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This document is an introduction to the SCC platform. The SCC is Intel's single-chip 

computer, the latest research chip from Intel Labs. This chip consists of a mesh of 24 tiles 

with two IA (P54C) cores per tile, off-chip private memory per core, and a shared on-chip 

communication buffer. This document is intended to present the capabilities and potential 

that the SCC platform provides for both academic and industrial research. 

Please read the SCC Documentation Disclaimer on the next page. 

Intel Labs solicits and appreciates feedback. If you have comments about this 

documentation, please email them to SCC_Technical_Questions@intel.com. 

You can also comment in our forum at http://communities.intel.com/community/marc . 

Please understand that this is a preliminary document and changes often. Some sections are 

incomplete, and some don’t even exist yet. Please do not hesitate to request more 

information about topics that you feel are too sparsely documented or topics that are not yet 

present. 
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1 Introduction 
Intel's Tera-scale Computing Research Program is a worldwide effort to advance computing 

technology for the next decade and beyond. The program is investigating how to increase 

the performance and capabilities of current computers. As part of that program, Intel Labs 

has created a research chip called the Single-chip Cloud Computer (the SCC) to study many-

core CPUs, their architectures, and the techniques used to program them. 

Intel Labs believes the SCC is an ideal research platform to help accelerate many-core 

software research. By the middle of 2010, Intel Labs anticipates having dozens of industry 

and academic research partners conducting advanced software research on the SCC 

hardware platform. 

This document introduces the SCC architecture and discusses the flexibility and potential of 

the SCC platform for academic and industrial research. Read through the information here. 

Discover how the SCC platform can enhance your current research or stimulate new 

research. 

 To hear Justin Ratner, Intel's CTO, introduce the SCC platform, go to 

http://connectedsocialmedia.com/intel/page/2/ 

 For technical information about the SCC platform, go to http://www.intel.com/info/scc. 

 

2 The Purpose of this Document 
This document introduces the features and architecture of the SCC Platform and gives an 

overview of how you would program it. For detailed architectural information, refer to the 

SCC External Architecture Specification. For detailed programming information refer to the 

SCC Programmer’s Guide. All the SCC publications assume that you are an experienced 

parallel programmer. 

Finally, this document introduces RCCE (pronounced “rocky”), a many-core communication 

environment for SCC application programmers. For detailed information about RCCE, refer 

to the RCCE Specification. 

The intent is that after reading this document, you will understand what it feels like to use 

the SCC platform, and you’ll be motivated to read the SCC Programmer’s Guide. You will 

have seen some screenshots of the SCC software that runs on the SCC Management 

Console, and you will have run a simple RCCE application on your own workstation, using 

the RCCE emulator. 

3 Overview of the SCC Architecture 
The SCC is the second generation processor design that resulted from Intel's Tera-Scale 

research. The first was Intel’s Teraflops Research Chip; it had 80 non-IA cores. The second 

is the SCC; it has 24 tiles and two cores per tile. The SCC core is a full IA P54C core and 

hence can support the compilers and OS technology required for full application 

http://connectedsocialmedia.com/intel/page/2/
http://www.intel.com/info/scc
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programming. 

Figure 1   SCC Top-Level Architecture shows a stylized view of the SCC chip. You can see 

the 24 tiles arranged in a XxY = 6x4 array. There is a router associated with each tile. Four 

memory controllers go to off-die (but on-board) DDR3 memory. 

The SCC board communicates with its Management Console (MCPC) over a PCIe bus. The 

Management Console is a 64-bit PC running some version of Linux. Intel Labs provides 

software that runs on the Management Console to manage the SCC chip. Key features of 

this software are the ability to load a Linux image on each core or a subset of cores, to read 

and modify SCC configuration registers, and to load programs on the SCC cores. You can 

also write programs that run on the Management Console and configure the SCC platform. 

Users don’t have to run a Linux image on the cores. Running Linux on the cores is the most 

common configuration, but certainly not the only one. Some users may be interested in one 

of the research operating systems being developed for many-core systems. 

 

 

Figure 1   SCC Top-Level Architecture 
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4 Overview of the Tile and Cores 
The SCC has 24 tiles, 48 cores, two cores to a tile. Each core has L1 and L2 caches. The L1 

caches are on the core; the L2 caches are on the tile next to the core. Each core has a 16KB 

L1 instruction cache and a 16KB L1 data cache. Each core’s L2 cache is 256KB. Figure 2   

Top-Level Tile Architecture shows an overview of an individual tile. 

