
October 2003 MS-White Paper 08/03-v01

Fast Silicon, Faster Solutions

Silicon Objects Software Development Environment

Designing for the MathStar FPOA

I Overview

Silicon Objects software development tools enable
engineers to design, verify, program and debug their
algorithms and protocols on FPOA devices. The design
flow uses industry standard EDA tools and
complements them with MathStar provided tools that
are specific to the FPOA.

MathStar Silicon Object development flows are a
revolutionary departure from conventional ASIC or
FPGA development flows. Traditional design flows
typically include any number of iterations on system
models, RTL models, gate models, library maintenance
tasks, synthesis runs, floor planning exercises, block
connection, timing closure iterations, inter-block
routes, global timing closure, clock tree design, and
finally DRC/LVS rule checking. While FPGA designs
do not have some of the complexities inherent in ASIC
design, in many instances, reaching timing closure for
ASICS and high-end FPGA devices can both run into
many weeks of effort as performance and design
density is pushed.

In addition to the time required to reach chip tape-out
for .13 micron based ASIC design, the tools cost can be
several multiples of the chip fabrication costs.

Any design engineer familiar with contemporary chip
design methods will readily understand the FPOA tool
flow. Designs are entered and behaviorally simulated
using an IDE, such as Summit Visual Elite. Then they
are compiled into an intermediate Assembler
representation. This representation is then mapped into
the hardware resources of the Silicon Objects device.
The object code is loaded onto the array from a PROM
or through the JTAG interface very similar to the
methods used by FPGAs today. However, unlike both
ASIC and FPGA designs, Silicon Object designs have
a completely deterministic timing structure. As such,
they are timed only on cycle boundaries of the internal
clock with no regard for gate-level timing. This greatly
simplifies the process, improving productivity and
development predictability.

The Field Programmable Object Array
(FPOA): Hardware Resources
Backgrounder

The FPOA is a heterogeneous medium-grained array
composed of hundreds of individual processing
elements. Each element is called a Silicon Object.

Within the array the data path and control path are
loosely coupled, yet independently configured. The
data path is 16 bits wide while the control path is bit-
wise granular.

Each Silicon Object has its own program and data
memories. Further, each object operates on its own,
without the aid of global control. The FPOA could be
characterized as a Multiple Instruction Multiple Data
(MIMD) machine.

Communication between Silicon Objects is through
either the eight nearest neighbor connections or
through the long reach connections (Party Lines).
Objects are allowed to change communication patterns
on a per-clock basis.

Each Silicon Object has a loadable configuration map
that contains both operation and communication
directions. The device can be reconfigured �in system�
by loading a new configuration map created by the
MathStar tools.

The control path guides program execution while data
is moved and operated upon via the 16 bit data path.
From this view, instructions are the mechanisms that tie
the independent control and data paths together within
the array.

There are presently six data path Silicon Object types
used to create FPOAs: the Arithmetic Logic Unit
(ALU) Silicon Object, the Content Addressable
Memory (CAM) Silicon Object, the Cyclic
Redundancy Check (CRC) Silicon Object, the Integer/
Real Multiplier Accumulate (MAC) Silicon Object, the
Register File (RF) Silicon Object, and the Truth

Silicon Objects Software Development Environment

Designing for the MathStar FPOA

2 MathStar

Fast Silicon, Faster Solutions

Function (TF) Silicon Object. There are several more
planned for later versions of the product.

In addition, RAM memory resources and configurable
I/O wrap the Silicon Object core to complete a specific
device definition. The type and ratio of the Silicon
Objects, memory resources and I/O were chosen based
on detailed study of the attributes of communication
processing algorithms and are defined to target specific
applications spaces.

I/O Subsystems have been tailored to the different
applications spaces as well.

II Design Flow

There are three major layers to the Silicon Object
Design Flow. It is possible to enter the tool flow
through a third party IDE (such as Summit VE) or
through MathStar's assembly level programming
language known as Object HDL (OHDL). These two
flows overlap, in that the IDE based design flow is a
superset of the Assembly code based design flow.
There are unique benefits to both of these design flows
and they can be used interchangeably as required by
the designer. As an analogy, there are often situations
in conventional processor code development where
assembly level libraries or code sequences are used to
meet very tight timing, code size, or performance
requirements within the context of higher level
language code development. MathStar software
provides the designer with the ability to work both at
the abstract level, and dive down to the hardware
details in assembly level as required in an integrated
development environment. See Figure 1.

