.

Operand Restrictlons - Due to the way
the Booth’s algorithm has been
implemented, certain combinations of
operand registers should be avoided.
(The assembler will issue a warning if
these restrictions are violated.)

The destination register (Rd) should not
be the same as the Rm operand
register, as Rd is used to hold interme-
diate values and Rm is used repeatedly
during the multiply. A MUL will give a
zero result if Rm=Rd, and a MLA will
give a meaningless result.

The destination register Rd should also
not be R15, as it is protected from
modification by these instructions. The
instruction will have no effect, except
that meaningless values will be placed
in the PSR flags if the S bit is set. All
other register combinations will give
correct results, and Rd, Rn and Rs may
use the same register when required.

PSR Flags - Sstting the PSR flags is
optional, and is controlled by the S bit in
the instruction. The N and Z flags are
set correctly on the result (N is equal to
bit 31 of the result, Z is set if and only if
the result is zero), the V flag is unaf-
tected by the instruction (as for logical
data processing instructions), and the C
flag is set to a meaningless value.

Writing to R15 - As mentioned previ-
ously, R15 must not be used as the
destination register (Rd). If it is so
used, the instruction will have no effect
except possibly to scramble the PSR
flags.

R15 As an Operand - R15 may be
used as one or more of the operands,
though the result will rarely be useful.
When used as Rs the PC bits will be
used without the PSR flags, and the PC
value will be 8 bytes advanced from the
address of the multiply-instruction.
When used as Rn, the PC bits will be
used along with the PSR flags, and the
PC will again be 8 bytes advanced from
the address of the instruction. When
used as Rm, the PC bits will be used
together with the PSR flags, but the PC
will be the address of the instruction
plus 12 bytes in this case.

3-23

® VLSI TECHNOLOGY, INC. PRELIMINARY

VL86C020
Assembler Syntax:
MUL{cond}{S} Rd, Rm, Rs
MLA {cond}{S} Rd, Rm, Rs, Rn
where cond Is a two-character condition code mnemonic
S Set condition codes if present.
Rd, Rm, Rs and Rn Are valid register mnemonics, such as R0-R15, SP, LK, or PC.
Notes:
Rd must not be R15 (PC), and must not be the same as Rm.
ltems in {} are optional. Those in <> must be present.
Examples:
MUL R1, R2, R3 ; R1 = R2* R3. (R1,R2,R3 = Rd,Am,Rs)
MLAEQS R1, R2, R3, R4 ; Equivalent to: if (ZFLAG) R1 = R2*R3 + R4.
; Condition codes are set, based on the result.
; The multiply instruction may be used to synthesize higher precision multiplications.
; For instance, multiply two 32-bit integers and generate a 64-bit result:
MOV RO, R1 LSR 16 ; RO (temporary) = top half of R1.
MOV R4, R2LSR 16 ; R4 = top half of R2.
BIC R1, R1, ROLSL 16 ; R1 = bottom half of R1.
BIC R2, R2, R4 LSL 16 ; R2 = bottom half of R2.
MUL R3, Ro, R2 ; Low section of result.
MUL R2, Ro, R2 ; Middle section of result.
MUL R1, R4, R1 ; Middle section of result.
MUL R4, RO, R4 ; High section of result.
ADDS Rt, R2, R1 ; Add middle sections. (MLA not used, as we need R3 correct).
ADDCS R4, R4, 0x10000 ; Carry from above add.
ADDS R3, R3, R1 LSL 16 ; R3 is now bottom 32 product bits.
ADC R4, R4, R1 LSR 16 ; R4 is now top 32 bits.

Notes:
1. R1, R2 are registers containing the 32-bit integers. R3, R4 are registers for the 64-bit result.
2. RO is a temporary register.
3. R1 and R2 are overwritten during the multiply.

3-24

® VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

Load/Store Value from Memory
(LDR,STR) - The register load/store
instructions are used to load or store
single bytes or words of data. The LDR
and STR instructions differ from MOV
instructions in that they move data
between registers and a specified
memory address. In contrast, the MOV
instructions move data between
registers, or move a constant (con-
tained in the instruction) into a register.

The memory address used in LDR/STR
transfers is calculated by adding an
offset to or subtracting an offset from a
base register. Typically, a load of a
labeled memory location involves the
loading via a (signed) offset from the
current PC. Regardless of the base
register used, the result of the offset
calculation may be written back into the
base register if "auto-indexing" is
required.

Offsets and Auto-indexing - The
offset from the base may be either a 12-
bit binary immediate value:in the
instruction, or a second register
(possibly shifted in some manner). The
offset may be added to (U=1) or
subtracted from (U=0) the base register
Rn. The offset modification may be
performed either before (pre-indexed,
P=1) or after (post-indexed, P=0) the
base is used as the transfer address.

The W bit gives optional auto increment
and decrement addressing modes. The
modified base value may be written
back into the base (W=1), or the old
base value may be kept (W=0). In the
case of post-indexed addressing, the
write back bit is redundant, since the
old base value can be retained by
setting the offset to zero. Therefore,
post-indexed data transfers always
write back the modified base.

Hardware Address Translatlon - The
only use of the W bit in'a post-indexed
data transfer is in non-user mode code,
where setting the W bit forces the
—TRANS pin to go low for the transfer,
allowing the operating system to
generate a user address in a system
where the memory management
hardware makes suitable use of this
pin, as when the MEMC chip is used.

Shifted Register Offset - The eight
shift control bits are described in the
data processing instructions, but the
register specified shift amounts are not
available in this instruction class.

Bytes and Words - This instruction
class may be used tfo transfer a byte
(B=1) or a word (B=0) between a
VL86C020 register and: memory. In the
discussion, remember that the
VL86C020 stores words into memory
with the Least Significant Byte at the
lowest address (i.e., LSB first).

FIGURE 11. SINGLE DATA TRANSFER (LDR, STR)

Source/Destination Register

31 28 25 16 15 12 11 0
[Conex_lo'1]1lpuls lwl | "An | Rd | operandz |
k_[__l l J L |

Condition Base Register

Code

| Up/Down Bit

0 = Post:
1 = Pre:

Load/Store: 0 = STR, 1 = LDR

Write Back Bit
0 = No write back
1 = Write address back into base (!).

| Byte/Word Bit
0 = Word transfer
1 = Byte transfer (B)

0 = Offset is negative
1 = Offset is positive
Pre/Post Indexing

Immediate Value
1 = Operand 2 is a register.
0 = Operand 2 is an

Imm
11

= 0 --»> Operand 2 is an immediate value.

0

_l |

LI AU L
Unsigned 12-bit valus l

Imm = 1 --> Operand 2 is in a register.

[base],index
[base,index]

Shift Amount

to the Rm register.

immediate value.

Shift amount is a 5-bit
shift count, to be applied

11 7 6 5 4 3 0
_l T I I I
0
L__l E_J
2nd Operand Register
Shift Type

00 = LogicaliLeft (LSL)
01 = Logical‘Right (LSR)
10 = Arithmetic Right (ASR)
11 = Rotate Right (ROR)

3-25

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

Non-Aligned Addresses - A byte load
(LDRB) expects the data on bits D7 to
Do if the supplied address is on a word
boundary, on bits D15to D8 if it is a
word address plus one byte, and so on.
The selected byte is placed in the
bottom eight bits of the destination
register, and the remaining bits of the
register are filled with zeros.

A byte store (STRB) repeats the bottom
eight bits of the source register four
times across the data bus. The external
memory system should activate the
appropriate byte subsystem to store the
data.

Non-Aligned Accesses - A word load
(LDR) should generate a word aligned
address. An address offset from a word
boundary will cause the data to be
rotated into the register so that the
addressed byte occupies bits D7 to DO.
See the below example.

External hardware could perform a
double access to memory to allow non-
aligned word loads, but the VL86C110
Memory Controller does not support this
function.

Use of R15 - These instructions will
never cause the PSR to be modified,
even when Rd or Rn is R15.

If R15 is specified as the base register
(Rn), the PC is used without the PSR
flags. When using the PC as the base
register one must remember that it

contains an address 8 bytes advanced
from the address of the current instruc-
tion.

If R15 is specified as the register offset
(Rm), the value presented will be the
PC together with the PSR.

When R15 is the source register (Rd) of
a register store (STR) instruction, the
value stored will be the PC together
with the PSR. The stored value of the
PC will be 12 bytes advanced from the
address of the instruction. A load
register (LDR) with R15 as Rd will
change only the PC, and the PSR will
be unchanged.

Address Exceptions - If the address
used for the transfer (i.e. the unmodified
contents of the base register for post-
indexed addressing, or the base
modified by the offset for pre-indexed
addressing) has a logic one in any of
the bits D31 to D26, the transfer will not
take place and the address exception
trap will be taken.

Note that only the address actually
used for the transfer is checked. A
base containing an address outside the
legal range may be used in a pre-
indexed transfer if the offset brings the
address within the legal range. Like-
wise, a base within the legal range may
be modified by post-indexing to outside
the legal range without causing an
address exception.

Example: Read two 16-bit values from an I/O port, merging into a 32-bit word.

MASK: DW OxFFFF
10_16 DW 0x3100000
WORD bDw 0

LDR R3,10_16
LEA R4, BUF
LDR RO, MASK
LDR R1,[R3),2
AND R1,R1, RO
LDR R2[R3], 2
BIC R2 R2, RO
ORR Rf,R1,R2
STR Ri,[R4], 4

; /O port address
; 32-bit result

; Get word-aligned source address.

; Get word-aligned destination address.

; Fetch even half-word from 16-bit port

; Keep lower 16 bits.

; Fetch ‘add' half-word, rotated.
; Keep upper 16 bits.

; Merge even/odd halves.

; Store 32-bit composit.

Data Aborts - A transfer to or from a
legal address may still present special
cases for a memory management
system. For instance, in a system
which uses virtual memory, the required
data may be absent from main memory.
The memory manager can signal a
problem by taking the processor
ABORT pin high, whereupon the data
transfer instruction will be prevented
from changing the processor state and
the data abort trap will be taken. It is up
to the system software to resolve the
cause of the problem. The instruction
can be restarted and the original
program continued.

Cache Interaction - When the cache is
turned on, a data load operation (LDR,
LDRB) will read data from the cache if it
is present. If the cache is turned off, or
does not contain the required data, the
external memoty is accessed.

A data store operation (STR, STRB) will
always cause an immediate external
write to allow the external memory
manager to abort the access if it is
illegal. If the write operation is not
aborted, and the cache contains a copy
of data from the address being written
to, the cache will be automatically
updated with the new byte or word of
data. This updating occurs even when
the cache is turned off (to maintain
cache consistency), but can be disabled
by programming the updateable control
register appropriately. (See Cache
Operation.)

3-26

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

Assembler Syntax:

LDR/STR{cond}{B}{T} Rd,<Address>

where LDR means Load from memory into a register.
STR means store from a register into memory.
cond is a two-character condition mnemonic (see Condition Code section).
B If present implies byte transfer, else a word transfer.
T If present, the W bit is set in a post-indexed instruction, causing the

—TRANS pin to go low for the transfer cycle. : T is not allowed when a pre-
indexed addressing mode is specified or implied.

Rd is a valid register: RO-R15, SP, LK, or PC.

Address Can be any of the variations in the following table.

Address Varlants:
Address expression: An expression evaluating to a relocatable address:
<expressions The assembler will attempt to generate an instruction using the PC
as a base, and a corrected offset to the location given by the
expression. This is a PC-relative pre-indexed address. If out of range
(at assembly or link time), an error message will be given.

Pre-indexed address: Offset is added to base register before using; as effective address, and
offsets are placed within the [] pair. Rn may be viewed as a pointer:
[Rn] No offset is added to base addressipointer.
[Rn, <expression>{l}] Signed offset of expression bytes is added to base pointer.
[Rn, Rmi{1} Add Rm to Rn before using Rn as an address pointer.

[Rn, Rm <shift> count){}} Signed offset of Rm (modified by shift) is added to base pointer.

Post-indexed address: Offset is added to base reg, after using base reg for the effective address.
Offsets are placed after the [] pair:

[Rn],<expression> Expression is added to Rn, after Rn’s usage as a pointer.

[Rn], Rm Rm is added to Rn, after Rn's usage as an address pointer.

[Rn], Rm <shift> count Shift the offset in Rm by count bits,:and add to Rn, after
Rn's usage as an address pointer.

where expression A signed 13-bit expression (including the sign).
Rm, Rn Valid register names: R0-R15, SP, LK, or PC. If RN = PC, the assembler
will subtract 8 from the expression to allow for processor address read-ahead.
shift Any of: LSL, LSR, ASR, ROR, or RRX.
count Amount to shift Rm by. It is a 5-bit constant, and may not be
specified as an Rs register (as for some other instruction classes).
! If present, the | sets the W-bit in the instruction, forcing the

effective offset to be added to the Rn register, after completion.

Examples (Pre-Index and Optlonal Increment):
In each of these examples, the effective offset is added to the Rn (base:pointer) register prior to using the Rn register as the
effective address. Rn is then updated only if the | suffix is supplied.

STR R1, [R2, R1]! ; *(R2+R1) = R1. Then R2 += R1.

STR R3, [R2) ; *(R2) = R3.

LDR R1, [RO, 16] ; R1 = *(RO + 16). Don’t update RO.

LDR R9, [R5, RO LSL 2] ; R9 = *(R5 + (R2<<2)). Don't update RS5.
LDREQB R2, [R5, 5] ; if (Zflag) R2 = *(R5 + 5), a zero-filled byte load.

3-27

w VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

Examples (Post-Index and Increment):
In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the
effective address. Rn is then updated unconditionally, regardless of any "I" suffix.

STR R1, [R2], R1 ;"R2 =R1. Then R2 += R1.

STR R3, [R2], R5 ; *(R2) = R3. Then R2 += R5.

LDR Rt, [RO], 16 ; R1 = *R0. Then RO += 16.

LDR R9, [R5], RO ASR 3 ; R9 = *R5. Then RS += (RO /8).

LDREQB R2, [R5], 5 ; if (Zflag) R2 = *R5, a zero-filled byte load, and then R5 += 5.

Examples (Expression):

In these examples, the PLACE labsl is an internal or external PC-relative label, typically created as shown. PC-relative refer-
ences are precompensated for the 8-byte read-ahead done by the processor. PARMX is a register-relative label, typically created
via a DTYPE directive, and assumed to be relative to the LK (R14) register. DATAX is similar, but is presumably defined relative
to the SP (R13) register, and GENERAL relative to RO. In any case, they may be located up to +4096 bytes from the associated
base register.

LDR RO, DATA1 ; SP-relative. Same as: LDR RO, [SP+DATA1].
STR R2, PLACE ; PC-relative. Same as: STR R2, [PC+18].
LDR R1, PARMO ; LK-relative. Same as: LDR R1, [LK+DATA1].
STR R1, GENERAL ; RO-relative. Same as: STR R1, [RO+GENERAL].
B Across ; Skip over the data temporarily.

PLACE DW 0 ; Temporary storage area.

Across s« ; Resume execution.

FIGURE 12. LOAD/STORE REGISTER LIST FROM MEMORY (LDM,STM)
31 28 27 25 2019 16 15 0

(5ot [0 o Tolswlu] "' | " T Fudorti " T " |
I |_|:J Base Register
Condition Load/Store: 0 = STM, 1 =LDM

Code Write back bit
0 = No write back
1 = Write address back into base ().

PSR Or Force-User bit (* suffix)

0 = Do not load PSR or force user mode registers.
1 = Load PSR or optionally force user mode regsiters(*).

Up/Down Bit
0 = Offset is negative
1 = Offset is positive

Pre/Post Indexing Form
0 = Post: after each register
is transferred.
1 = Pre: before each register
is transferred.

3-28

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

Multl-Reglster Transfer (LDM, STM)
The instruction is only executed if the
condition is true. The various condi-
tions are defined in Control Field
Section.

Multi-register transfer instructions are
used to load (LDM) or store (STM) any
subset of the currently visible registers.
They support all possible stacking
modes (push up/pop down, or push
down/pop up). They are very efficient
instructions for saving or restoring
context, or for moving large blocks of
data around main memory.

The Reglster List - The instruction can
cause the transfer of any registers in
the current bank (and non-user mode
programs can also transfer to and from
the user bank). The register list is
contained in a 16-bit field in the
instruction, with each bit corresponding
to a register. A logic one in bit zero of
the register field will cause RO to be
transferred, a logic zero will cause it not
to be transferred; similarly bit 1 controls
the transfer of R1, and so on.

Addressing Modes - The transfer
addresses are determined by the
contents of the base register (Rn), the
pre/post bit (P) and the up/down bit (U}).
The registers are transferred in the
order lowest to highest, so R15 (if in the
list) will always be transferred last. The
lowest register also gets transfetred to/
from the lowest memory address. This
is illustrated in Figures 13 and 14.

Transfer of R15 - Whenever R15 is
stored to memory, the value transferred
is the PC together with the PSR flags.
The stored value of the PC will be 12
bytes advanced from the address of the
STM instruction.