 

 

Figure 2   Top-Level Tile Architecture 

 

Each tile also has a message passing buffer (MPB). This message passing buffer is 16KB. Its 

memory is shared among all the cores on the chip. With 24 tiles, the SCC provides 384KB 

of message passing buffer.  When a message-passing program sends a message from one 

core to another, internally it is passing the data through the message passing buffers on the 

chip. 

The Traffic Generator is a unit used to test the performance capabilities of the mesh by 

injecting and checking traffic patterns and is not used in normal operation. 

The Mesh Interface Unit (MIU) connects the tile to the mesh. It packetizes data out to the 

mesh and de-packetizes data in from the mesh. It has buffers that queue data for flit 

organization. It controls the flow of data on the mesh with a credit-based protocol. It uses a 

round-robin scheme to arbitrate between the two cores on the tile. 

From a programmer’s point of view, think of the MIU as catching a cache miss and 

decoding the core address into a system address. A core uses a 32-bit address called the core 

address to address its 4GB memory space. The SCC platform can have up to 64GB of 

memory, which is addressable by the system address. The MIU uses a lookup table (LUT) to 

translate the core address into a system address. There is a LUT for each core. 

The resulting address request gets placed in one of the following three queues. 

 A queue to send the request to the router, then to the memory controller, and finally 

out to DDR3 memory. 

 A queue to send the request to the core’s MPB. 
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 A queue to access local configuration registers, which also reside in the MIU. 

 

5 Power Management 
An SCC power controller (called the VRC for voltage regulator controller) provides the 

capability of changing the voltage and frequency of the cores as well as other parts of the 

die. This capability supports research on power-aware applications. 

The SCC has seven voltage domains and 24 frequency domains. A program running on a 

core can change the voltage for all the members of a voltage domain; it can also change the 

frequency for all the members of a frequency domain. 

There are six voltage domains comprising four tiles of two cores each in a 2x2 array. The 

seventh voltage domain is the entire set of tiles. There are 24 frequency domains, one for 

each tile. Figure 3 illustrates the voltage and frequency domains on the SCC. 

 

Figure 3   Voltage and Frequency Domains on the SCC 

 

Each core also contains a digital temperature sensor whose output is written to a 

configuration register. These registers allow you to monitor the cores as you change their 

voltage and frequency. 

You can obtain voltage and power information about the SCC board from the Management 

Console. From a prompt on the Management Console, type the command 

telnet <name of your SCC Platform> 5010 

 

The name of your SCC platform is assigned to the platform when you receive it. There is no 

command you can use to get that name. You can also use the IP address of board 

management controller (BMC) located on the SCC board. Both the name and IP address 

should be written on a sticker attached to the BMC. If the sccKit is installed, the BMC’s IP 
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address is also available in /opt/current/systemSettings.ini. Figure 4  Telnetting to the 

BMC Server shows the logon message. 

 

Figure 4  Telnetting to the BMC Server 

Then, issue the status command. Figure 5 shows the output. 

 

Figure 5   Status Command Output 

6 SCC Memory 

6.1 Organization 

This section provides more detail on the memory organization of the SCC platform.  

SCC memory consists of off-chip DDR3 DRAM and on-chip SRAM.  

The off-chip DRAM is accessed through four on-die memory controllers. This off-chip 

DRAM is divided into memory private to each core and memory shared by all cores. Where 

this division occurs is configurable and determined by values in the lookup table (LUT) 

associated with each core and by the core’s own pagetables. Their default is to give each 

core as much private memory as possible. The memory that’s left over is shared among the 

cores.  
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These LUTs get assigned default values at boot time. You can change what those default 

values are so that the next time you boot, the LUTs will have different values. How you do 

this is an advanced procedure that is described in the SCC Programmer’s Reference. The 

procedure involves booting first with the default values, then modifying files produced in a 

tmp directory, and finally running a configuration tool to produce a dat file. Then, the next 

time you boot the cores, you specify that new dat file as the source for the LUT entries. 

You can also dynamically change LUT values after boot. You can do this by running a 

program on the corresponding core or through a program running on the Management 

Console. 

The tiles are organized into four regions, each of which maps to a particular memory 

controller. When a core accesses its private off-chip memory, it goes through the memory 

controller assigned to its region. Each memory controller also supports shared memory, 

memory shared among all 48 cores; and so when accessing its off-chip shared memory, a 

core may go through any of the four memory controllers. 

The on-chip SRAM is the message-passing buffer. Access to this buffer is typically internal 

to a message passing programming model. For example, RCCE, the small library for many-

core communication that is provided with SCC,  provides message-passing calls tuned to the 

needs of many-core chips. Access to the message-passing buffer occurs internally within 

RCCE.  