Figure 1.MathStar Design Flow

� High-level Description Language. This language
could be SystemC, Streams-C, or Handel-C as long
as it follows such language syntax constructs.
These languages have knowledge of timing and
provide a complete design and simulation
capability inside of an IDE (Visual Elite from
Summit). Due to the granularity of Silicon Objects,
a higher level of abstraction is allowed than is
usual within a traditional synthesizable HDL. The
SystemC is parsed and converted to MathStar
OHDL for physical placement onto the array.

� Silicon Object Assembly Language. (OHDL). This
is MathStar's programming language. It is the
representation that MathStar translates other input
data structures into. It is also a stand alone
development language that can be used to create a
design. If performance, timing, or other

Architectural Description

Object Level Flow Diagram

Variable Level of Connected
Hierachy

Floor Planning

Load File

Development &
Simulation Environment:

Visual Elite/SystemC

PreCoded Libraries

Object Model

MathStar COAST

MathStar Configuration Map

In Circuit Verification MathStar BugSprayTM

Load Image to Device

MathStar Model Library -
Contains I/O, Memory,
and PreCoded Library

elements

Simulate Device Design

Silicon Objects Software Development Environment

Designing for the MathStar FPOA

MathStar 3

Fast Silicon, Faster Solutions

requirements dictate, the designer can chose to
implement behavior directly in OHDL. Using this
level of abstraction permits the designer complete
control over resource allocations and object
utilization.

� COAST (COnnection & ASsignment Tool)
provides a means for the Silicon Object developer
to visualize and manipulate Silicon Object grid
location assignment and Silicon Object
interconnections. COAST assists the user in the
process of converting algorithms expressed in
OHDL code into a grid of programmed and
configured Silicon Objects, complete with all
location and interconnection information. Once
valid assignments and interconnections have been
realized for all Silicon Objects, COAST will allow
the developer to generate a binary load image file.

This file (the configuration map) can then be loaded
into the Silicon Object device.

III Designing
Programming and timing

A key notion in programming a Silicon Object array is
the relationship of timing and signals. In a conventional
FPGA or ASIC, the maximum operating frequency of
the device is determined by the longest or �critical�
signal propagation path. Typically, significant effort
and resources are expended in reaching �timing
closure� against an operating frequency specification.
It is arguable that for devices using .13 micron
geometries and below, accommodating timing closure
issues accounts for a very substantial portion of the
overall design effort, often measured in months.
MathStar's Silicon Object devices have completely
deterministic performance, based on the clock cycle. In
the FPOA the timing of signals is quantized and
resolved into system clock periods. Programmers need
only to confirm that relative clock period timing of
signals is properly accounted for and scheduled
appropriately, regardless of the path the signal takes
from one object to another.

The MathStar assembler and COAST editor enforce
timing requirements through the use of timing
properties attached to signals declared by the user.
Signal timing is primarily determined by object
assignment, and to a lesser extent the Manhattan
distances taken by party line connection. The eight
nearest neighbors to any object are guaranteed to have
zero clocks of latency. Party line route lengths can take
from one or more clock cycles, depending on object
distance requirements.

A key feature of the objects is the ability to select
communications paths dynamically, depending on any
of several state values in any given clock cycle. In this
way, communication paths are only reserved
temporally in the cycle in which they carry valid
information. They are then free in the next cycle to
carry information completely unrelated to the current
cycle.

Process

Programming the device involves four key tasks to
successfully translate an abstract behavioral
description into an executable load image for a FPOA;
instruction coding, simulation, signal connection,
configuration map generation.

Instruction coding

Instruction coding is accomplished either in the
SystemC environment (Summit VE for example) or the
OHDL environment.

For each environment, MathStar provides a cycle
accurate simulation model. These models fully reflect
the deterministic behavior of each object and are used
to implement and simulate the design.

Within the VE environment, for example, an object
array is created that reflects the actual FPOA that is
being used to implement the design. (Figure 2).

Silicon Objects Software Development Environment

Designing for the MathStar FPOA

4 MathStar

Fast Silicon, Faster Solutions

Figure 2. MathStar FPOA Template in SystemC

Within VE, the user then opens the Silicon Object
model and provides the coding required by that object
for the design. The coding is in SystemC, but is
constrained to reflect the hardware limits of the actual
objects. Each object will have it's own set of code that
can compile into the simulator.

Figure 3.Coding for the Object

Designs are checked by the OHDL generator, to
prevent the user from exceeding the resource limits of a
given object.

Control flow synchronization is accommodated
through any of several methods including out-of-band
data �valid� bits, mailbox handshaking through control
signals or registers, and explicit cycle timing
synchronization. Any or all of these may be
implemented in the behavioral code.

After coding is complete, the device connections are
made. In VE, the connections are made using the
MathStar Channels. In OHDL, the connections are
made using named ports.