If R15 is in the transfer list of a load
multiple (LDM) instruction the PC is
overwritten, and the effect on the PSR
is controlled by the S bit. If the S bit is
zero the PSR is preserved unchanged,
but if the S bit is set the PSR will be
overwtitten by the corresponding bits of
the loaded value. In user mode,
however, the |, F, M1 and MO bits are
protected from change, whatever the
value of the S bit. The mode at the
start of the instruction determines
whether these bits are protected, and
the supervisor may return to the user

program, re-enabling interrupts and
restoring user mode with: one LDM
instruction.

Transfers to User Bank - For STM
instructions the S bit is redundant as
the PSR is always stored with the PC
whenever R15 is in the transfer list. In
user mode the S bit is ignored, but in
other modes it has a second interpreta-
tion. S=1 is used to force transfers to
take values from the user register bank
instead of from the current register
bank. This is useful for saving the user
state on process switches. Note that
when it is so used, write back of the
base will also be to the user bank,
though the base will be fetched from the
current bank. Therefore, do not use
write back when forcing user bank.

In LDM instructions the S bit is redun-
dant if R15 is not in the transfer list, and
again in user mode it is ignored. In
non-user mode where R15 is not in the
transfer list, S=1 is used to force loaded
values in to the user registers instead of
the current register bank. When used
in this manner, care must be taken not
to read from a banked register during
the following cycle; if in doubt, insert a
no-op. Again, do not use write back
when forcing a user bank transfer.

R15 As the Base - When the base is
the PC, the PSR bits will be used to
form the address as well,:so unless all
interrupts are enabled and all flags are
zero an address exception will occur.
Also, write back is never allowed when
the base Is the PC (setting the W bit will
have no effect).

Base within the Register List - When
write back is specified, the base is
written back at the end ofithe second
cycle of the instruction. During a STM,
the first register is written:out at the
start of the second cycle.. A STM which
includes storing the base, with the base
as the first register to be stored, will
therefore store the unchanged value,
whaereas with the base second or later
in the transfer order, will store the
modified value. An LDM will always
overwrite the updated base if the base
is in the list.

Address Exceptions - When the
address of the first transfer falls outside
the legal address space (i.e. has a logic
one somewhere in bits 31 to 26), an

address exception trap will be taken.
The instruction will first complete in the
usual number of cycles, though an STM
will be prevented from writing to
memory. The processor state will be
the same as if a data abort had
occurred on the first tiansfer cycle.

Only the address of the first transfer is
checked in this way; if subsequent
addresses over or under-flow into illegal
address space they will be truncated to
26 bits but will not cause an address
exception trap.

Data Aborts - Some legal addresses
may be unacceptableito a memory
management system, and the memory
manager can indicate:a problem with an
address by taking the ABORT pin high.
This can happen on any transfer during
a multiple register load or store, and
must be recoverable if VL86C020 is to
be used in a virtual memory system.

Abort during STM - If the abort occurs
during a store multiple instruction,
VL86C020 takes little action until the
instruction completes, whereupon it
enters the data abort trap. The memory
manager is responsible for preventing
erroneous writes to the memory. The
only change to the internal state of the
processor will be the modification of the
base register if write back was speci-
fied, and this must be reversed by
software (and the cause of the abort
resolved) before the instruction may be
retried.

To illustrate the various load/store
modes, consider the transfer of R1, R5
and R7 in the case where Rn = 1000H
and write back of the modified base is
required (W=1). These figures show
the sequence of register transfers, the
addresses used, and the value of Rn
after the instruction has completed.

In all cases, had write back of the
modified base not been required (W=0),
Rn would have retained its initial value
of 1000H unless it was also in the
transfer list of the load'multiple register
instruction. Then it would have been
overwritten with the loaded value.

Aborts during LDM - When
VL86C020 detects a data abort during a
load multiple instruction, it modifies the
operation of the instruction to ensure
that recovery is possible.

3-29

® VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

The following figures illustrate the
impact of various addressing modes.
R1, R5, and R7 are moved to/ffrom
memory, where Rn=0x1000, and a write
back of the modified base is done
(W=1). The figures show the sequence
of incrementing "pushes”, the ad-
dresses used, and the final value of Rn.

Without write back, Rn would remain at

0x1000.

Figure 13 illustrates the use of incre-
menting stack "pushes”.

Figure 14 illustrates decrementing

Mode Bits - During LDM and STM

execution, the two LSBs of the instruc-

"pushes” to the stack based upon Rn.

tion will contain the (noninverted) mode
status bits. These may be used by
external hardware to force memory
accesses from an alternative bank.

FIGURE 13. INCREMENTING INDEX

Post-Increment Addressing

0x100C

Rn ~»~ 0x1000

R1

OxOFF4

(1) Before STM Instruction

0x100C Rn -~
R?
RS RS
R1 0x1000 R1
OxOFF4

(3) After Second Transfer

Pre-increment Addressing

0x100C
R1
Rn - 0x1000
OxOFF4
(1) (2)
0x100C Rn R7
RS RS
R1 R1
0x1000
O0xOFF4
(3) 4)

0x100C

0x1000

OxOFF4

(2) After First Transfer

0x100C

0x1000

OxOFF4

(4) STM Instruction Complete

0x100C

0x1000

OxOFF4

0x100C

0x1000

OxOFF4

FIGURE 14. DECREMENTING INDEX

Post-decrement Addressing

0x100C

0x1000

OxOFF4

0x100C

0x1000

0x100C
Rn -» 0x1000
R1
OxOFF4
(1) Before SRM Instruction (2) After First Transfer
0x100C
0x1000 R7
RS R5
R1 R1
Ox0FF4 Rn -~

(3) After Second Transfer

Pre-decrement Addressing

0x100C
Rn - 0x1000
OxOFF4 R1
(1) (2)
0x100C
0x1000
R7
R5 RS
R1 O0xOFF4 Rn R1

® 4

O0x0FF4

(4) After STM Instruction Complete

0x100C

0x1000

OxOFF4

0x100C

0x1000

OxOFF4

3-30

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL.86C020

Overwriting of registers stops when the
abort happens. The aborting load will
not take place, nor will the preceding
one, but registers two or more positions
ahead of the abort (if any) will be
loaded. (This guarantees that the PC
will be preserved, since it is always the
last register to be overwritten.)

The base register is restored to its
modified value if write back was

in the case where the base register is
also in the transfer list, and may have
been overwritten before the abort
occurred.

The data abort trap is taken when the
load multiple has completed, and the
system software must undo any base
modification (and resolve the cause of
the abort) before restarting the instruc-
tion.

With the cache turned on, a block load
operation (LDM) will read data from the
cache where it is present. When the
cache does not contain the required
data, the external memory is accessed.

A block store operation (STM) always
generates immediate external writes to
allow the external memory manager to
abort the accesses if they are illegal.
The cache is automatidally updated as

requested. This ensures recoverability the data is written to memory (provided
the area being written to is updateable,

see Cache Operation Section).

Assembler Syntax:

LDM|STM{cond}<mode> Rn{f}, <Rlist>{"}

cond Is an optional 2-letter condition code common to all instructions.

mode s any of: FD, ED, FA, EA, IA, IB, DA, or DB.

Rn Is a valid register name: RO0-R15, SP, LK, or PC.

Rlist Can be a single register (as described above for Rn),.or may be a list of
registers, enclosed in { } (eg {R0,R2,R7-R10,LK}).

/ If present, requests write back (W=1). Otherwise W=0.

A If present, set S bit to load the PSR with the PC, or force transfer of user
bank, when in non-user mode.

where

Addressing Mode Names

Mnemonic LBit PBit Ublt Qperation
Pre-increment load LDMIB 1 1 1 Pop upwards
Post-increment load LDMIA 1 0 1 Pop upwards
Pre-decrement load LDMDB 1 1 0 Pop downwards
Post-decrement load LDMDA 1 0 0 Pop downwards
Pre-increment store STMIB 0 1 1 Push upwards
Post-increment store STMIA 0 0 1 Push upwards
Pre-decrement store STMDB 0 1 0 Push downwards
Post-decrement store STMDA 0 0 0 Push downwards

1A, 1B, DA, DB allow control when LDM/STM are not being used for stacks and simply mean Increment After, Increment Before,
Decrement After, Decrement Before.

Examples
LDMFD SP|, {Ro, R1, R2} ; unstack 3 registers
STMIA R2, {Ro, R15} ; save all registers

These instructions may be used to save state on subroutine entry, and restore it efficiently on return to the calling routine;

STMED SPI, {RO-R3, LK}
BL Subroutine

LDMED SP!, {Ro-R3, PC}

; Save RO to R3 for workspace, and R14 for returning.
; This call will overwrite R14,

; Restore workspace and return, restoring PSR flags.

3-31

® VLSI TECHNOLOGY, INC. PRELIMINARY

VL86C020

FIGURE 15. SINGLE DATA SWAP (SWP)

31 28 27 2322212019 16 15 12 11 8 7 43 0
T T T T T T T I 11 1T AL T T T T

[Condx lO 001 0|BIO OI Rn I Rd IO 00 0I1 00 1| Rm l

L_-l_l Byte/WoIrd Bit l_l_‘ '_V_‘

Condition 0 = Swap Word Destination Source
Code 1 = Swap Byte Register Register

Base
Register

Single Data Swap (SWP) - The instruc-
tion is only executed if the condition is
true. The various conditions are
defined in Condition Field Section.

The data swap instruction is used to
swap a byte or word quantity between a
register and external memory. This
instruction is implemented as a memory
read followed by a memory write which
are locked together (the processor
cannot be interrupted until both
operations have completed, and the
memory manager is warned to treat
them as inseparable). This class of
instruction is particularly useful for
implementing software semaphores.

The swap address is determined by the
contents of the base register (Rn). The
processor first reads the contents of the
swap address (the external memoty is
always accessed, even if the cache
contains a copy of the data). The
processor then writes the contents of
the source register (Rm) to the swap
address, and stores the old memory
contents in the destination register (Rd).
The same register may be specified as
both the source and destination.

The LOCK pin goes high for the
duration of the read and write opera-
tions to signal to the external memory
manager that they are locked together,
and should be allowed to complste
without interruption. This is important in
multi-processor systems where the
swap instruction is the only indivisible
instruction which may be used to

implement semaphores; control of the
memory must not be removed from a
processor while it is performing a
locked operation.

Bytes and Words - This instruction
class may be used to swap a byte (B=1)
or a word (B=0) between a VL86C020
register and memory.

A byte swap (SWPB) expects the read
data on bits 0 to 7, if the supplied
address is on a word boundary, on bits
8to 15 if it is a word address plus one
byte, and so on. The selected byte is
placed in the bottom eight bits of the
destination register, and the remaining
bits of the register are filled with zeros.
The byte to be written is repeated four
times across the data bus. The
external memory system should
activate the appropriate byte subsystem
1o store the data (see Memory Interface
Section).

A word swap (SWP) should generate a
word aligned address. An address
offset from a word boundary will cause
the data read from memory to be
rotated into the register so that the
addressed byte occupies bits 0to 7.
The data written to memory are always
presented exactly as they appear in the
register (i.e. bit 31 of the register
appears on D31).

Use of R15 - If R15 is selected as the
base, the PC is used together with the
PSR. If any of the flags are set, or

interrupts are disabled, the data swap

will cause an address exception. If all
flags are clear, and interrupts are
enabled (so the top six bits of the PSR
are clear), the data will be swapped
with an address 8 bytes advanced from
the swap instruction, although the
address will not be word aligned unless
the processor is in user mode. (M1 and
MO bits determine the byte address).

When R15 is the source register (Rm),
the value stored will be the PC together
with the PSR. The stored value of the
PC will be 12 bytes advanced from the
address of the instruction.

When R15 is the destination register
(Rd), the PSR will be unaffected, and
only the PC will change.

Address Exceptions - If the base
address used for the swap has a logic
one in any of the bits 26 to 31, the
transfer will not take place and the
address exception trap will be taken.

Data Aborts - If the address used for
the swap is unacceptable to a memory
management system, the memory
manager can flag the problem by
driving ABORT high. This can happen
on either the read or the write cycle (or
both). In either case, the data swap
instruction will be prevented from
changing the processor state, and the
Data Abort trap will be taken. It is up to
the system software to resclve the
cause of the problem. Then the instruc-
tion can be restarted and the original
program continued.

3-32

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

Cache Interaction - The swap instruc- a semaphore may be out of date (the The write operation of the swap

tion always reads data from external cache is only updated if the host CPU instruction will still update the cache if a
memory, even if a copy is present in the writes new data to the external mem- copy of the address is present, and
cache. In multi-processor systems, ory). ltis, therefare, important always updating is enabled (see Cache
semaphores may be used to control to read the semaphore from the shared Operation Section).

access to system resources; as the external memory, and not the private

semaphores are accessed by more cache.

than one processor, the cache copy of

Assembler Syntax:

SWP{cond}{B} Rd,Rm,[Rn]
where cond Two-character condition mnemonic, see section Condition Field
B If B is present then byte transfer, otherwise word transfer.
Rd,Rm,Rn Are expressions evaluating to valid register numbers. Rn is required.
Examples:
SWP RO, R1, [BASE] ; Load RO with the contents of BASE, and store R1 at BASE.
SWPB R2, R3, [BASE] ; Load R2 with the byte at BASE, and store bits 0 to 7 of R3 at BASE.
SWPEQ RO, RO, [BASE] ; Conditionally swap the contents of BASE with RO.

3-33

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

FIGURE 16. SOFTWARE INTERRUPT (SWI)

28 27 24 23

31
LR I LI LI I T 1T T T T T T T T T 17T 1°1 I IR
I Condx |1 1 11 Instruction to Executive (ignored by CPU)

I_‘__I

Condition
Field

Note: The machine comments field in bits 23-0 are ignored by the hardware. They are made available for free interpretation by
the software executive, and may be found in LSB-first byte order on the stack.

The Software Interrupt (SWI) instruction
is used to enter supervisor mode in a
controlled manner. The instruction
causes the software interrupt trap to be
taken, which effects the mode change,
with execution resuming at Ox 08. If
this address is suitably protected (by
external memory management hard-
ware) from modification by the user, a
fully protected operating system may be
constructed.

Assembler Syntax:

Return from the Supervisor - The PC
and PSR are saved in R14_svc upen
entering the software interrupt trap, with
the PC adjusted to point to the word
after the SWI instruction. MOVS R15,
R14_svc will return to the user program,
restore the user PSR and return the
processor to user mode.

Note that the link mechanism is not re-
entrant, so if the supervisor code
wishes to use software interrupts within

itself it must first save a copy of the
return address.

Machine Comments Field - The
bottom 24 bits of the instruction are
ignored by the processor, and may be
used to communicate with the
supervisor code. For instance, the
supervisor may extract this field and
use it to index into an array of entry
points for routines which perform
various supervisor functions.

SWi{cond} <expression>
where cond Is the two-character condition code common to all instructions.
expression Is a 24-bit field of any format. The processor itself ignores it, but the
typical scenario is for the software executive to specify patterns in it,
which will be interpreted in a particular way by the executive, as commands.
Examples:
acons Zoro=0, ReadC=1, Write1=2 ; Assembler constants.
SWI ReadC ; Get next character from read stream
SwWiI Writel+k"” ; Output a "k” to the Write stream
SWINE 0 ; Conditionally call supervisor with 0 in comment field

The above examples assume that suitable supervisor code exists. For instance:
; Assume that the R13_svc (the supervisor's R13) points to a suitable stack.

acons Zero=0, ReadC=1, Write1=2 ; Assembler constants.
acons CC_Mask = 0xFC00003 ; Non-address area mask.
08h B Super ; SWI entry point
Super STMFD SPL{ro,r1, r2,r14) ; Save working registers.
BIC r1, ri4, CC_Mask ; Strip condx codes from SWI instruction address.
LDR RO, [R1, -4] ; Get copy of SWi instruction.
BIC Ro, RO, 0OxFF000000 ; Get lower 24 bits of SWI, only.
MOV R1, SWI_Table ; Get absolute address of PC-relative table.
LDR PC, [R1, ROLSL 2] ; Jump indirect on the table.
SWI_Table dw Zero_Action ; Address of service routines.
dw ReadC_Action
dw Write1_Action
Write1_Action ; Typical service routine.
LDM R13,{R0-R2, PC}* ; Restore workspace, and return to inst after SWI.

3-34

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

FIGURE 17. COPROCESSOR DATA OPERATIONS (CDO)

31 28 27 24 23 20 19 16 15 12 11 8 7 5 43 0
J AL U T LU LI L [1 IR
I Condx |1 1 1 0| CPOpc l CRn] CRd I CP# l Aux |0| CRm I
_ | | | | | | | | L | | |
[I T T T
Condition Coprocessor |]__ c
Code Operation Coprocessor oprocessor Operand
Code Depstination I Registers

Register

Coprocesser Auxiliary

Information
Coprocessor Number

The instruction is only executed if the
condition code field is true. The field is
described in the Condition Codes
Section.