As a programmer, you can also explicitly access the MPB as well as the shared off-chip 

DRAM, but you must take into account the way a core’s caches interact with the MPB.  

Refer to Section 6.3 Cache Behavior. 

6.2 Address Translation 

Figure 6   SCC Address Translation illustrates how the SCC translates a core address into a 

system address. Note that a core address starts off at 32 bits. The top 8 bits go to the LUT, 

which puts out 22 bits. The lower 24 bits pass through. 

Of those 22 bits coming from the LUT, the lower 10 bits are prepended to the 24 bits that 

passed through, resulting in a 34-bit address. This is the address sent to the memory 

controller. Each memory controller can address up to 16GB, hence the 34 bits. 

 

 

Figure 6   SCC Address Translation 

The other bits coming out of the LUT are a 1-bit bypass, an 8-bit  destID, and a 3-bit 

subdestID. When the bypass bit is set, the address is local to the tile’s MPB. The destID is 

ignored.  
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Note, however, that the bypass bit should no longer be used. For details about this issue, 

refer to bug 46 in the SCC Bugzilla database,  http://marcbug.scc-dc.com/bugzilla3 . 

The 8-bit destID identifies the tile containing the router.  The destID is in (y,x) format, 4 bits 

for y and 4 bits for x. For example, the destID for the top-right memory control in Figure 1   

SCC Top-Level Architecture is (y=2,x=5) or 0010 0101. Note that the actual bit pattern for 

destID is (y,x) while in text we usually refer to the format as (x,y). 

The 3-bit subdestID specifies the port on the router. Table 1 shows the values that subdestID 

can take. The router ports are identified as N,E,W, or S for north, east, west, and south. In 

Figure 1   SCC Top-Level Architecture, N is straight up. E is to the right, etc. 

The four DDR3 memory controllers are on either the east (E-port) or west (W-port) of their 

corresponding router. No memory controller is on the north (N-port) of a router. 

In addition to a memory controller, the router can address the VRC (which is on the south 

port of the router at (0,0), the system interface (which is on the south port of the router at 

(y=0,x=3), the SCC configuration registers, and the MPB.  

The two subdestIDs 0x0 and 0x1 identify the destination core on a tile. A core is a 

destination if a core is writing into the memory space of another core. 

Sub-Destination subdestID Comment 

Core0 0x0 Core0 is the destination 

Core1 0x1 Core1 is the destination 

CRB 0x2 Configuration Register 

MPB 0x3 Message Passing Buffer (exists on every tile) 

E_port 0x4  (y=0,x=5) and (y=2,x=5) select DDR3 MC 

S_port 0x5 (y=0,x=3) selects the System Interface (SIF) 

(0,0) selects the VRC  

W_port 0x6 (0,0) and (y=2,x=0) select DDR3 MC 

N_port 0x7 Nothing is on this port of any edge router 

Table 1  Address Translation subdestID Bits 

6.3 Cache Behavior 

A core’s private off-chip DRAM is cached through L1 and L2 according to the normal rules 

associated with the P54C processor.  Because there is no cache coherence among the cores, 

the SCC system avoids snooping, snarfing, or any other type of cache protocol overhead. 

The SCC chip does not provide any mechanism to maintain cache coherence among the 

cores.  A programmer must explicitly manage the coherence of cache data among cores.   

If you are a RCCE programmer, you need not be concerned with cache issues. The RCCE 

library takes care of those issues for you. 

If you want to manage your own caches, the SCC provides you with two features that will 

http://marcbug.scc-dc.com/bugzilla3
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assist you. The SCC provides a special tag (called MPBT for Message Passing Buffer Type) 

that identifies the cache lines for data in a shared memory region. The SCC also provides a 

new instruction called CL1INVMB that marks all data of type MPBT as invalid L1 lines. 

Accessing data in an invalid L1 cache line forces an update of the data in L1 with the data in 

the shared memory. 

6.4 Programmer’s View of Memory 

Figure 7 shows a programmer’s view of SCC memory. Note the 48 CPUs (CPU_0 ,,, 

CPU_47 and the off-chip private DRAM as well as the off-chip shared DRAM. The default 

is for the amount of shared off-chip DRAM to be much smaller than the total of all the 

private DRAM.  

The figure also shows the L1 and L2 caches for each of the cores. Data in shared memory 

may or may not bypass L2 and go directly to L1. Data typed as MPBT bypass L2 and go 

directly to L1. Legacy software by default is not marked as MPBT data and hence does not 

bypass L2. Recall that the SCC processor provides a new memory type called the Message 

Passing Buffer Type (MPBT). A reserved bit in the P54C’s pagetable entry marks data as 

MPBT.  