Figure 4.Connecting the Objects using Channels

After instructions and connections are mapped into the
objects comprising a �logical� array, the device
behavior is simulated using the SystemC simulation
environment. The design can be iterated on quickly in
this environment and the user quickly determines
whether the behavior is correctly described, for both
functional correctness and timing or performance.

MAC

MAC

MACMAC MAC MAC

ALU ALU

ALUALU

ALUALU

RF

RF

RF

RF

ALU

ALU

MAC

ALUALU

ALUALU ALU

MACMAC

ALU

ALU MAC

RF

ARRAY of Elements reflecting available resources on the part

Hierarchical Element Boundary

MACALU

RF RF

ALU MAC

 F(x_)={[xxxxx]}
Y(next) Then25

MACALU

RF RF

ALU MAC

Silicon Objects Software Development Environment

Designing for the MathStar FPOA

MathStar 5

Fast Silicon, Faster Solutions

Object Assignment

After a design is successfully coded and simulated, it
must be assigned to a physical object array.
Conceptually, assignment involves allocating a set of
coordinates to each object so that the configuration
map can be created and a load file generated. In
practice, assignment is the process of allocating a
segment of code to an object and then adjusting the
interfaces between the objects to meet timing and
connectivity requirements with available interconnect
resources.

It is important to note that a silicon object array is a
fixed array of resources in which the conventional
ASIC/FPGA notions of �placement� and �timing� as a
function of gate location, gate delay and wire delay do
not apply. The communications paths in a FPOA are
predetermined and quantized by the internal clock
period of the device. Thus, communications from one
object to another take place over paths that are timed
by clock periods (i.e. �hops�). Users �time� a behavior
based on the latency and throughput requirements of
the algorithm as expressed in clock period delays being
mapped.

Assignment typically is initiated around the physical
locations of infrequent fixed function objects in the
array, such as CAM objects. ALU objects are then
placed adjacent to these objects under the influence of
the connectivity and timing relationships established
for the signals entering and exiting the objects.

The COAST toolset provided by MathStar is used to
perform the assignment and signal connection tasks to
convert floating object designs into fixed loadable
images. In Figure 5, a simple three-object design has
been placed and the nearest neighbor paths have been
highlighted for the objects that communicate. The
designer can pick up an object and move it to another
more desirable location and the COAST tool will
automatically elect the appropriate communications
paths and maintain signal connectivity.

As described earlier, object assignment is the most
significant factor in realizing the timing relationship
between signals. If objects are placed adjacent, then
nearest neighbor interconnect can be utilized
guaranteeing single-cycle communications between
two objects. In this way, the relationship between
instruction mapping and object assignment completely
defines the overall chip-level signal timing. Careful
attention to mapping and assignment will yield an
extremely high-performance, functionally dense,
design using a minimum of object resources.

Figure 5.COAST Connections

 Signal Connection

A signal is a path from one object to another, along a
fixed grid of predetermined potential paths. The actual
path chosen then determines the number of clock
periods required to propagate the signal from the
source object type to the destination object.

Silicon Objects Software Development Environment

Designing for the MathStar FPOA

6 MathStar

Fast Silicon, Faster Solutions

Figure 6. Nearest Neighbor and Party Lines

In the context of programming a Silicon Object, signal
connection occurs over two potential resources: nearest
neighbor interconnect and party lines. In practice,
connection of nearest neighbors is a trivial exercise
since assignment determines adjacency and all adjacent
objects have direct communications. In situations
where it is not physically possible to adjacently locate
all objects that communicate with each other, party line
connection resources can be utilized to provide the
necessary connectivity. As shown in Figure 6, party
lines connection are very flexible in that any object in
the array can reach any other resource in the array.
Party lines can be segmented at configuration to
accommodate several objects along the line. For the
programmer, the party lines and the nearest neighbor
interconnects are almost interchangeable. The tools
determine the communication channel depending on
the timing constraints attached to a particular signal, or
the type of objects to which the signal is attached.

Loading the Array

Subsequent to completion of mapping, assignment, and
connection, the compiler or assembler generates an
encrypted load image file to be burned into the
program PROM or loaded directly into the device via

the JTAG interface. At reset, the FPOA loads the
program file from the PROM, which configures the
array to behave in the manner expressed in the
program.

IV Conclusion

The tools, programming model, and programming
process for a MathStar FPOA are both revolutionary
and easy to comprehend. SystemC or OHDL programs
are created as instruction sequences that are mapped
around the array. Communication paths are chosen
based on system clock cycle timing requirements, not
on gate level propagation. In this way, significant time
and cost savings over conventional ASIC and FPGA
development processes can be realized. There are no
synthesizers, timing closure issues, or extensive
million-gate route bottlenecks to hinder the fielding of
extremely high-performance, functionally dense
designs.