This is actually a class of instructions,
rather than a single instruction, and is
equivalent to the ALU class on the
CPU. Allinstructions in this class are
used to direct the coprocessor to
perform some internal operation. No
result is sent back to the CPU, and the
CPU will not wait for the operation to
complete. The coprocessor could
maintain a queue of such instructions

Assembler Syntax:
CDO{cond}

awaiting execution. Their execution
may then overlap other CPU activity,
allowing the two processors to perform
independent tasks in parallel.

Coprocessor Flelds - Only bit 4 and
bits 31-24 are significant to the CPU;
the remaining bits are used by
coprocessors. The abovefield names
are used by convention, and particular
coprocessors may redefine the use of
any or all fields as appropriate except
for the CP#.

For the sake of future family product
introductions, it is encouraged that the
above conventions be followed, unless
absolutely necessary.

CP#,<expression1>, CRd, CRn, CRm{,<expression2>}

By convention, the coprocessor should E

perform an operation specified in the
CP Opc field (and possibly in the CP
field) on the contents of CRn and CRm,
placing the result into CRd.

VL86C010 CDO Instruction - The im-
plementation of the CDO instruction on
the VL86CO010 processor causes a
Software Interrupt (SWI) to take the
undefined instruction trap if the SWI
was the next instruction after the CDO.
This is no longer the case on the
VL86C020, but the sequence

CDO

SWiI
should be avoided for program compati-
bility.

where cond Is the conditional execution code, common to all instructions.
CP# Is the (unique) coprocessor number, assigned by hardware.
CRd, CRn, CRm These are valid coprocessor registers: CR0-CR15.

expression? Evaluates to a constant, and is placed in the CP Opcfield.
expression2 (Where present) evaluates to a constant, and is placed in the CP field.
Examples:

CcDO 1, 10, CR1, CR7, CR2
CDOEQ 2,5, CR1, cr2, Cr3, 2

; Request coproc #1 to do operation 10 on CR7 and CR2, putting result into CR1.

; I the Z flag is set, request coproc #2 to do
; operation 5 (type 2) on CR2 and CR3, placing the result into CR1.

3-35

® VLSI TECHNOLOGY, INC. PRELIMINARY

VL86C020

FIGURE 18. COPROCESSOR DATA TRANSFERS (LDC, STC)

31 28 27 24 23 20 19 16 15 12 11 8 7 0
L LI T T | BN | L T T 7171
I Condx |1 1 o|P|u|N|w]L| Rn l CRd [CP# | Offset I
l |1 | | | | |
. I l— 8-Bit Positive
Condition ARMBase Coprocessor Immediate
Code Pointer Src/Dst Offset
Index Control Register Register Coﬁ&%:ngor
0 = Post-move
1 = Pre-move Load/Store Bit
0 = Store to Memory
Up/Down L Write Back 1 = Load to Coproc Reg
0 = Subtract 0 = No Write Back
1 = Add Offset 1 = Write e.a. to Rn.

L Transfer Length

The LDC and STC instructions are used
to load or store single bytes or words of
data. They differ from MCR and MRC
instructions in that they move data
between coprocessor registers and a
specified memory address. In contrast,
the other instructions move data
between registers, or move a constant
(contained in the instruction) into a
register.

The memory address used in LDC/STC
transfers is calculated by adding an
offset to or subtracting an offset from a
base pointer register, Rn. Typically, a
load of a labaled memory location
involves the loading via a (signed)
offset from the cutrent PC. Regardless
of the base register used, the result of
the offset calculation may be written
back into the base register if "auto-
indexing" is required.

Coprocessor Fields - The CP# field
identifies which coprocessor shall
supply or receive the data. A coproces-
sor will respond only if its number
matches the contents of this field.

The CRd field and the N bit contain
information which may be interpreted in
different ways by different coproces-
sors. By convention, however, CRd is
the register to be transferred (or the first
register, where more than one is fo be
transferred). The N bit is used to
choose one of two transfer length
options. For instance, N=0 could select
the transfer of a single register, and

N=1 could select the transfer of all the
registers for context switching.

Offsets and Indexing - The VL86C020
is responsible for providing the address
used by the memory system for the
transfer, and the addressing modes
available are similar to those used for
the VL86C020's LDR/STR instructions.

Only 8-bit offsets are permitted, and the
VL86C020 automatically scales them
by two bits to form a word offset to the
pointer in the Rn register. Of itself, the
offset is an 8-bit unsigned value, but a
9-bit signed negative offset may be
supplied. The assembler will comple-
ment it to an 8-bit (positive) value and
will clear the instruction’s U bit, forcing a
compensating subtract. The result is a
1256 word (1024 byte) offset from Rn.
Again, the VL86C020 internally shifts
the offset left 2 bits before addition to
the Rn register.

The offset modification may be per-
formed either before (pre-indexed, P=1)
or after (post-indexed, P=0) the base is
used as the transfer address. The
modified base value may be written
back into the base (W-1), or the old
base value may be kept (W-0). In the
case of post-indexed addressing, the
write back bit is redundant, since the
old base value can be retained by
sefting the offset to zero. Therefore,
post-indexed data transfers always
write back the modified base.

For an offset of +1, the value of the Rn
base pointer register (modified, in the

pre-indexed case) is used for the first
word transferred. Should the instruction
be repeated, the second word will go
from/to an address one word (4 bytes)
higher than pointed to by the original
Rn, and so on.

Use of R15 - If R15 is specified as the
base register (Rn), the PC is used
without the PSR flags. When using the
PC as the base register note that it
contains an address 8 bytes advanced
from the address of the current instruc-
tion. As with the LDR/STR case, the
assembler performs this compensation
automatically.

Hardware Address Translation - The
W bit may be used in non-user mode
programs (when post-indexed address-
ing is used) to force the ~-TRANS pin
low for the transfer cycle. This allows
the operating system to generate user
addresses.when a suitable memory
management system is present.

Address Exceptions - If the address
used for the first transfer is illegal, the
address exception mechanism will be
invoked. Instructions which transfer
multiple words will only trap if the first
address is illegal; subsequent ad-
dresses will wrap around inside the 26-
bit address space.

Note that only the address actually
used for the transfer is checked. A
base containing an address outside the
legal range may be used in a pre-
indexed transfer if the offset brings the

3-36

w VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

address within the legal range. Like-
wise, a base within the legal range may
be modified by post-indexing to outside
the legal range without causing an
address exception.

Data Abotrts - If the address is legal but
the memory manager generates an
abort, the data abort trap will be taken.
The write back of the modified base will
take place, but all other processor state

Assembler Syntax:
<LDC/STC>{cond}{L{ TN}
where LDC

data will be preserved. The coproces-
sor is partly responsible for ensuring
restartability. It must either detect the
abort, or ensure that any actions
consequent from this instruction can be
repeated when the instruction is retried
after the resolution of the:abort.

Cache Interaction - When the cache is
on, LDC instructions will attempt to read
data from the cache. STC instructions

cp#, CRd, <Address>{l}
means load from memory into a coprocessor register.

update the cache data if the address
being written to matches a cache entry
(see Cache Operation Section).

When an STC instruction is executed
with the cache turnedioff, the
VL86C020 will drive data onto D31-D0
(provided DBE is high) in the latent
cycle preceding the fitst write operation
(latent+active cycle); therefore, no other
device should be driving the bus during
this cycle.

STC means store a coprocessor register to memory.

cond is a two-character condition mnemonic (see Condition Code section).
L If present implies long transfer (N=1), else a short transfer (N=0).

T If present, the W bit is set in a post-indexed instruction, causing the

~TRANS pin to go low for the transfer cycle. T is not allowed when a pre-
indexed addressing mode is specified or implied.

N Sets the value of bit 22 of instruction.

cp# Valid coprocessor number, determined by hardware.
CRd Valid coprocessor register number: CRO-CR15.
Address Can be any of the variations in the following table.

3-37

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

Address Varlants:
Address expression: An expression evaluating to a relocatable address:

<expression> The assembler will attempt to generate an instruction using the PC
as a base, and a corrected offset to the location given by the 9-bit
expression. This is a PC-relative pre-indexed address. If out of range
(at assembly or link time), an error message will be given.

Pre-indexed address: Offset is added to base register before using as effective address, and
offsets are placed within the [] pair. Rn may be viewed as a pointer:
[Rn){1} No offset is added to base address pointer.
[Rn, <expression>] Signed offset of expression in bytes is added to base pointer.
[Rn, <expression=]{!} Signed offset of expression in bytes is added to base pointer. Then
this effective address is written back to Rn.
Post-indexed address: Offset is added to base reg after using base reg for the effective
address. Offsets are placed after the [] pair:
[Rn},<expression: Expression is added to Rn, after Rn's usage as a pointer.
where expression A signed 9-bit expression (including the sign).
Rn Valid register names: R0-R15, SP, LK, or PC. If Rn = PC, the

assembler will subtract 8 from the expression to allow for processor
address read ahead.

Examples (Pre-Index):
In each of these examples, the effective offset is added to the Rn (base pointer) register prior to using the Rn register as the
effective address. Rn is then updated only if the | suffix is supplied. Coprocessor #1 is used in all cases, for simplicity.

STC 1,CR3, [R2] ; *(R2) = CR3.
LDC 1,CR1, [RO, 16] ; CR1 = *(RO + 16). Don’t update RO.
LDCEQ 1,CR2, [R5, 12]! ; if (Zflag) CR2 = *(R5 + 12). Then, R5 +=12.

Examples (Post-Index):
In each of these examples, the effective offset is added to the Rn (base pointer) register after using the Rn register as the
effective address. Rn is then updated unconditionally, regardless of any | suffix. Coprocessor #3 is used in all cases, for simplic-

ity.

sTC 3, CR1, [R2], 8! ;*R2 = CR1. Then R2 += 8.
LDC 3, CR1, {Ro], 16 : CR1 = *RO. Then RO += 16.
LDCEQL 3, CR2, [Rs], 4 ; if (Zflag) CR2 = *R5, and then (implicitly), R5 += 4.

; Use the long option (probably to store multiple words).

Examples (Expression):

In these examples, the PLACE label is an internal or external PC-relative labsl, typically created as shown. PC-relative refer-
ences are precompensated for the 8-byte read-ahead done by the processor. It may be located up to +1024 bytes from the
associated base register, and must be a multiple of 4 bytes in offset.

STC 3, CR5, PLACE ; PC-relative. Same as: STC 3, CRS, [PC+8].
B Across ; Skip over the data temporary.

i’LACE DW 0 ; Temporary storage area.

Across see ; Resume execution.

3-38

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

FIGURE 19. COPROCESSOR REGISTER TRANSFERS (MRC, MCR)

31 28 27 24 23 21 19 16 15 12 11 8 7 5 4 3 0
LI 1 l | | [I I [L I | | LWL rl | I I [|
Condx |1 1 1 0[CPOpc|L CRn Rd CP# AUX |1 CRm
_ L1l] | | | L] | l
_I T T T 1
Coprocessor I |_ N
Condition Operation ARM Coprocessor Auxiliary
Code ode Sre/Dst Information
Load/Store Bit Register Coprocessor Number
0 = Store to coproc L Coprocessor Operand

1 = Load from coproc

Registers

This instruction is executed only if the
condition code field is true. The field is
described in the Condition Codes
Section.

This is actually a class of instructions,
rather than a single instruction, and is
equivalent to the ALU class on the
VL86C020 processor. Instructions in
this class are used to direct the
coprocessor to perform some operation
between a VL.86C020 register and a
coprocessor register. It differs from the
CPD instruction in that the CPD
performs operations on the coproces-
sor's internal registers only.

An example of an MCR usage would be
a FIX of a floating point value held in
the coprocessor, where the number is
converted to a 32-bit integer within the
coprocessor, and the result then
transferred back to a VL86C020
register. An example of an MRC usage

Assembler Syntax:

would be the converse: A FLOAT of a
32-bit value in a VI.86C020 register into
a floating point value within a coproces-
sor register.

An intended use of this instruction is to
communicate control information
directly between the coprocessor and
the VL86C020 PSR flags: As an
example, the result of a comparison of
two floating point values within the
coprocessor can be moved to the PSR
to control subsequent execution flow.

Coprocessor Flelds - The CP# field is
used, by all coprocessor instructions to
specify which coprocessor is being
invoked.

The CP Opc, CRn, CP and CRm fields
are used only by the coprocessor, and
the interpretation of these fields is set
only by convention; other:incompatible
interpretations are allowed. The
conventional interpretation is that the

MCR/MRC{cond} CP#,<expressioni>, Rd, CRn, CRm{,<expression2>}

where cond
CP#
Rd
CAn, CRm
exprossion1
expression2
Examples:
MCR 1, 6,R1,CR7, CR2

MRCEQ 2, 5, R1, cr2, Cr3, 2

; Request coproc #1 to do operation 6 on

Is the conditional execution code, common to all instructions.
Is the (unique) coprocessor number, assigned by hardware.
Is the ARM source or destination register.

These are valid coprocessor registers: CR0-CR15.
Evaluates to a constant, and is placed in the CP Opc field.

CP Opc and CP fields specify the
operation for the coprocessor to
perform, CRn is the coprocessor
register used as source or destination
of the transferrred information, and
CRm is the second coprocessor
register which may be involved in some
way dependent upon the operation
code.

Transfers to/from R15 - When a
coprocessor register transfer to
VL86C020 has R15 as the destination,
bits 31-28 of the transferred word are
copied into the N, Z, G and V flags
respectively. The other bits of the
transferred word are ignored, and the
PC and other PSR flags are unaffected
by the transfer.

A coprocessor register transfer from
VL86C020 with R15 as the source
register will save the PC together with
the PSR flags.

(Where present) evaluates to a constant, and is placed in the AUX field.

; CR7 and CR2, putting result into VL86C020’s R1.

; f the Z flag is set, transfer the VL86C020's R1 reg to the coproc register (defined
; by hardware), and request coproc #2 to do oper 5 (type 2) on CR2 and CR3.

3-39

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

FIGURE 20. UNDEFINED (RESERVED) INSTRUCTION

31 28 27 24 23 8 7 43 0
IIIIlllI|III|III]III[III|I[I’IIII
Condx [0 0 0 1]X X X XIX XX XIXXXXIXXXX]1TXX1[XXXX

31 28 27 24 23 8 7 543 0
LA LI |III||III|I|I[II]II LIV
lCondx |011|XXXXXXXXXXXXXXXXXXXX|1|XXXXI

Note: The above instructions will be presented for exacution only if the condition field is true.

If the condition is true, the undefined Assembler Syntax - At present the Instruction Set Examples

instruction trap will be taken. assembler has no mnemonics for The following examples show ways in
Note that the undefined instruction generating these instructions. If they which the basic VL86C020 instructions
mechanism involves offering these are a.d.opted in thg future for some can combine to give efficient code.
instructions o any coprocessors which specified use, suitable mnemonics will None of these'met.hods save a great
may be present, and all coprocessors t?e added to_the as.sembler. Until such deal of execution time (although they
must refuse to accept it by taking CPA time, these instructions should not be may save-some), mostly they just save
high. used. code.