Finally, note the test-and-set register on each core. This register is used to lock the core and 

perform atomic operations. 

 

Figure 7   Programmer's View of Memory 

Typically programmers will not directly access the message passing buffer, but that 

capability does exist. The way you would do this to write to the core  addresses assigned to 

the MPB. The LUT assigned to the core the program is running on determines what those 

addresses are. Default LUT entries are loaded at boot time. As an example, Table 2  Default 

LUT Entries Determine MPB Addresses shows the default LUT entries 192 though 216 that 

determine the base addresses assigned to the MPB. 

There are 256 LUT entries. The core has a 4GB address space. Hence, each LUT entry maps 

to 16MB of address space. The MPB on a tile is 16KB, not 16MB, so obviously only the 

lower 16KB assigned to that LUT entry are used. By convention, the lower 8KB are 

assigned to Core 0, and the next 8KB are assigned to Core 1. Although this memory exists 

locally on each tile, all cores can access the 384KB of MPB space.  
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LUT Nbr Core Address Range Where the LUT Entry Points to 

216 D8FFFFFF - D8000000 : 

215 D7FFFFFF - D7000000 MPB in Tile (x=5,y=3)  

214 D6FFFFFF - D6000000 MPB in Tile (x=4,y=3) 

: : : 

194 C2FFFFFF - C2000000 MPB in Tile (x=2,y=0) 

193 C1FFFFFF - C1000000 MPB in Tile (x=1,y=0)  

192 C0FFFFFF - C0000000 MPB in Tile (x=0,y=0)  

Table 2  Default LUT Entries Determine MPB Addresses 

They way you access the message passing buffer is to take the base address of a tile’s MPB 

and add the offset (0x0000 to 0x3fff) for the location you want to access.  

The tiles are in a 6x4 = XxY array. X goes from 0 to 5 horizontally, starting in the lower left-

hand corner. Y goes from 0 to 3 vertically, also starting in the lower left-hand corner. The 

base address for (x,y)=(0,0) is 0xc0000000; the base address for (x,y)=(5,3) is 0xd7000000. 

For example, the MPB base address for the tile at (x,y) = (2,3) is 0xd4000000.  

If you are writing a program, you can use the MPB base address symbols, MPB_Xx_Yy. For 

example, the symbol for the tile at (X,Y) = (2,3) is MPB_X2_Y3. There is a special symbol 

called MPB_OWN = 0xd8000000. A core on a tile can use this address to refer to its own MPB 

base address, without having to obtain its own (x,y) coordinates. 

Note, however, that the MPB symbols MPB_Xx_Yy and MPB_OWN refer to the base addresses as 

specified in the default LUT tables. If you modify these entries in the tables, you must 

redefine the MPB symbols. 

7 SCC Configuration Registers 
By setting values in the SCC configuration registers, you can control the operating mode of 

the SCC. These registers are initialized with default values. 

You can read and write the SCC configuration registers with the sccGui that runs on the 

Management Console. You can also access these registers from a program that you write that 

runs on the SCC cores. 

The configuration registers reside in the MIU in a control register buffer (CRB). The way 

you access a core’s configuration registers is to take the start address of its tile’s CRB and 

add the offset for the particular register you want to access. Table 3  Default LUT Entries for 

CRB Base Addresses shows the default LUT entries 224 though 227 that determine the base 

addresses assigned to the CRB. 

LUT Nbr Core Address Range Where the LUT Entry Points to 

248 F8FFFFFF - F8000000 : 

247 F7FFFFFF - F7000000 System Configuration Register -- Tile (x=5,y=3) 

246 F6FFFFFF - F6000000 System Configuration Register -- Tile (x=4,y=3) 

: : : 

226 E2FFFFFF - E2000000 System Configuration Register -- Tile (x=2,y=0) 

225 E1FFFFFF - E1000000 System Configuration Register -- Tile (x=1,y=0) 

224 E0FFFFFF - E0000000 System Configuration Register -- Tile (x=0,y=0) 
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Table 3  Default LUT Entries for CRB Base Addresses 

The symbol naming convention follows the same rules as those for accessing the MPB. For 

example, the CRB base address for the tile at (x,y) = (2,3) is 0xf4000000. If you are writing 

a program, you can use the CRB base address symbols, CRB_Xx_Yy. For example, the 

symbol for the tile at (x,y) = (2,3) is CRB_X2_Y3.There is also a special symbol called 

CRB_OWN = 0xf8000000. A core on a tile can use this address to refer to its own base address, 

without having to obtain its own (x,y) coordinates. 