Using Conditional Instructions -
(1) Using conditionals for logical OR, this sequence:

CMP R1,p ; If R1=p or R2=q then goto Label
BEQ Label
CMP R2, q
BEQ Label
can be replaced by
CMP R1,p
CMPNE Rm, q ; If condition not satisfied try other test
BEQ Label
(2) Absolute value
TEQ R1,0 ; Test sign
RSBMI R1,R1,0 ; and 2's complement if necessary
(3) Multiplication by 4, 5 or 6 (run time)
MOV R2, RoLSL 2 ; Multiply by 4
CMP R1,5 ; Test value
ADDCS R2, R2, RO ; Complete multiply by 5
ADDHI R2, R2, RO ; Complete multiply by 6
(4) Combining discrete and range tests
TEQ R2, 127 ; If (R2<>127)
CMPNE R2, " -1 ; Range test and if (R2<"")
MOVLS R2, "," ; Then, R2=""

3-40

® VLSI TECHNOLOGY, INC. PRELIMINARY

|
VL86C020
Division and Remalinder
; Enter with numbers in RO and R1
MOV R4, 1 ; Bit to control the division
Div1 CMP R1, 0x80000000 ; Move R1 untiligreater than RO
CMPCC R1, RO
MOVCC R1, R1LSL 1
BCC Div1
MOV R2,0
Div2 CMP RO, R1 ; Test for possible subtraction
SUBCS RO,RO,R1 ; Subtract if ok
ADDCS R2, R2, R4 ; Put relevant bit into result
MOVS R2, R4 LSR 1 ; Shift control bit
MOVNE R1,R1LSR 1 ; Halve unless finished
BNE Div2
; Division result is in R2.
; Remainder is in RO.
FIGURE 21. INSTRUCTION SET SUMMARY
31 28 27 24 23 20 19 16 15 12 11 8 7 43 0
I 71 | T LI N T I T l T .
Condx [0 0]l | Opcode [S Rn Rd Operand 2 Data Processing
I I | IR LI | i [
Condx [0 0 O OIO 0]A|S Rd Rn Rs 1001 Rm Multiply
| T T L 11 | LR L I 11
Condx |0 0 0 1 0[Bl0 O Rn Rd 0 00O0j1 001 Rm Single Data Swap
IR I IR T T UL |
Condx 10 1|1 [P{U]|BIW|L Rn Rd Offset (variants Load, Store
R [IV | T T T T 1 | IRV
Condx O 1 1T]XIX X X XIX X X XIX X X XIX X X X X X X|1[X X X X| Undefined
T T 1 T 1 T 1 1 T T 1 T 1T 1T T T T T T 11 T T 1
Condx {1 0 O P|U SWL Rn R154———Register List ———» R0 | Multi-Register Transfer
IR P L L Tt T T T T
Condx |1 0 1]|L Word address offset l Branch, Call
T L UL LA I T L
Condx (1 1 0|P|U[N|W|L Rn CRd CP#: Offset Coproc Data Transfer
DR Il 11 11 LA [T
Condx |1 1 1 0| CPOpc CRn CRd CPi#: CP_ |0| CRm Coproc Data Opr
T T 1 IR [11 | IR Tl T 1T
Condx |1 1 1 0|CP Opc|L CRn Rd CP# CP |1 CRm Coproc Regjister Transfer
Pl T 1L L IR L I IR
Condx {1 1 1 1 Bit space ignored by processor Software Interrupt

3-41

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

Pseudo Random Binary Sequence like a cyclic redundancy check genera- bit_20, shift left the 33-bit number and
Generator - It is often necessary to tor. Unfortunately the sequence of a put in Newbit at the bottom. Then do
generate (pseudo-) random numbers 32-bit generator needs more than one this for all the Newbits needed, i.e. 32
and the most efficient algorithms are feadback tap to be maximal length (i.e. of them. Luckily, this can be done in 58
based on shift register-based genera- 2232-1 cycles before repstition). The cycles:

tors with exclusive or feedback rather basic algorithim is Newbit = bit_33 xor

; Enter with seed in RO (32 bits), R1 (1 bit in R1 Isb)

; Uses R2
TST R1, R1LSR 1 ; Top bit into carry
MOVS R2, RO RRX ; 33 bit rotate right
ADC Ri,R1,R1 ; Carry into Isb of R1
EOR R2,R2, ROLSL 12 ; (Involvedl)
EOR Ro0,R2,R2 LSR 20 ; (Whewl)

; New seed in RO, R1 as before

Multiplication by Constant:

(1) Multiplication by 2*n (1,2,4,8,16,32..)
MOV RO, ROLSLn

(2) Multiplication by 2*n+1 (3,5,9,17..)
ADD RO, RO, ROLSL n

(3) Multiplication by 24n-1 (3,7,15..)
RSB RO, R0, ROLSLn

(4) Multiplication by 6

ADD Ro, RO, ROLSL 1 ; Multiply by 3
ADD RO, ROLSL 1 ;and then by 2
(5) Multiply by 10 and add in extra number
ADD Ro,R0,ROLSL2 ; Multiply by 5
MOV R0, R2, ROLSL 1 ; Multiply by 2 and add in next digit

(6) General recursive method for R1 =R0*C,C a constant:
(a) If C even, say C = 2*n*D, D odd:

D=1: MOV Ri,ROLSLn
D<>1: (R1=R0'D)
MOV R1,R1LSLn

(b) f CMOD 4 = 1, say C = 2*"n*D+1, D odd, N>1:
D=1: ADD R1,R0,ROLSLn

D<»>1: (R1 =R0'D)
ADD R1,R0,R1LSLn

(c) If CMOD 4 =3, say C = 2n*D-1, D odd, n>1:

D=1: RSB R1, RO, ROLSL n
D<>1: (R1 =R0*D)
RSB Ri,R0,R1LSLn

This is not quite optimal, but close. An example of its non-optimality is multiply by 45 which is done by:

RSB R1, RO, ROLSL 2 ; Multiply by 3

RSB R1, RO, R1 LSL 2 ; Multiply by 4*3-1 = 11

ADD R1,R0,R1LSL2 ; Multiply by 4*114+1 = 45
rather than by:

ADD R1,RO0,ROLSL3 ; Multiply by 9

ADD R1,R1,R1LSL2 ; Multiply by 5*9 = 45

3-42

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

Loading a Word with Unknown Alignment:
; Enter with address in RO (32 bits)

; Uses R1, R2; result in R2.

; Note R2 must be less than R3, e.g. 2,3

BIC Rt, R0, 3 ; Get word aligned address.

LDMIA R1, {R2,R3} ; Get 64 bits containing answer.

AND R1, R0, 3 ; Correction factor in bytes, not in bits.

MOVS R1,R1LSL3 ; Test if aligned.

MOVNE R2, R2, LSR Rt ; Product bottom of result word (if not aligned).
RSBNE Ri1, R1, 32 ; Get other shift.amount.

ORRNE R2, R2, R3 LSL R1 ; Combine two halves to get result.

Sign Extenslon of Partlal Word
MOV RO, ROLSL 16 ; Move to top
MOV RO, RO, LSR 16 ; ... and back tobottom
; (Use ASR to get sign extended version).

Return, Setting Condition Codes
BICS PC, R14,CFLAG ; Returns, clearing C flag ROM link register.
ORRCCS PC, R14, CFLAG ; Conditionally returns, setting C flag.

; Above code should not be used excspt in user mode, since it will reset the interrupt enable flags to
; their value when R14 was set up. This generally applies to non-user mode programming.
; e.g., MOVS PC,R14 MOV PC,R14 s safer!

3-43

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

CACHE OPERATION

The VL86C020 contains a 4 Kbyte
mixed instruction and data cache; the
cache has 256 lines of 16 bytes (4
words), organized as four blocks of 64
lines (making it 64-way set associative),
and uses the virtual addresses gener-
ated by the CPU core.

Read Operatlons - When the CPU
performs a read operation (instruction
fetch or data read), the cache is
searched for the relevant data; if found
in the cache, the data is fed to the CPU
using a fast clock cycle (from FCLK). If
the data is not found in the cache, the
CPU resynchronizes to the external
memory clock, MCLK, reads the
appropriate line of data (4 words) from
external memory and stores it in a
pseudo-randomly chosen entry in the
cache (a line fetch operation).

Write Operations - The cache uses a
write-through strategy, i:e. all CPU write
operations cause an immediate external
memory write. This ensures that when
the CPU attempts to write to a protected
memory location, the memory manager
can abort the operation.

If the cache holds a copy of the data
from the address being written to, the
cache data is normally automatically
updated. In certain cases, automatic
updating is not required; for instance,
when using the MEMC memory
manager, a read operation in the
address space between 3400000H-
3FFFFFFH accesses the ROMs, but a
write operation in the same address
space will change a MEMC register,
and should not affect the data stored in
the cache.

Control Register 4 must be programmed
with the addresses of all updateable
areas of the processor's memory map
(see section Register 4: Updateable
Areas Register - Read/Write).

Cache Valldlty - The cache works with
virtual addresses, and is unaware of the
mapping of virtual addresses to
physical addresses performed by the
external memory manager. If the virtual
to physical mapping in the memory
manager is altered, the cache still
maintains the data from the old map-
ping which is now invalid. The cache
must, therefore, be flushed of its old
data whenever the memory manager
mapping is changed.

Note that just removing or introducing-a
new virtual to physical mapping (e.g.
page swapping) does not invalidate the
cache, but that a total re-ordering of the
mapping (e.g. process swap) does.

Two methods of cache flushing are
supported:

1. Automatic cache flushing. Control
Register 5 may be programmed to
recognize write operations to
certain areas of memory as re-
programming the memory manager
address mapping. (e.g. write
operations to addresses between
3800000H-3FFFFFFH re-program
the page mapping in MEMC).
When the CPU sees a write opera-
tion to one of these disruptive
memory locations, the cache is
automatically flushed.

2. Software cache flushing. Writing to
Control Register 1 will flush the
cache immediately.

Automatic cache flushing invalidates
the cache unnecessarily on page
swaps, but allows all existing ARM
programs to be run without modifica-
tion.

Non-cacheable Areas of Memory
Certain areas of the processor's
memory map may be uncacheable. For
instance, when using MEMC, the area
between 3000000H-3400000H corre-
sponds to I/O space, and must be
marked as uncacheable to stop the
data being stored in the cache. When
the processor is polling a hardware flag
in YO space, it is important that the
processor is forced to read data from
the external peripheral, and not a copy
of some data held in the cache.

Control Register 3 must be pro-
grammed with the addresses of all
cacheable areas of the processor's
memory map (see section Register 3:
Cacheable Area Register - Read/Write).

Doubly Mapped Space - Since the
cache works with virtual addresses, it
assumes every virtual address maps to
a different physical address. If the
same physical location is accessed by
more than one virtual address, the
cache cannot maintain consistency, as
each virtual address will have a
separate entry in the cache, and only
one entry will be updated on a proces-
sor write operation. To avoid any cache
inconsistencies, both doubly-mapped
virtual addresses should be marked as
uncacheable.

If, when using MEMC, the Physically
Mapped RAM between 2000000H-
2FFFFFFH is used to alter the contents
of a cacheable virtual address, the
cache must be flushed immediately
afterwards. This may be performed
automatically by marking the Physically
Mapped RAM area as disruptive (see
Register 5: Disruptive Areas Register).

3-44

w VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

FIGURE 22. VL86C020 CONTROL REGISTERS
31

6

5 Disruptive

4 Updateable

3 Cacheable

2 8

1 Flush (write only; data ignored)

0} Designer [Manufacturer l Eigber nsmig:

The VL88C020 contains six control
registers as shown in Figure 22. These
registers are implemented as coproces-
sor 15, and are accessed using
coprocessor register transfer opera-
tions, where MRC is a control register
read, and MCR is a control register
write:

<MCR/MRC>{cond} 15,0,Rd,A3Cn,0

cond two character condition mnemonic, see section Condition Field.
Rd is an expression evaluating to a valid ARM register number.
A3Cn is an expression evaluating to one of the control register numbers.

These registers can only be accessed
while the processor is in a non-user
mode, and only by using coprocessor
register transfer operations. The
VL86C020 will take the undefined in-
struction trap if an illegal access is

made to coprocessor 15 (illegal
accesses include coprocessor data
operations, data transfers and user
mode register transfers).

Register 0: Identity Register - Read
Only - This is a read-only register that

returns a 32-bit VLSI-spacified number
which decodes to give the chip’s
designer, manufacturer, part type and
revision number:

3-45

® VLSI TECHNOLOGY, INC. PRELIMINARY

VL86C020

ID Example: (VL86C020 rev. 0)
Bit 31-Bit 24 Designer code (=41H - Acorn Computer Ltd.)
Bit 23-Bit 16 Manufacturer code (=56H - VLSI Technology Inc.)
Bit 15-Bit 8 Part type (=03H - VL86C020)
Bit 7-Bit 0 Revision number (=O0H - Revision 0)

Reglster 1: Cache Flush (Write Only)
Writing any value to this register
immediately flushes the cache.

Register 2: Cache Control (Read/
Write) - This is a three-bit register that
controls some special features of the
VL86C020:

1. Register Bit(0) - Cache On/Off -
If Bit(0) is low, the cache is turned
off and all processor read opera-
tions will go directly to the external
memory. The automatic cache
flush and cache update mecha-
nisms operate even when the
cache is turned off. This allows the
cache to be turned off for a time
and then turned on again with no
loss of cache consistency.

If Bit(0) is high, the cache is turned
on. Care must be taken that the
cacheable, updateable and
disruptive registers are correctly
programmed before turning the
cache on.

2. Register Bit(1) - Separate/Shared
User-Supervisor Address Space -
the CPU can work with two
different memory-mapping
schemes:

a. Shared Supervisor/User
Address Space - The memory
manager uses the same

Cacheable Areas Register:

translation tables for User and
Supetvisor modes, so the
same physical memory
location is accessed regard-
less of processor mode
(although the user may only
have restricted access). If the
memory manager uses this
translation system (as MEMC
does), Bit(1) must be set high.

b. Separate Supervisor/User
Address Space - The memory
manager uses different
translation tables for user and
supservisor modes, and the
processor will access com-
pletely different physical
locations depending on its
mode. I the memory manager
uses this translation system,
Bit(1) must be set low.

Register Bit(2) - Monitor Mode -

In normal operation, when the CPU
is executing from cache, the
external address lines are held
static to conserve power, and only
coprocessor instructions and data
ara broadcast on the copracessor
data bus.

In the software selectable monitor
mode, the internal addresses are
always driven onto the external

address bus, and all CPU instruc-
tion and data fetches (whether from
cache or external memory) are
broadcast on the coprocessor data
bus; this allows full program tracing
with a logic analyzer. To conserve
powsr, monitor mode forces the
VL86C020 to synchronize perma-
nently to MCLK (even for cache ac-
cesses).

Monitor mode is selected by setting
Bit(2) high. Normal operation is
achieved by setting Bit(2) low (the
default on reset).

4. Register Bits 31-3 - Reserved -
These bits are reserved for future
expansion. When writing to
register 2, bit 31-bit 3-should be sst
low to guarantee code compatibility
with future versions of VL86C020.
Reading from register 2 always
returns zeros in bits 31-3.

When the VL86C020 is reset, all three
control bits are set low (cache off,
separate user/supervisor space,
monitor mode off).

Reglster 3: Cacheable Area (Read/
Write) - This is a 32-bit register that
allows any of the 32, 2 Mbyte areas of
the 64 Mbyte processor virtual address
space to be marked as cacheable:

Bit 31=1 Data from addresses 3E00000H - 3FFFFFFH is cacheable

Bit 31=0 Data from addresses 3E00000H - 3FFFFFFH is NOT cacheable
Bit O=1 Data from addresses 0000000H - 01FFFFFH is cacheable

Bit 0=0 Data from addresses 0000000H - 01FFFFFFH is NOT cacheable

3-46

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

On a cache-miss, if the address is
marked as cacheable, a line of data will
be fetched from external memory and
stored in the cache (when the cache is
turned on). If the area is marked as
non-cacheable, or the cache is turned

Updateable Areas Register:
Bit 31=1
Bit 31=0

Bit 0=1
Bit 0=0

Data stored in the cache from areas
marked as updateable will be updated
when the processor writes new data to
that address. This register is undefined
at power-up, and must be correctly
programmed before the cache is turned
on.

Disruptive Areas Register:
Bit 31=1
Bit 31=1

Bit 0=1
Bit 0=0

off, only the requested byte/word of
data will be read from external memory,
and it will not be stored in‘the cache.
This register is undefined:at power-up,
and must be correctly programmed
before the cache is turned on.

Data from addresses 3E00000H - 3FFFFFFH is updateable
Data from addresses 3E00000H - 3FFFFFFH is NOT updateable

"

Data from addresses 0000000H - 01FFFFFH is updateable
Data from addresses 0000000H - 01FFFFFH is NOT updateable

Reglster 5: Disruptive Areas (Read/
Write) - This is a 32-bit register that
allows any of the thirty-two, 2 Mbyte
areas of the 64 Mbyte processor virtual
address space to be marked as
disruptive:

Data from addresses 3E00000H - 3FFFFFFH is disruptive
Data from addresses 3E00000H - 3FFFFFEH is NOT disruptive

»

Data from addresses 0000000H - 01FFFFFH is disruptive
Data from addresses 0000000H - 01FFFFFH is NOT disruptive

Register 4: Updateable Areas (Read/
Wrlite) - This is a 32-bit register that
allows any of the 32, 2 Mbyte areas of
the 64 Mbyte processor virtual address
space to be marked as updateable:

If the processor performs a write
operation to an area marked as
disruptive, the cache will automatically
be flushed. This register is undefined at
power-up, and must be correctly
programmed before the cache is turned
on.

FIGURE 23. VL86C020 MEMORY TIMING

L-CYCLE A-CYCLE A-CYCLE L-CYCLE
MCLK I] [i I -
-MREQ — 1] | | —
SEQ | 1 1
~RAS L1
-CAS | I
ADDRESS e 4 D4
CONTROL X X X
DATA (READ) IToO—T>—
DATA (WRITE) < X > —
ABORT

3-47

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

MEMORY INTERFACE

The VL86C020 reads instructions and
data from, and writes data to, its main
memory via a 32-bit data bus. A
separate 26-bit address bus specifies
the memory location to be used for the
transfer, and a 7-bit control bus gives
information about the type of transfer
(including direction, byte or word
quantity and processor mods).

CYCLE TYPES

The memory interface timing is con-
trolled by the memory clock input,
MCLK. Each memory cycle (defined as
the period between consecutive falling
edges of MCLK) may be either active or
latent.

— Active cycles (A-cycles) involve the
transfer of data between CPU and
memory. The address, control and
(for write operations) data buses
are valid, and the CPU monitors
the ABORT input to check that the
current operation is valid.

Where more than one word of data
is to be transferred, consecutive
active cycles are used; in this case,
each successive transfer will be to/
from an address one word after the
previous one. Atthe end of a
multiple transfer, when the CPU
wishes to access an address which
is unrelated to the one used in the
preceding cycle, it will request a
latent cycle.

— Latent cycles (L-cycles) are flagged
when the CPU does not have to
transfer any data to/from memory.
Typically, this will be because the
CPU is fetching data from the
internal cache; the CPU must still
be clocked with MCLK during latent
cycles, since MCLK is used in the
resynchronization process.

The address, control and (for write
operations) data buses are all valid
during the latent cycle preceding
an active cycle; this allows the
memory system to start the data
transfer during the latent cycle as
soon as the following active cycle
is flagged (by -MREQ going low).

Active and latent cycles are flagged to
the memory system using the -MREQ
output. The SEQ output is the inverse
of -MREQ, and is provided to allow the

VL86C020 to work with the current
versions of MEMC. The states en-
coded by -MREQ and SEQ correspond
to the internal and sequential cycles
used by the VL86C010 processor, and
are shown in the following table.

-MREQ| SEQ | Cycle Type
0 0 (Unused)
0 1 Active
1 0 Latent
1 1 (Unused)

The memory interface has been
designed to facilitate the use of DRAM
page-mode to allow rapid access to
sequential data. Figure 23 shows how
the DRAM timing might be arranged to
allow the CPU to access two consecu-
tive words of memory.

The address and control signals change
when MCLK is high, and apply to the
following cycle. Both the address and
control buses are valid during the L-
cycle preceding the first A-cycle, so the
memory system can start the DRAM
access by driving —RAS low once the A-
cycle has been flagged (by -MREQ
being low on the rising edge of MCLK).
Since ~-MREQ remains low during the
first A-cycle, the memory system knows
that the next cycle will be an access to
the consecutive word of memory, and
so may leave —RAS low and fetch the
next word from the same page of
DRAM. Note that the memory system
must check that the consecutive access
will be in the same page of DRAM
before commiting to a page-mode
access; if it is not, the memory system
must stop the CPU while the new row
address is strobed into the DRAM.

The end of the consecutive accesses is
denoted when an L-cycle is flagged (by
~MREQ being high on the rising edge
of MCLK).

When interfacing the VL86C020 to
static RAM, L-cycles may be ignored,
and RAM accessed only when A-cycles
are flagged. The address bus timing
may have to be madified (see section
on Address timing).

DATA TRANSFER
The direction of data transfer is
determined by the state of ~-R/W.

When -R/W is low, the CPU is reading
data from memory, and the appropriate
data must be setup on the data bus
before the falling edge of MCLK in the
active cycle.

When —R/W is high, the CPU is writing
data to memory. The data bus be-
comes valid during the first half of the L-
cycle preceding the A-cycle, and
remains valid until the A-cycle has
completed. In consecutive write
operations, the data bus changes
during the first half of each A-cycle.

In systems where the VL86C020 is not
the only device using the data bus, DBE
must be driven low when the CPU is not
the bus master. This will prevent the
CPU from driving data onto the bus un-
expectedly during L-cycles.

BYTE ADDRESSING

The processor address bus provides
byte addresses, but instructions are
always words (where a word is four
bytes) and data quantities are usually
words. Single data transfers
(LDR,STR,SWP) can, however, specifiy
that a byte quantity is required. The
—B/W control line is used to request a
byte from the memory system; normally
it is high, signifying a request for a word
quantity, but it goes low when the
addresses change to request a byte
transfer.

When a byte is requested in a read
transfer, the memory system can safely
ignore the fact that the request is for a
byte quantity and present the whole
word. The CPU will perform the byte
extraction internally. Alternatively, the
memory system may activate only the
addressed byte of the memory. (This
may be desirable in order to save
power, or to enable the use of a
common decoding system for both read
and write cycles.)

If a byte write is requested, the CPU will
broadcast the byte value across the
data bus, presenting it at each byte
location within the word. The memory
system must decode address bits A1-
A0 to determine which byte is to be
written.

One way of implementing the byte
decode in a DRAM system is to
separate the 32-bit wide block of DRAM
into four byte wide banks, and generate

3-48

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

FIGURE 24. BYTE ADDRESSING

A0 Al

-B/W

MCLK

CAS

1Y

v

3
?

—-CAS0

Y

—CAS1

Y

-CAS2

—CAS3

the column address strobes independ-
ently. (See Figure 24.)

—CASQ drives the DRAM bank which is
connected to D7-D0, —CAS1 drives the
bank connected to D15-D8, and so on.
This has the added advantage of
reducing the load on each column
strobe driver, which improves the
precision of this time critical signal.

LOCKED OPERATIONS

The VL86C020 includes a data swap
(SWP) instruction that allows the
contents of a memory location to be
swapped with the contents of a proces-
sor register. This instruction is imple-
mented as an uninterruptable pair of
accesses as shown in Figure 25; the
first access reads the contents of the
memory, and the second writes the
register data to the memory. These
accesses must be treated as a contigu-
ous operation by the memory manager
to prevent another device from chang-
ing the affected memory location before
the swap is completed. The CPU
drives the LOCK signal high for the
duration of the swap operation to warn
the memory manager not to give the
memory to another device.

FIGURE 25. DATA SWAP OPERATION

MCLK
-MREQ

SEQ
ADDRESS
-BW
-RW

LOCK
DATA (READ)

DATA (WRITE)

ABORT

READ MEMORY DATA WRITE REGISTER DATA

L-CYCLE A-CYCLE L-CYCLE A-CYCLE
| | [L
I I L
[[S N I I S
X X
X X
— Ll
1 Ll

7

—C >

3-49

® VLSI TECHNOLOGY, INC. PRELIMINARY

VL86C020

FIGURE 26. LINE FETCH OPERATION

L-CYCLE A-CYCLE A-CYCLE A-CYCLE A-CYCLE

MCLK | |] I [I | .

-MREQ 1] [——\—

SEQ] L.____._

ADDRESS D4 XX..XOH X xaxad X wxexH X wxxeH X[

-BW ____J B

S — -

LINE [L]
DATA (READ) <SNORD)> <WORD}> <WORD <WORDY-
DATA (WRITE)
ABORT
LINE FETCH OPERATIONS MCLK goes low. An on chip address system pages from the user, or to

A line fetch operation involves reading
exactly four words of data from the
memory system into the on-chip cache.
The access always starts on a quad-
waord aligned address (i.e. xx..x0H,
xx..x4H or xx..xCH), and consists of
one L-cycle followed by four consecu-
tive A-cycles as shown in Figure 26.
Line fetch operations may only be
aborted during the first access (to
address xx..Xx0H); it is assumed that if
the first word of a line is readable, the
whole line is readable. The VL86C020
signals a line fetch by driving LINE high
for the duration of the five cycle
operation.

ADDRESS TIMING

Normally the processor address
changes when MCLK is high to the
valus which the memory system should
use during the following cycle. This
gives maximum time for driving the
address to large memory arrays, and
for address translation where required.
Dynamic memories usually latch the
address on chip, and if the latch is
timed correctly, they will work even
though the address changes before the
access has completed. Static RAMs
and ROMs will not work under such
circumstances, as they require the
address transition must be delayed until

latch, controlled by ALE, allows the
address timing to be modified in this
way.

In a system with a mixture of dynamic
and static memories (which for these
purposes means a mixture of devices
with and without address latches), the
use of ALE may change dynamically
from one cycle to the next, at the
discretion of the memory system.

VIRTUAL MEMORY SYSTEMS

The CPU is capable of running a virtual
memory system, and the address bus
may be processed by an address
translation unit before being presented
to the memory. The ABORT input to
the processor is used by the memary
manager to inform the processor of ad-
dressing faults.

The minimum page size allowed by the
VL86C020 is four words (the length of a
cache line). Various page protection
levels can be suported using the
VL86C020 control signals:

— —R/M can be used by the memory
manager to protect pages from
being written to.

— —TRANS indicates whether the
processor is in a user or non-user
mode, and may be used to protect

support completely separate
mappings for the system and the
user. In the latter case, the T bit in
LDR and STR instructions can be
used to offer the supervisor the
user's view of the memory.

— —M1-MO can present the memory
manager with full information on
the processor mode.

The cache control register must be
programmed to implement the appropri-
ate cache consistency mechanism
depending on whether the memory
manager uses a shared or separate
user/non-user translation system (see
Cache Operation Section).

STRETCHING ACCESS TIMES

All memory timing is defined by MCLK,
and long access times can be accom-
modated by stretching this clock. It is
usual to stretch the low period of MCLK,
as this allows the memory manager to
abort the operation if the access is
eventually unsuccessful (ABORT must
be setup to the rising edge of MCLK in
A-cycles).

Either MCLK can be stretched before it
is applied to the CPU, or the ~-WAIT

input can be used together with a free-
running MCLK. Taking —WAIT low has

3-50

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

the same effect as stretching the low
period of MCLK, and ~-WAIT must only
change when MCLK is low.

The VL86C020 contains dynamic logic,
and relies upon regular clocking to
maintain its internal state. For this
reason, a limit is set upon the maximum
period for which MCLK may be
stretched, or —-WAIT held low (see AC
parameters).

COPROCESSOR INTERFACE

The functionality of the CPU instruction
set may be extended by the addition of
up to 15 external coprocessors. When
a particular coprocessor is not present,
instructions intended for it will trap, and
suitable software may be installed to
emulate its functions. Adding the
relevant coprocessor hardware will then
increase the system performance in a
software compatible way.

Interface Signals - The coprocessor
interface timing is specified by CPCLK,
a clock generated by the VL86C020.
CPCLK is derived from either MCLK or
FCLK depending on whether the CPU
is accessing external memory or the
cache; the coprocessors must, there-
fore, be able to operate at FCLK
speeds. A coprocessor cycle is defined
to be the period between consecutive
falling edges of CPCLK. Three

dedicated signals control the coproces-
sor interface, coprocessor instruction
(—CPI), coprocessor absent (CPA) and
coprocessor busy (CPB).

Coprocessor Present/Absent - The
CPU takes —CPIl low whenever it starts
to execute a coprocessor (or undefined)
instruction (this will not happen if the
instruction fails to be executed because
of the condition codes). Each
coprocessor will have a copy of the
instruction, and can inspect the CP#
field to see which coprocessor it is for.
Every coprocessor in a system must
have a unique number, and if that
number matches the contents of the
CP# fleld, the coprocessor should pull
the CPA (coprocessor absent) line low.
If no coprocessor has a number which
matches the CP# field, CPA will float
high, and the CPU will take the unde-
fined instruction trap. Otherwise, the
VL86C020 observes the CPA line going
low, and waits until the coprocessor
flags that it is not busy (using CPB).

Busy-Walting - If CPA goes low, the
CPU will watch the CPB (coprocessor
busy) line. Only the coprocessor which
is pulling CPA low is allowed to drive
CPB low, and it should do so when it is
ready to complete the instruction. The
VL86C020 will busy-wait while CPB is
high, unless an enabled interrupt

occurs, in which case it will break off
from the coprocessor handshake to
process the interrupt. Normally the
CPU will return from processing the
interrupt to retry the cogrocessor
instruction.

When CPB goes low, the instruction
continues to completion; in the case of
register transfer or dataitransfer instruc-
tions, this will involve data transfers
taking place along the coprocessor data
bus (CPD31-CPDO) between the
coprocessor and CPU. Data operations
do not transfer any data, and complete
as soon as the coprocessor ceases to
be busy.

All three interface signals are sampled
by both CPU and the coprocessor(s) on
the rising edge of CPCLK. If all three
are low, the instruction is committed to
execution, and where transfers are
involved they will start in the next
CPCLK cycle. [f ~CPI has gone high
after being low, and before the instruc-
tion is committed, the VL86C020 has
broken off from the busy-wait state to
service an interrupt. The instruction
may be restarted later, but other
coprocessor instructions may come
sooner, and the instruction should be
discarded. An externalipull-up resistor
is normally required on both CPA and
CPB.

FIGURE 27. COPROCESSOR DATA OPERATION

CDP CDP CDP
BROADCAST DECODED EXECUTED
COPROCESSOR COPROCESSOR
BUSY READY
CPCLK _| | I I I I I
-opc T | I] T
CF(’:I?Ds[;IO- (cop {PCea) <)
CPSPV Y 4 4 e Nl
-CP l [[
CPA | | T
CcPB

3-51

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

Pipeline Following - In order to
respond correctly when a coprocessor
instruction arises, each coprocessor
must have a copy of the instruction.
This is achieved by having each
coprocessor maintain a copy of the
processor’s instruction pipeline. If
-OPC is low when GPCLK is low, then
the CPU will broadcast a processor in-
struction that cycle. The coprocessors
should latch the instruction off CPD31-
CPDO at the end of the cycle (as
CPCLK falls) and clock it into their
instruction pipslines.

To reduce the number of transitions on
CPD31-CPDO, the VL86C020 inspects
the instruction stream and replaces all
non coprocessor instructions with
&FFFFFFFF (which still decodes as a
non coprocessor instruction); all
coprocessor instructions are broadcast
unaltered.

This scheme is disabled when monitor
mode is selected, and all CPU instruc-
tions and data fetches are broadcast
unaltered (see Cache OperationSec-
tion).

DATA TRANSFER CYCLES - Once
the coprocessor has gone no-busy in a
data transfer instruction, it must supply
or accept data at the VL86C020 bus
rate (defined by CPCLK). The direction
of transfer is defined by the L bit in the
instruction being executed. The
coprocessor is responsible for deter-
mining the number of words to be
transferred; VL86C020 will continue to
increment the address by one word per
transfer until the coprocessor tells it to
stop. The termination condition is

FIGURE 28. COPROCESSOR DATA TRANSFER (FROM MEMORY TO COPROCESSOR)

FIRST PENULTIMATE FINAL EXTRA
COPROCESSOR DATA DATA DATA DATA
READY TRANSFER ~ TRANSFER TRANSFER (IGNORED)
CPCLK __[I I Ly | [[[-
-orc] [1 [T
CPD31- DATA(1) DATA(M-1) DATAM) DATAM+1)
CPDO OUT <Fc+8 _PpF—D P <P <Periz>—
CPD31-
CPDO IN
~CPl 1 | T []
cPA T r I
cPB T [|

FIGURE 29. COPROCESSOR DATA TRANSFER (FROM COPROCESSOR TO MEMORY)

FIRST PENULTIMATE FINAL
COPROCESSOR DATA DATA DATA
READY TRANSFER TRANSFER = TRANSFER
CPCLK [I | l [I L
-OPC] |
CPD31- pu—
CPDO OUT PC48 [>
DATA(1) DATA(M-1) DATA(M)
CPD31- N N
CPDO IN N V77 NV N
—CPI 1 T
cPA T] I T
cPB T 1 r

3-52

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL.86C020

indicated by the coprocessor releasing
CPA and CPB to float high.

The data being transferred to/from
memoty is pipelined by one cycle within
the CPU. In the case of a coprocessor
load from memory, this means that the
CPU is one word ahead of the
coprocessor, and always fetches one
extra word of data. This extra fetch will
not adversely affect the CPU or the
coprocassor, but may cause unex-
pected faults in the memory system
(e.g. if the extra fetch accesses a read-
sensitive peripheral).

There is no limit in principle to the
number of words which one coproces-
sor data transfer can move, but by
convention no coprocessor should allow
more than 16 words in one instruction.
More than this would worsen the worst
case CPU interrupt latency, since the
instruction is not interruptable once the
transfers have commenced. At 16
words, this instruction is comparable
with a block transfer of 16 registers, and
therefore does not affect the worst case
latency.

REGISTER TRANSFER CYCLE
Register transfer operations involve the
transfer of a single word between the
CPU and the appropriate coprocessor
along CPD31-CPDO. The transfer
takes place in the cycle after the one in
which the CPU and the coprocessor
committed to the instruction.

PRIVILEGED INSTRUCTIONS

The coprocessor may restrict certain
instructions for use in a privileged (non-
user) mode only. To do this, the
coprocessor may use the CPSPV

FIGURE 30. COPROCESSOR REGISTER TRANSFER (LOAD FROM COPROCESSOR)

TRANSFER
COPROCESSOR COPROCESSOR
READY DATA B
CPCLK _ | [| | [—
-opc]] I'J—
CPD31- J—
CPDO OUT PC+12
CPD31- ey
cPDO IN <oATAD>
-CPI

CPA

Y
Yy

FIGURE 31. COPROCESSOR REGISTER TRANSFER (STORE TO COPROCESSOR)
TRANSFER
COPROCESSOR REGISTER
READY DATA
CPCLK __] | | [-
-OPC l [——'—"I l———
CPD31- ——i
CPDO OUT {DATA < PC+12>—
CPD31-
CPDO IN
~CPI [SR [

CPA [[
CPB

3-53

w VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

output of the VL86C020; this signal is
valid while CPCLK is low, and applies
to the instruction being broadcast
during that cycle. When CPSPV is
high, the broadcast instruction is
privileged.

As an example of the use of this facility,
consider the case of a floating point
coprocessor (FPU) in a multi-tasking
system. The operating system could
save all the floating point registers on
every task switch, but this is inefficient
in a typical system where only one or
two tasks will use floating point opera-
tions. Instead, there could be a
privileged instruction which turns the
FPU on or off. When a task switch
happens, the operating system can turn
the FPU off without saving its registers.
If the new task attempts an FPU
operation, the FPU will appear to be
absent, causing an undefined instruc-
tion trap. The operating system will
then realize that the new task requires
the FPU, so it will re-enable it and save
FPU registers. The task can then use
the FPU as normal. If, however, the
new task never attempts an FPU
operation (as will be the case for most
tasks), the state saving overhead will
have been avoided.

REPEATABILITY

A consequence of the implementation
of the coprocessor interface, with the
interruptable busy-wait state, is that all
instructions may be interrupted at any
point up to the time when the coproces-
sor goes not-busy. |f so interrupted, the
instruction will normally be restarted
from the beginning after the interrupt
has been processed. It is, therefore,
essential that any action taken by the
coprocessor before it goss not-busy
must be repeatable, i.e. must be repeat-
able with identical results.

For example, consider a FIX operation
in a floating point coprocessor which
returns the integer result to a CPU
register. The coprocessor must stay
busy while it performs the floating point
to fixed point conversion, as the CPU
will expect to receive the integer value
on the cycle immediately following that
where it goes not-busy. The coproces-
sor must, therefore, presetve the
original floating point value and not
corrupt it during the conversion be-
cause it will be required again if an
interrupt occurred during the busy
period.

EXPLANATION OF INSTRUCTION TABLES

Example:

OPRTN Type
Read

Intnl -
Intnl
Write
Read

Cycle
1

Hwr
zZ |

Each row in the table represents a
single CPU or coprocessor cycle. The
cycles which constitute the instruction
are numbered from 1 to n.

The OPRTN column shows the CPU
operation being performed in each
cycle. Thers are four types of CPU
operation as follows:

1. Read: A CPU read operation; the
data will be read from the cache if it
is present, otherwise an external
read or line fetch operation will be
necessary.

The coprocessor data operation class
of instruction is not generally subject to
repeatablity considerations, as the proc-
essing activity can take place after the
coprocessor goes not-busy. There is
no need for the CPU to be held up until
the result is generated, because the
result is confined to stay within the
COoprocessor.

UNDEFINED INSTRUCTION

The undefined instruction is treated by
the CPU as a coprocessor instruction.
All coprocessors must be absent (i.e. let
CPA float high) when the undefined
instruction is presented. The CPU will
then take the undefined instruction trap.
Note that the coprocessor need only
look at bit 27 of the instruction to
differentiate the undefined instruction
{which has 0 in bit 27) from coprocessor
instructions (which all have 1 in bit 27).

VL86C020 INSTRUCTION CYCLES
This section shows the cycles per-
formed by the VL86C020's CPU and
coprocessor for all possible instructions.
Each class of instruction is taken in
turn, and its operation is broken down
into constituent cycles.

Address Data -OPC CPD31-CPDO -CPI CPA CPB
PC+8 (PC+8) 1 X X
PC+8 -~ 0 (PC+8) 0 0 0
<= notclocked = > 1 DI (1) 1 1 1
ALU DI(1) <= not clocked =>

PC+12 1 - 1\)

2. Write: A CPU write operation;
VL86CO020 always writes data im-
mediately to the main memory.

3. Intnl: An internal operation where
the CPU is not transferring data.

4. Trnsf: A coprocessor register
transfer where data passes
between the CPU and a coproces-
sor.

The type column gives extra information
about the typs of operation being
psrformed:

1. Read and write operations may be
one of two types, Sequential (*S")
or Non-sequential (“N”). A
sequential access involves the
CPU transferring data with an
address that is one word after the
preceding access. A non-
sequential access is flagged when
the current CPU address is
unrelated to the one used in the
preceding access.

2. Read and write operations
normally work on word quantities,
but the single data load, store and

3-54

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

swap instructions allow byte
quantities to be specified; this is
indicated by the symbol “(B/W)" in
the type column.

3. The coprocessor register transfer
instruction may either transfer data
into (“I") or out from (“O”) the CPU.

The address and data columns show
the contents of VL86C020’s internal
address and data busses. Note that in
normal mode, the internal data bus
cannot be observed directly, and the
address bus is only observable when
the CPU is synchronized to MCLK.

The —OPC, CPD31-CPDO, —CP|, CPA
and CPB columns (where shown)
indicate the state of the external
coprocessor interface. Note that in
normal mode CPD31-CPDO only

Cycle OPRTN Type
1 Read
2 Read
3 Read
Read

(PG is the address of the branch instruction,

etc).

broadcasts coprocessor instructions
and data (see section Pipeline Follow-
ing). By selecting monitor mode, the
internal address bus can be viewed on
A25-A0, and all data will be broadcast
on CPD31-CPDO.

The final, un-numbered operation in an
instruction shows what will:happen in
the first cycle of the next instruction.
Note that the first cycle of an instruction
is always an instruction fetch (word
read operation), but may be either an
N-type or S-type read depending on the
previous instruction.

INSTRUCTION TABLES

Branch and Branch with Link - A branch
instruction calculates the branch
destination in the first cycle, while
performing a prefetch fromithe current
PC. This prefetch is done in all cases,

Address Data

PC+8 (PC+8)

ALU (ALV) 0 (PC+8)
ALU+4 (ALU+4) 0 (ALU)
ALU+8 0 (ALU+4)

since by the time the decision to take
the branch has been reached it is
already too late to prevent the prefetch.

During the second cycle a fetch is
performed from the branch destination,
and the return address is stored in
register 14 if the link bit is set. The first
cycle's prefetch data is broadcast on
the external coprocessor data bus
(there is a one cycle delay between the
coprocessor and CPU).

The third cycle performs a fetch from
the destination +4, refilling the instruc-
tion pipeline, and if the branch is with
link, R14 is modified (4 is subtracted
from it) to simplify return from SUB
PC<R14,#4 to MOV PC,R14. This
makes the STM ..{R14}ILDM ..{PC}
type of subroutine work:correctly.

-OPC CPD31-CPDO

ALU is an address calculated by the CPU, (ALU) is the contents of the address,

Data Operatlons - A data operation
executes in a single datapath cycle
except where the shift is determined by
the contents of a register. A register is
read onto the A bus, and a second
register or the immediate field onto the
B bus. The ALU combines the A bus
source and the shifted B bus source
according to the opsration specified in
the instruction, and the result (when
required) is written to the destination
register. (Compares and tests do not
produce results, only the ALU status
flags are affected.)

An instruction prefetch occurs at the
same time as the above operation, and
the program counter is incremented.

When the shift length is specified by a
register, an additional datapath cycle
occurs before the above operation to
copy the bottom 8 bits of that register
into a holding latch in the barrel shifter.
The instruction prefetch will occur
during this first cycle, and the operation
cycle will be internal (i.e. will not
perform a data transfer).

The PC may be any (or all!) of the
register operands. When read onto the
A bus it appears without the PSR bits,
on the B bus it appearsiwith them.
Neither will affect external bus activitiy.
When it is the destination, however, the
contents of the instruction pipeline are
invalidated, and the address for the
next instruction prefetch is taken from
the ALU rather than the address
incrementer. The instruction pipeline is
refilled before any further execution
takes place, and duringthis time
exceptions are locked out.

3-556

® VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

Cycle
Normal 1 Read
Read S
DEST=PC Read
Read
Read
Read

W =
nwunz

Shift (RS) 1 Read
2 Intnl
Read

=z

Read
Intnl

Read
Read
Read

Shift (RS),
DEST=PC

hWON =
nnzt

OPRTN Type

Address Data
PC+8 (PC+8)
PC+12 0
PC+8 (PC+8)
ALU (ALU) 0
ALU+4 (ALU+4) 0
ALU+8 0
PC+8 (PC+8)
PC+12 - 0
PC+12 1
PC+8 (PC+8)

- - 0
ALU (ALU) 1
ALU+4 (ALU+4) 0
ALU+8 0

~OPC CPD31-CPDO

(PC+8)

(PC+8)
(ALU+4)
(ALU+4)

(PC+8)
(PC1+8)

(ALU)
(ALU+4)

Multiply and Multiply Accumulate -
The multiply instructions make use of
special hardware which implements a
2-bit Booth’s algorithm with early termi-
nation. During the first cycle the accu-
mulate register is brought to the ALU,
which either transmits it or produces
zero (according to whether the instruc-
tion is MLA or MUL) to initialize the
destination register. During the same

Cycle

(RS)=0,1 1 Read

Intnl -
Read N

(RS) >1 Read

s N -

m+1

(m is the number of cycles required by
the Booth’s algorithm, which is deter-
mined by the contents of Rs. Multiplica-
tion by and number between 24(2m-3)
and 24(2m-1)-1 inclusive takes m cycles
for m>1. Muttiplication by zero or one
takes one cycle. The maximum value
m can take is 16.)

Load Register - The first cycle of a
load register instruction performs the

OPRTN Type

Intnl -
Intnl -
Intni -
Read N

cycl, one of the operands is loaded into
the Booth's shifter via the A bus.

The datapath then cycles, adding the
second operand to, subtracting it from,
or just transmitting, the result register.
The second operand is shifted in the
Nth cycle by 2n or 2n-+1 bits, under
control of the Booth's algorithm logic.
The first operand is shifted right 2 bits
per cycle, and when it is zero the

Address Data

PC+8 (PC+8)
PC+12 - 0
PC+12 - 1

PC+8
PC+12
PC+12 -
PC+12 -
PC+12

(PC4+8)

- _— O

address calculation. The data is
fetched during the second cycle, and
the base register modification is
performed during this cycle (if required).
During the third cycle the data is
transferred to the destination register,
and the CPU performs an internal cycle.

The data read may be a byte or word
quantity (B/W), and the processor mode
may be forced into user mode while the

instruction terminates (possibly after an
additional cycle fo clear a pending
borrow).

All cycles except the first are internal.

If the destination is the PC, all writing to
it is prevented. The instruction will
proceed as normal except that the PC
will be unaffected. (If the S bit is set
PSR flags will be meaningless.)

-OPC CPD31-CPDO

(PC+8)

(PC+8)

read takes place (depending on the
state of the T bit in the instruction).

Either the base or the destination (or
both) may be the PC, and the prefetch
sequence will be changed if the PC is
affected by the instruction.

The data fetch may abort, and in this
case the base and destination modifica-
tions are prevented.

3-56

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

Cycle
Normal 1
2
3
DEST=PC 1
2
3
4
5
BASE:=PC 1
Write Back 2
DEST=PC 3
4
5
BASE=PC 1
Writ -Back 2
DEST=PC 3
4
5

OPRTN

Read
Read
Intnl

Read

Read
Read
Intn!

Read
Read
Read

Read
Read
Intnl

Read
Read
Read

Read
Read
Intnl

Read
Read
Read

Type

NBW) T

Mode

Address

PC+8
ALU
PC+12
PC+12

PC+8
ALU
PC+12
(ALU)
(ALU)+4
(ALU)+8

PC+8
ALU
pPC'
PC'
PC+4
PC'+8

PC+8
ALU
PC'
(ALU)
(ALUj+4
(ALU)+8

Data

(PC+8)
(ALU)

(PC+8)
(ALU)

((ALU))
((ALU)+4)
(PG+8)
(ALU)
(PE')
(PG'+4)
(PC+8)
(ALU)

((ALL))
((ALU)+4)

-OPC

QOO —~==20 OO =+~ =0 - =0

OO —=-—=0O

CPD31-CPDO

(PC+8)
(ALU)

(PC+8)
(ALU)

(ALU))
((ALU)+4)
(PC+8)
(ALU)
(PC)
(PC'+4)
(PC+8)
(ALU)

((ALU))
(ALU)+4)

(PC’ is the PC value modified by write back; T shows the cycle where the force translation option in the instruction may be used.)

Store Reglster - The first cycle of a

store register is similar to the first cycle

of load register. During the second
cycle the base modification is per-

formed, and at the same time the data

is written to external memory. There is

no third cycle.

Cycle OPRTN
Read
Write
Read

Normal 1

BASE=PC
Write Back

1 Read
2 Write
3 Read
4 Read

Read

The data written may be a byte or word
quantity (B/W), and the processor mode

may be forced into user mode while
write takes place (depending on the
state of the T bit in the instruction).

Type Mode Address .Data
PC+8 (PC+8)
NBW) T ALU RD
N PC+12
PC+8 (PC+8)
NBW) T ALU RD
N PC' (PCY)
S PC'+4 (PC'+4)
S PC'+8

the

-OPC

- O

OO0 =0

The PC will only be modified if it is the
base and write back occurs.

A data abort prevents the base write
back.

CPD31-CPDO

(PC4+8)
RD

(PC+8)
RD
(PCY
(PC'+4)

3-57

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

Store Multiple Registers - Store
multiple proceeds very much as load
multiple (see next section), without the

final cycle. The restart problem is much
more straightforward here, as there is

Cycle OPRTN Type Address Data -OPC
1 Register 1 Read PC+8 (PC+8)
2 Write N ALU R(A) 0
Read N PC+12 1
n Registers 1 Read PC+8 (PC+8)
(n>1) 2 Write N ALU R(A) o}
3 Write S ALU+4 R(A+1) 1
n+1 Write S ALU+. R(A+n) 1
Read N PC+12 1

no wholesale overwriting of registers to
contend with.

CPD31-CPDO

(PC+8)
R(A)

(PC+8)
R(A)

R(A+n-1)
R(A+n)

Load Multiple Reglsters - The first
cycle of LDM is used to calculate the
address of the first word to be trans-
ferred, while performing a prefetch.
The second cycle fetches the first word,
and performs the base modifications.
During the third cycle, the first word is
moved to the appropriate destination
register while the second word is
fetched, and the modification base is
moved to the ALU A bus input latch for
holding in case it is needed to patch up

after abort. The third cycle is repeated
for subsequent fetches until the last
data word has been accessed, then the
final (internal) cycle moves the last
word to its destination register.

If an abort occurs, the instruction
continues to completion,.but all register
writing after the abort is prevented. The
final cycle is altered to restore the
modified base register (which may have
been overwritten by the load activity
before the abort occurred).

Cycle OPRTN Type Address Data -0OPC

1 Register 1 Read PC+8 (PC+8)
2 Read N ALU (ALV) 0
3 Intn| - PC+12 - 1
Read N PC+12 1

1 Register 1 Read N PC+8 (PC+8)
DEST=PC 2 Read N ALU PC’ 0
3 Intnl - PC+12 - 1
4 Read N PC’ (PC" 1
5 Read S PC'+4 (PC'+4) 0
Read S PC'+8 (PC'+8) o]

n Registers 1 Read PC+8 (PC+8)
(n>1) 2 Read N ALU (ALU) 0
. Read S ALU+. (ALU+.) 1
n+1 Read S ALU+. (ALU+.) 1
n+2 Intnl - PC+12 - 1
Read N PC+12 1

n Registers 1 Read PC+8 (PC+8)
(n>1) 2 Read N ALU (ALY) 0
incl. PC . Read S ALU+. (ALU+.) 1
n+1 Read S ALU+. PC' 1
n+2 Intnl - PC+12 - 1
n+3 Read N PC' (PC" 1
n+4 Read S PC'+4 (PC'+4) 0
Read S PC4+8 (PC'+8) 0

If the PC is the base, write back is
prevented.

When the PC is in the list of registers to
be loaded, and assuming that no abort
takes place, the current instruction
pipeline must be invalidated.

Note that the PC is always the last
register to be loaded, so-an abort at any
point will prevent the PC from being
overwritten.

CPD31-CPDO

(PC+8)
(ALU)

(PC+8)
PC'

(PC)
(PC'+8)

(PC+8)
(ALU)

(ALU+.)
(ALU+.)

(PC+8)
(ALU)
(ALU+.)
PC'

(P(;)
(PC'+8)

3-58

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

Data Swap - This is similar to the load operation (cycles two and three) to address exception. Ifiall flags are clear,
and store register instructions, but the indicate that both cycles should be and interrupts are enabled (so the top
actual swap takes place in cycles two allowed to complete without interrup- six bits of the PSR arg clear), the data
and three. In the second cycle, the tion. will be swapped with an address eight

data is fetched from external memory (it
is always read from the external

bytes advanced from the swap instruc-

The data swapped may be a byte or tion (PC+8), althoughithe address will

memoty, even if the data is available in word quantity (B/W). not be word aligned unless the proces-
the cache). In the third cycle, the The prefetch sequence will be changed sor is in user mode (as the M1 and MO
contents of the source register are if the PC is specified as the destination bits determine the byte address).
\évrnten O:t. to thel etxten_'\al memory. ;he register. The swap operation may be aborted in
datatt. rei in cycle VLO 1 w',;'#s? m:tc;l e When R15 is selected asithe base, the either the read or write cycle, and in
eslma ion register during the fou PC is used together with the PSR. If both cases the destination register will
cycle. any of the flags are set, or interrupts are not be affected.
The LOCK output of the VL86C020 is disabled, the data swap will cause an

driven high for the duration of the swap

Cycle OPRTN Type Lock Address Data -OPC CPD31-CPDO

Normal 1 Read 0 PC+8 (PC+8)
2 Read N(BW) 1 RN (RN) 0 (PC+8)
3 Wirite N (B/W) 1 RN RM 1 (RN)
4 Intn! - 0 PC+12 - 1 RM
Read N 0 PC+12 1 -
DEST=PC 1 Read 0 PC+8 (PC+8)
2 Read N(BW) 1 RN PC' 0 (PC+8)
3 Wrte N (BW) 1 RN RM 1 pPC’
4 Intnl - 0 PC+12 - 1 RM
5 Read N 0 PC’ (PCY) 1 -
6 Read S 0 PC44 PC44) 0 (PCY)
Read S 0 PC'+8 0 (PC'+4)
Software Interrupt and Exceptlon processor enters suparvisor mode. The i ith i
Entry - Exceptions (and software return address is mc':ved to register 14. than |n' the case' of bra.nch with link.
interrupts) force the PC to a particular) The third cycle is required only to
value and refill the instruction pipeline During the second cycle the return complete the refilling of the instruction
from there. During the first cycle the address is modified to facilitate return, pipeline.
forced address is constructed, and the though this modification isiless useful

Cycle OPRTN Type Mode Address Data -0OPC CPD31-CPDO

1 Read PC+8 (PC+8)

2 Read N SPV XN (XN) 0 (PC+8)

3 Read S SPV XN+4 (XN+4) © (XN)

Read S SPV XN+8 0 (XN+4)

(For software interrupt PC is the
address of the SWI instruction, for exception, for prefetch abort PC is the attempted the aborted data transfer. Xn
interrupts and reset PC is the address address of the aborting instruction, for is the appropriate trap address.)
of the instruction following the last one data abort PC is the address of the
to be executed before entering the instruction following the one which

3-59

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

Coprocessor Data Operation - A
coprocessor data operation is a request
from the CPU for the coprocessor to
initiate some action. The action need
not be completed for some time, but the
coprocessor must commit to doing it
before pulling CPB low.

Cycle OPRTN Type
Read
Intnl
Read

Ready 1

Read
Intnl
Intnl
Intnl
Read

Not Ready

If the coprocessor can never do the
request task, it should leave CPA and
CPB to float high. If it can do the task,
but can't commit right now, it should pull
CPA low but leave CPB high until it can
commit. The CPU will busy-wait until
CPB goes low.

The coprocessor interface normally
operates one cycle behind the CPU to
allow time for the instructions to be
broadcast. When the CPU starts
executing a coprocessor instruction, it
busy-waits for one cycle (Cycle 2) while
the coprocessor catches up.

Address Data -OPC CPD31-CPDO -CPl CPA CPB
PC+8 (PC+8) 1 X X
PC+8 - 0 (PC+8) 0 0 0
PC+12 1 - 1
PC+8 (PC+8) 1 X X
PC+8 - 0 (PC+8) 0 0 1
PC+8 - 1 - 0 0 1
PC+8 - 1 - 0 0 0
PC+12 1 - 1

Coprocessor Data Transfer - Here,
the coprocessor should commit to the
transfer only when it is ready to accept
the data. When CPB goes low, the
CPU will read the appropriate data and
broadcast it to the coprocessor (if the
data is read from the cache, it will be
broadcast at FCLK rates). Note that the
coprocessor is not clocked while the

Cycle OPRTN Type
Read
Intnl

Read

Read

1 Register

1
Ready 2
3

zZ

Read
Intnl
Intn!
Intnl
Read

1 Register
Not Ready

3 * =

=z

+1

>

Read
Intni

Read
Read
Read
Read

m Registers
(m>1)
Ready

A WN -

m+3

Z0N*nzl

CPU fetches the first word of data; the
data is broadcast to the coprocessor in
the next cycle.

During the data transfer, the VL86C020
operates one cycle ahead of the
coprocessor, and so always fetches
one word more than the coprocessor
wants. This extra data is simply
discarded.

The coprocessor is responsible for
determining the number of words to be
transferred, and indicates the last
transfer cycle by allowing CPA and
CPB to float high.

The CPU spends the first cycle (and
any busy-wait cycles) generating the
transfer address, and performs the write
back of the address base during the
transfer cycles.

Address Data —OPC CPD31-CPDO -CPI CPA CPB
PC+8 (PC+8) 1 X X
PC+8 - 0 (PC+8)] 0 0
ALU DO(1) <= not clocked => 1 1
PC+12 1 DO(1) 1

PC+8 (PC+8) 1 X X
PC+8 - 0 (PC+8) 0 0 1
PC+8 - 1 - 0 0 1
PC+8 - 1 - 0 0 o]
ALU DO(1) <= not clocked = 1 1
PC+8 (PC+8) 1 X X
PC+8 - 0 (PC+8) 0 0 0
ALU DO(1) <= not colcked => 0 0
ALU+4 DO(2) 1 DO(1) 1 0 0
ALU+. DO(m+1) 1 DO(m) 1 1 1
PC+12 1 DO(m+1) 1

3-60

& VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

m Registers 1
(m>1) 2
Not Ready .
n
n+1
n+2
n+m+2

Read
Intn!
Intnl
Intnl
Read
Read

Read
Read

wZ2il

zZw -

PC+8 (PC+8)
PC+8 -
PC+8 -
PC+8 -
ALU DI(1)

ALU+4 DI(2)

ALU+. DI(m+1)
PC+12

(PC+8)

0

1

1 -

<= notclocked ==
1 DI(1)
1

1

Di(m)
DI(m+1)

[N Ne R

JEPOUEFON Y

- * O00O0OO0OX
- * 000 —+0O0X

Coprocessor Data Transfer (from
Coprocessor to Memory) - This in-
struction is similar to the memory to

coprocessor data transfer. In this case,

however, the VL86C020 operates one
OPRTN Type

Cycle
1 Register 1
Ready 2
3
4
1 Register 1
Not Ready 2
n
n+1
n+2
m Registers 1
(m>1) 2
Ready 3
4
m+2
m+3
m Registers 1
(m>1) 2
Not Ready .
n
n+1
n+2
m+n
m+n+1

Read
Intnl
Intnl
Write
Read

Read
Intn!
Intnl
Intnl
Intnl
Write
Read

Read
Intnl

Intnl

Write
Write
Write
Read

Read
Intni
Intnl
Intnl
Intnl
Wirite
Write
Write
Read

ZzZ 1

20w~z !

=11

Zmnn*

cycle behind the coprocessor during the
data transfer to give time for data to get
through the coprocessor interface. The
CPU is halted for a cycle at the start of

Address Data -OPC CPD 31-CPDO
PC+8 (PC+8)
PC+8 - 0 (PC+8)
<= notclocked => 1 DI(1)
ALU Di(1) <= not clocked =>
PC+12 1 -
PC+8 (PC+8)
PC+8 - 0 (PC+8)
PC+8 - 1 -
PC+8 - 1 -
<= notclocked => 1 DI(1)
ALU DI(1) <= not clocked =>
PC+12 1 -
PC+8 (PC+8)
PC4+8 - 0 (PC+8)
<= notclocked => 1 Di(1)
ALU Di(1) 1 Di(2)
ALU+. DI(m-1) 1 Di(m)
ALU+. DI(m) <= not clocked =>
PC+12 1 -
PC+8 (PC+8)
PC+8 - 0 (PC+8)
PC+8 - 1 -
PC+8 - 1 -
<= notclocked => 1 DI(1)
ALU DI(1) 1 DI(2)
ALU+. DI(m-1) 1 DI(m)
ALU+. DIi(m) <= not clocked =>
PC+12 1 -

the transfer while the coprocessor
outputs the first word of data, and at the
end of the transfer, the coprocessor is
halted for one cycle while the CPU

writes the last word of data to memory.

—-CPI

1
0
1

- ¢ a0 000 - - O O - 1Y —_“- 000 = -

-

CPA CPB
X X
0 0
1 1
1 1
X X
0 1
0 1
0 0
1 1
1 1
X X
o] 0
0 0
o] 0
1 1
1 1
X X
0 1
0 1
0 o]
0 0
0 0
1 1
1 1

3-61

® VLSI TECHNOLOGY, INC.

PRELIMINARY
VL86C020

Coprocessor Register Transfer (Load
from Coprocessor) - Here the busy-
wait cycles are similar to the previous

transfer cycle, but the transfer is limited
to one data word, and VL86C020 puts
the word into the destination register in
the third cycle.

Cycle OPRTN Type Address Data -OPC CPD31-CPDO -CPI CPA CPB
Ready 1 Read PC+8 (PC4+8) 1 X X
2 Intnl - PC+8 - 0 (PC+8) 0 0 0
3 Intnl - <= notclocked => 1 DI 1 1 1
4 Trnsf | PC+12 DI <= not clocked => 1 1
5 Intnl - PC+12 - 1 - 1 1 1
Read N PC+12 1 - 1
Not Ready 1 Read PC+8 (PC+8) 1 X X
2 Intnl - PC+8 - 0 (PC+8) 0 0 1
. Intnl - PC+8 - 1 - o] 0 1
n Intnl - PC+8 - 1 - o] 0 0
n+1 Intnl - <= notclocked => 1 DI 1 1 1
n+2 Trnst | PC+12 DI <= notclocked => 1 1
n+3 Intnl - PC+12 - 1 - 1 1 1
Read N PC+12 1 - 1
Coprocessor Register Transfer
(Store to Coprocessor) - This instruc-
tion is similar to a single word coproces-
sor data transfer.
Cycle OPRTN Type Address Data -OPC CPD31-CPDO -CPI CPA CPB
Ready 1 Read PC+8 (PC+8) 1 X X
2 Intnl - PC+8 - 0 (PC+8) 0 0 0
3 Trnsf (o] PC+12 DO <= not clocked => 1 1
Read N PC+12 1 DO 1
Not Ready 1 Read PC+8 (PC+8) 1 X X
2 Intnl - PC+8 - 0 (PC+8) 0 0 1
. Intnl - PC+8 - 1 - 0 0 1
n Intnl - PC+8 - 1 - 0 0 0
n+1 Trnsf (0] PC+12 DO <= notclocked => 1 1
Read N PC+12 1 DO 1

Undefined Instruction and Coproces-
sor Absent - When a coprocessor
detects a coprocessor instruction which

Cycle OPRTN Type
1 Read
2 Intnl
3 Read
4 Read
Read

Ready

nwnzl

it cannot perform, and this must include
all undefined instructions, it must not
drive CPA or CPB. These will float

high, causing the undefined instruction
trap to be taken.

Mode Address Data -OPC CPD31-CPDO -CPlI CPA CPB
PC+8 (PC+8) 1 X X
PC+8 - 0 (PC+8) 0 1 1
SPV Xn (Xn) 0 (PC+8) 1 1 1
SPV Xns+4 (Xn+4) 0O (Xn) 1 1 1
SPV Xn+8 0 (Xn+4)

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

Unexecuted Instructlions - Any in-
struction whose condition code is not
met will fail to execute. It will add one

Cycle OPRTN Type
1 Read
Read S

cycle to the execution time of the code
segment in which it is embedded.

Address Data -OPC CPD31-CPDO
PC+8 (PC+8)
PC+12 - o] (PC+8)

Instruction Speeds - In order to deter-
mine the time taken to execute any
given instruction, it is necessary to
relate the CPU read, write, internal and
transfer operations to F-cycles (FCLK
cycles), L-cycles (Latent MCLK cycles)
and A-cycles (Active MCLK cycles).

The relationship between the CPU
operations and external clock cycles
depends primarily upon whether the
cache is turned off or on.

Cache Off - When the cache is turned
off, CPU read and write cycles always
access external memory. To avoid
unnecessary synchronization delay
VL86C020 remains synchronized to the
external memory when the cache is
turned off, so all operations are timed

by MCLK. The time taken for each type
of CPU operation is as follows:

Operation Time
N-type Read L+A
S-type Read A
N-type Write L+A
S-type Write A
Transfer In L
Transfer Out L
Internal L
Key:

L - Latent memory cyele period
A - Active memory cycle period

B,BL 1L+3A

Data Processing 1A +2L for SHIFT(Rs).
+1L+2A if R15 written

MUL,MLA (m+1)L+1A

LDR 3L+2A +2A if R15 loaded/written back

STR 2L+2A +2A if R15 written-back

LDM 3L+(n+1)A +2A if R15 loaded

STM 2L+ (n+1)A

SWP 4L+3A +2A if R15 loaded

SWI, trap 1L+3A

cDO (b+2)L+ 1A

LDC b+3) L+ (n+1)A +1A if (n>1)

STC (b+4) L+ (n+1)A

MRC (b+4)L+ 1A

MCR (b+3)L+1A

n is the number of words transferred.

m is the number of cycles required by
the multiply algorithm, which is deter-
mined by the contents of Rs. Multiplica-
tion by any number between 24(2m-3)
and 24(2m-1)-1 inclusive takes m cycles
for m>1. Multiplication by zero or one

takes one cycle. The maximum value
m can take is 16,

b is the number of cycles spent in the
coprocessor busy-wait loop.

If the condition is not met all instructions
take one A-cycle.

Due to the pipelined architecturs of the
CPU, instructions overlap considerably.
In a typical cycle one instruction may be
using the datapath while the next is
being decoded and the one after that is
being fetched. For this reason the
following table presents the incremental
number of cycles required by an
instruction, rather than the total number
of cycles for which the'instruction uses
part of the processor. Elapsed time (in
cycles) for a routine may be calculated
from these figures.

Note: This table only applies when the
cache is turned off.

If the condition is met the instructions
take:

3-63

& VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

Cache On - When the cache is turned
on, the CPU will synchronize to FCLK,
and attempt to fetch instructions and
data from the cache (using FCLK F-
cycles). When the read data is not
available, or the CPU performs a write
operation, the VL86C020 resynchron-
izes to MCLK and accesses the
external memory (using L & A-cycles).
The CPU operations are dealt with as
follows:

1. Read operations. The CPU will
normally be able to read the
relevant data from the cache, in
which case the read will complete
in a single F-cycle.

If the data is not present in the
cache, but is cacheable, the CPU
will synchronize to MCLK and
perform a line fetch to read the
appropriate line (four words) of
data into the cache. The CPU will
be clocked when the appropriate
word is fetched, and subsequently
during the line fetch if it is request-
ing S-type reads or internal
operations.

If the data is not cacheable, the
CPU will synchronize to MCLK and
perform an external read. If the
CPU requests S-type reads, the
CPU will remain synchronized to
MCLK and use A-cycles to read the
appropriate data. The CPU only
resynchronizes back to FCLK when
the CPU stops requesting S-type
reads.

Note that the swap instruction
bypasses the cache, and always
performs an external read to fetch
the data from external memory.

2. Write operations. The VL86C020
synchronizes to MCLK and
performs external writes. When
the CPU stops requesting S-type
writes, VL86C020 resynchronizes
to FCLK.

3. Internal operation. These complete
in a single F-cycle (although some
are absorbed during line fetches).

4. Transter operation. These
complete in a single F-cycle.

It is not possible to give a table of
instruction speeds, as the time taken to
execute a program depends on its

FIGURE 33. WORST-CASE VL86C020 TIMING FLOWCHART

N-TYPE OR S-TYPE
READ DATA NOT IN
CACHE, BUT MARKED
AS CACHEABLE

SYNCHRONIZE| LINE FETCH
WORDO

(L+A)

LINE FETCH LINE FETCH LINE FETCH
WORD1 |— WORD2 [|— WORD3
(A) (A) (A)

— TOMCLK
(F+2L) I

EXTERNAL
READWRITE [~
(L+[N-1]A)

y

SYNCHRONIZE| [
TO MCLK
(F+2L)

N-TYPE OR S-TYPE READ
OF UNCACHEABLE DATA

OR
N-TYPE WRITE
PLUS (N) S-TYPE WRITES

NOTE: This path can only be taken if the CPU was
not clocked during Line fetch Word 3

INTERNAL CYCLE
SYNCHRONIZE| TRANSFER CYCLE
TO MCLK CACHE READ
(F+2L) (F)

CACHE READ,
INTERNAL OPERATION
OR TRANSFER
OPERATION

Line Fetch Operation

The CPU is clocked as soon as the requested word of data is available.
The CPU will also be clocked if it subsequently requests S-type Read or
Internal operations during the remainder of the line fetch.

interaction with the cache (which
includes factors such as code position,
previous cache state, etc.). In general,
programs will execute much faster with
the cache turned on than with it turned
off.

To calculate the worst-case delay for a
particular piece of code, the routine
should be written out in terms of CPU
cycles. Figure 33 can then be used to
calculate the worst-case VL86C020 op-
eration for each CPU cycle.

When using this technique, the follow-
ing conditions must be assumed:

1. Noinstructions or data are present
in the cache when VL86C020
starts executing the code.

2. Aline fetch operation will overwrite
any data already present in the
cache (i.e., the cache only has one
line).

3. All synchronization cycles take the
maximum time.

3-64

@ VLSI TECHNOLOGY, INC. PRELIMINARY
VL.86C020

EXAMPLE:
Consider the following piece of code:

Asssume code runs in a cacheable area of memory, and that
Code, Areal and Area2 are all quad-word aligned addresses.

’
3
’
1

Code

MOV RO,Area1 RO points to data in a cacheable area of memory

MOV R1,Area2 R1 points to data in an uncacheable area of memory

LDR R7, R0,4 Read data from cacheable area into R7

LDMIA R1, {R8-R9} Read data from uncacheable area into R8 and R9
End

Converting the code into CPU cycles gives:

Cycle OPRTN Type Address Data

1.0 Read PC+8 (PC+8) (see Note)
Branch to Code 1.1 Read N Code (Code)

1.2 Read S Code +4 (Code+4)
MOV RO,Areal 2.1 Read S Code+8 (Code+8)
MOV R1,Area2 3.1 Read 8 Code+12 (Code+12)
LDR R7.[R0,4] 4.1 Read S Code+16 (Code+16)

4.2 Read N Areal+4 (Areal+4)

43 Intnl -~ Code+20 -
LDMIA R, {R8-R9} 5.1 Read N Code+20 (Code+20)

5.2 Read N Area2 (Area2)

5.3 Read S Area2+4 (Area2+4)

5.4 Intnl - Code+24 -

Note: Cycle 1.0 is the last cycle before the routine is entered, and is not counted as part of the code.

Using the worst-case VL86C020 timing flowchart, the required CPU operations can be converted into CPU operations, and as-
signed an execution time.

CPU Operation VL86C020 Operation Time
<wait> Synchronize to MCLK (F+2L)
1.1: Read N (Code) Line Fetch: (Code) (L+A)
1.2: Read S (Code+4) (Code+4) (A)
2.1: Read S (Code+8) (Code+8) (A)
3.1 Read S (Code+12) (Code+12) (A)
<wait> Synchronize to MCLK (F+2L)
4.1: Read S (Code+16) Line Fetch: (Code+16) (L+A)
<wait> (Code+20) (A)
<wait> (Code+24) (A)
<wait> (Code+28) (A)

3-65

& VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

<wait>
4.2: Read N (Areal+4)
4.3: Intnl

<wait>

<wait>

5.1: Read N (Code+20)
<walit>
<wait>

5.2: Read N (Area?)
5.3: Read N (Area2+4)

<wait>
5.4: Intnl

Line Fetch: (Areal)
(Areal+4)
(Areal+8)

(Areal+12)

(Code+16)
(Code+20)
(Code+24)
(Code+28)

Line Fetch:

Extnl Accs
Extnl Accs

(Area?)
(Area2+4)

Synchronize to FCLK
Internal Operation

(L+A)
(A)
(A)
(A

(L+A)
(A)
(A)
(A)

(L+A)
(A)

(F)
(F)

Adding togsther the execution times taken for each of the VL86C020 operations gives a worst-case elapsed time for the code:

Maximum execution time = 4 F-cycles + 9 L-cycles + 18 A-cycles

Assuming that MCLK and FCLK both run at 8 MHz:

Maximum execution time = 31*125 ns = 3.875 ps.

COMPATIBILITY WITH EXISTING
ARM SYSTEMS

Compatibllity with VL86C010 -

The VL86C020 has besn designed to
be code compatible with the VL86C010
processor. The external memory and
copracessor interfaces are also
designed to be usable with existing
memory systems and coprocessors.
The detailed changes are:

Software changes

1. VL86CO020 now contains a single
data swap (SWP) instruction. This
takes the place of one of the
undefined instructions in
VL86C010.

2. VL86C020 has a 4 Kbyte mixed in-
struction and data cache on-chip.
This cache should be transparent
to most existing programs, al-
though some system software
(particularly that dealing with
memory management) could be
modified slightly to make more
efficient use of the cache (see
Cache Operation Section).

3. VL86C020 contains a set of control
registers that govern operation of
the on-chip cache (ses Cache
Operation Section). These
registers must be programmed
after VL86C020 is reset in order to
enable the cache.

4. The internal timing associated with
mode changes has been improved
on VL86C020, and a banked
register may now be accessed
immediately after a mode change
(see Data Processing/Writing to
R15). However, for compatibility
with VL86CO010, it is recommended
that the earlier restrictions are ob-
served.

5. The implementation of the CDO

instruction on VL86CO010 causes a
software interrupt (SWI) to take the
undefined instruction trap if the
SWI was the next instruction after
the CDO. This is no longer the
case on VL86C020 but the se-
quence

CDO
Swi

should be avoided for program
compatibility.

Hardware changes

1. VL86C020 is packaged in a 160-
pin quad flatpack; VL86C010 uses
an 84-pin plastic leaded chip
carrier (PLCC) package.

2. VL86C020 does not require non-

overlapping clocks for timing
memory accesses. When using
VL86C020 with MEMC, the PH2

clock output of MEMC should be
connected to the MCLK input of
VL86C020; the PH1 clock output of
MEMC is not used.

3. VL86C020 requires a free-running
CMOS-level clock input (FCLK) to
time cache accesses and internal
operations. FCLK is entirely
independent of MCLK.

4. VL86C020 includes two new
control signals, LINE and LOCK.
These warn of cache line fetch
operations and locked swap (SWP)
operations respectively.

5. The —TRANS and -M1, -M0
outputs on VL86C010 could
change in either (PH2) clock
phase. In VL86C020, these
outputs only ever change when
MCLK is high.

6. The coprocessor interface remains
the same, but now operates
independently of the external
memory using a dedicated bus
(CPD31-CPDO). Coprocessors
must be able to operate at cache
speeds (determined by FCLK).

7. The -OPC output of VL86C020
now applies exclusively to the
coprocessor interface, and should
not be used in the memory
interface.

3-66

® VLSI TECHNOLOGY, INC. PRELIMINARY

VL86C020

Compatibllity with MEMC (VL86C110)
The memory interface on VL86C020 is
compatible with that used for VL86C010
and the existing MEMC memory
controller is suitable. 'Figure 33 shows
how VL86C020 may be connected to
MEMC.

8. VL86C020 includes pull-up 9.
resistors on various control inputs
(see Coprocessor Interface
Section).

To facilitate board level testing, all
outputs on VL86C020 can be put
into a high impedance state by
using the appropriate enable
controls (see Coprocessor Inter-
face Section). .

FIGURE 33. CONNECTING VL86C020 TO VL86C110 (MEMC)

OSCILLATOR G SYSTEM ADDRESS BUSG
r BRI
FCLK -IRQ -FIQ -RESET A25-A0
' -WAIT |-NC NC-| PH1 A25-A0
MCLK |« PH2
-RW »| —-RW
-BW =l —BwW
NC ALE LocK e
:z: 222 VL86C020 LINE [-NC vieectio
~TRANS SPVMD
NC-| MSE -M1,-Mo |NeC
NC- CPE -MREQ » -MREQ
SEQ SEQ
ABORT ABORT
NC-| -TEST DBE DBE
D31-DO
CPCLK CPSPV -OPC —CPI CPA CPB CPD31-CPDO

3

§ SYSTEM ADDRESS BUS &

y y i /
COPROCESSOR

3-67

® VLSI TECHNOLOGY, INC.

PRELIMINARY

VL86C020

TEST CONDITIONS

The AC timing diagrams presented
in this section assume that the
outputs of VL86C020 have been
loaded with the capacitive loads
shown in the "Test Load" column of

Table 4; these loads have been chosen
as typical of the system in which the
CPU might be employed.

The output pads of the VL86C020 are
CMOS drivers which exhibit a propaga-
tion delay that increases linearly with

the increase in load capacitance. An
"output derating" figure is given for each
output pad, showing the approximate
increase in load capacitance necessary
to increase the total output time by one
nanosecond.

TABLE 4: AC TEST LOADS

Output Derating
Output Signal Test Load (pF) (pF/ns)
-MREQ 50 8
SEQ 50 8
-B/wW 50 8
LINE 50 8
LOCK 50 8
-Mo, =M1 50]
-R/W 50 8
-TRANS 50 8
A0-A25 50 8
D0-D31 100 8
CPCLK 30 8
CPSPV 30 8
~CPI 30 8
-OPC 30 8
CPDO-CPD31 30 8

General note on AC parameters:

« Output times are to CMOS levels
except for the memory and coproces-
sor data buses (D31-D0 and CPD31-
CPD-0), which are to TTL levels.

3-68

® VLSI TECHNOLOGY, INC. PRELIMINARY

VIL86C020
AC CHARACTERISTICS: TA=0°Cto +70°C, VDD =5 V 5%
Symbol Parameter Min Max Unit Conditiops
tWS ~WAIT Setup to MCLK High 15 ns
tWH ~WAIT Hold from MCLK High 5 ns
tWAIT1 ~WAIT Low Time 10000 ns
tABE Address Bus Enable 30 ns
tABZ Address Bus Disable 25 ns
{ALE Address Latch Open 12 ns
tALEL ALE Low Time 10000 ns Note
tADDR MCLK High to Address Valid 55 ns
tAH Address Hold Time 5 ns
tDBE Data Bus Enable 35 ns (TTL Level)
tDBZ Data Bus Disable 25 ns
tDOUT Data Out Delay 30 ns (TTL Level)
tDOH Data Out Hold 5 ns
tDE MCLK Low to Data Enable 45 ns (TTL Level)
tDZ MCLK Low to Data Disable 40 ns
tDIS Data in Setup 8 ns
tDIH Data in Hold 8 ns
tABTS ABORT Setup Time 40 ns
tABTH ABORT Hold Time 5 ns
tMSE -MREQ and SEQ Enable 20 ns
tMSZ. -MREQ and SEQ Disable 15 ns
tMSD MCLK Low to -MREQ and SEQ 55 ns
tMSH -MREQ and SEQ Hold Time 5 ns
tCBE Control Bus Enable 20 ns
tCBZ Control Bus Disable 15 ns
tRWD MCLK High to -R/W Valid 30 ns
tRWH —R/W Hold Time 5 ns
tBLD MCLK High to —-B/W and LOCK 30 ns
tBLH ~B/W and LOCK Hold 5 ns
tLND MCLK High to LINE Valid 50 ns
tLNH LINE Hold Time 5 ns
tMDD MCLK High to ~-TRANS/-M1, -M0 30 ns
tMDH —TRANS/-M1, —-M0 Hold 5 ns

Note: To avoid A25-A0 changing when MCLK is high, ALE must be driven low within 5 ns of the rising edge of MCLK.

3-69

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL86C020

AC CHARACTERISTICS FOR COPROCESSOR INTERFACE:

Symbol Parameter Min Max Unit Conditlons
tCPCKL Clock Low Time 10000 ns Note 1
tCPCKH Clock High Time 10000 ns
tOPCD CPCLK High to -OPC Valid 15 ns
tOPCH —OPC Hold Time 5 ns
tSPD CPCLK High to CPSPV Valid 15 ns
tSPH CPSPV Hold Time 5 ns
tCPI CPCLK High to —CP| Valid 15 ns
tCPIH —CPI Hold Time 5 ns
tCPS CPA/CPB Setup 45 ns
tCPH CPA/CPB Hold 5 ns
tCPDE Data Out Enable 10 ns Note 2, 3
tCPDOH Data Out Hold 10 ns
tCPDBZ Data Out Disable 5 ns
tCPDS Data In Setup 10 ns
tCPDH Data In Hold 5 ns
tCPE Coprocessor Bus Enable 30 ns
tCPZ Coprocessor Bus Disable) 30 ns
Notes: 1. CPCLKtimings measured between clock edges at 50% of VDD.
2. CPD31-CPDO outputs are spscified to TTL levels.
3. The data from VL86C020 is always valid when enabled onto CPD31-CPDO.
4. These timings allow for a skew of 30 pF between capacitive loadings on the coprocessor bus outputs (CPCLK,

-OPC, CPSPV, -CPI, CPD31-CPDO).

AC CHARACTERISTICS FOR CLOCKS:

Symbol Parameter Min Max Unlit Condltions
tMCLK Memory Clock Period 80 ns Note
tMCLKL Memory Clock Low Time 25 ns

tMCLKH Memory Clock High Time 25 ns

tFCLK Processor Clock Period 50 ns

tFCLKL Processor Clock Low Time 23 ns

tFCLKH Processor Clock High Time 23 ns

Note: MCLK timing measured between clock edges at 50% of VDD.

3-70

® VLSI TECHNOLOGY, INC. PRELIMINARY
VL.86C020

FIGURE 34. MEMORY INTERFACE TIMING

tMCLK -

tMCLKL
— N
K 7 MOLKH ——

tWAIT1 WS — t: tWH

N
— tALEL—"
ALE .
7

MCLK

~-WAIT

ABE
tABE ~+—— tADDR tABZ
= tALE] 1AH
A25-A0
DBE
{DBE iDBZ
- {DE— DOH —-]]<_
DATA SOOH—
ouT
- — tDOUT —™ —{DZ -
DATA

IN tABTS — | tABTH 1DIS |l DIH
ABORT

MSE aN -
<] tMSH] ’ IZ
_MREQ, tmMSZ tMSE |
SEQ p\
tMSD

CBE N
- tCBE tCBZ

o] ROOOOOOC

tRWH —¥
ft————— tRWD —— |

-B/W, 4
LOCK
tBLH —™

ot tBLD ——p]

LINE

7N

tLNH —

~TRANS,

M1, MO | WK

tMDH —

3-7

® VLSI TECHNOLOGY, INC. PRELIMINARY

FIGURE 35. COPROCESSOR INTERFACE TIMING
|l tCPCKL— gl
CPCLK \| -
N A 1OPCKH— SIS
—oPC
A
| tOPCH
la— tOPCD____p
CPSPV k
< t1SPH

Ty Yy -
-on QOXXA XXX
PR S—
> tCPIH

la—— I1CPI____ 5|

o XKXA JOGRXOOKKNKK

™ tCPS 1 1 tCPH tCPDZ

CPD31- \
CPDO OUT /
tCPDE [*—™ 1 tCPDOH

CPD31- |
CPDO IN \
tCPDS ta—
- tCPDH

CPE N /1 ¢

CPCLK, CPSPV, Y
OPC, CPI
CPD31-CPDO

>

tCPZ - T 11CPE

FIGURE 36. FCLK INTERFACE TIMING

tFCLK

e« {FCLKL
FCLK ™\ ;]_/_ N
N jt— FCLKH ——— N

3-72

® VLSI TECHNOLOGY, INC. PRELIMINARY

VL86C020

ABSOLUTE MAXIMUM RATINGS

Ambient Operating

Temperature -10°C to +80°C
Storage Temperature —65°C to +150°C
Supply Voltage to

Ground Potential -0.5 Vto VDD +0.3V

Stresses above those listed may cause
permanent damage to the device.
These are stress ratings only. Func-
tional operation of this device at these
or any other conditions above those

indicated in this data sheet is not
implied. Exposure to absolute maxi-
mum rating conditions for extended
periods may affect device reliability.

Applied Output

Voltage -0.5Vto VDD +0.3 V
Applied Input

Voltage -05Vto+7.0V
Power Dissipation 20W

DC CHARACTERISTICS: TA=0°Cto +70°C, VDD =5V +5%

Symbol Parameter Min Typ Max Units Conditions
VDD Supply Voltage 4.75 5.0 5.25
VIHC IC Input High Voltage 3.5 VDD \ Notes 1, 2
VILC IC Input Low Voltage 0.0 1.5 \ Notes 1, 2
VIHT IT/ITP Input High Voltage 2.4 VDD \') Notes 1, 3, 4
VILT IT/IPT Input Low Voltage 0.0 0.8 \% Notes 1, 3, 4
IDD Supply Current 200 mA)
ISC Output Short Circuit Current 160 mA Note 5
ILU D.C. Latch-up Current >200 mA Note 6
liN IT Input Leakage Current 10 pA Notes 7, 11
lINP ITP Input Leakage Current -500 pA Notes 8, 12
IOH Output High Current (VOUT=VDD -0.4 V) 7 mA Note 9
1oL Output Low Current (VOUT=GND +0.4 V) -11 mA Note 9
VIHTK IC Input High Voltage Threshold 2.8 \ Note 10
VILTT IC Input Low Voltage Threshold 1.9 Note 10
VIHTT IT/ITP Input High Voltage Threshold 2.1 Notes 11, 12
VILTT IT/ITP Input Low Voltage Threshold 14 Vv Notes 11, 12
CIN Input Capacitance 5 pF
Notes: 1. Voltages measured with respect to GND.

2. IC - CMOS-level inputs.

3. IT - TTL-level inputs (includes IT and ITOTZ pin types).

4. ITP - TTL-level inputs with pull-ups.

5. Not more than one output should be shorted to either rail at any time, and for as short a time as possible.

6. This value represents the DC current that the input/output pins can tolerate before the chip latches up.

7. Input leakage current for the IT, and ITOTZ pins.

8. Input leakage current for an ITP pin connected to GND. These pins incorporate a pull-up resistor in the range of

10 kQ - 100 kQ.
9. Output current characteristics apply to all output pads (OCZ and ITOTZ).
10. ICk - CMOS-level inputs.
11. IT - TTL-level inputs (includes IT and ITOTZ pin types).
12. TIP - TTL-level inputs with pull-ups.

3-73