For example, a core can access its own TileID register as CRB_OWN + 0x0100 or  CRB_OWN + 

MYTILEID. where MYTILEID is the symbol for the offset for the TileID register.. 

As with the MPB symbols, the CRB symbols CRB_Xx_Yy and CRB_OWN refer to the base 

addresses as specified in the default LUT tables. If you modify these entries in the tables, 

you must redefine the MPB symbols. 

This section lists the registers and describes their functions. Refer to the SCC Programmer’s 

Guide for a description of the fields in these registers and for examples of how you would 

write code to access them. The purpose of showing them here is just to give you an overview 

of the information and capabilities they provide. 

 Table 4   SCC Configuration Registers lists the individual configuration registers and their 

offsets.  

Each tile has LUT tables, two Test-and-Set registers, a TileID register, a global clock 

configuration register, two sensor registers, and two L2 cache configuration registers. 

There are two lookup tables (LUTs) on a tile, one for each core. There are no symbols for 

the LUTs. Each LUT has 256 8-byte entries.  

 LUT0 (for core 0) starts at 0x800 (for entry 0) and goes to 0xff8 (for entry 255). Entry 

1 is 0x808; entry 2 is 0x810, etc. 

 LUT1 (for core 1) starts at 0x1000 (for entry 0) and goes to 0x17f8 (for entry 255). 

Entry 1 is 0x1000; entry 2 is 0x1008, etc. 

Each tile has two Test-and-Set registers, one for each core. They have the symbols LOCK0 

and LOCK1. 

Each tile has a tile ID register with the symbol MYTILEID. This register contains the (x,y) 

coordinates of the tile and a core ID. It contains the core ID of the core that read it. 

Each tile has a global clock configuration register with symbol GCBCFG. This register 

controls the router and tile clocks. It also allows you to reset an individual core or its L2 

cache. 

Each tile has two core configuration registers. They have the symbols CLCFG0 and GLCFG1. 

Each has 26 valid bits. The lower 12 bits (bits 11:00) are read/write. The upper 14 bits (bits 

25:12) are read-only and are status bits. The read-only portion of GLCFG is also called 

GLSTAT, but GLSTAT is not a programming symbol. The prefix GL is a remnant from an 

internal codename and is no longer relevant. 

Each tile has two sensor registers. One is a sensor control register. With this register, you can 

enable and preset a counter. When you enable and preset the sensor control register on a tile, 
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you are affecting both cores. The other sensor register is a sensor read register. You can read 

the counter values on each core. It is a 26-bit register; the upper 13 bits are the value of core 

0’s counter, and the lower 13 bits are the value of core 1’s counter. 

Each tile has two L2 cache configuration registers, one for each core. They have the symbols 

L2CFG0 and L2CFG1. An important bit in this register is the one that enables or disables the 

L2 cache. 

 

Register Name Desired Operation Register Offset Valid data bits 

LUT register core 1 

(256 8-byte entries) 

no symbol 

Read/write LUT1 10xxxxxxxxxxx 

0x1000 

22 

LUT register core 0 

(256 8-byte entries) 

no symbol 

Read/write LUT0 01xxxxxxxxxxx 

0x0800 

22 

Atomic Flag Core1 

LOCK1 

Read/write test-and-set  Core 

1 atomic 

0010000000000 

0x0400 

1 

Atomic Flag Core0 

LOCK0 

Read/write test-and-set  Core 

0 atomic 

0001000000000 

0x200 

1 

Tile ID register 

MYTILEID 

Read Tile ID  0000100000000 

0x0100 

11 

Global Clock Unit (GCU) 

GCBCFG 

Read/write GCU  0000010000000 

0x0080 

26 

Sensor Register Read Thermal Sensor value  0000001001000 

0x0048 

26 

Sensor Register 

SENSOR 

Read/write Thermal Sensor 

control  

0000001000000 

0x0040 

14 

L2 Cache Configuration 0 

L2CFG0 

Read/write L2 Cache 0  0000000100000 

0x0020 

14 

L2 Cache Configuration 1 

L2CFG1 

Read/write L2 Cache 1  0000000101000 

0x0028 

14 

Core Configuration 0 

GLCFG0 

Read/write Core 0 config  0000000010000 

0x0010 

26 (top 14 read 

only) 

Core Configuration 1 

GLCFG1 

Read/write Core 1 config  0000000011000 

0x0018 

26 (top 14 read 

only) 

Table 4   SCC Configuration Registers 
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8 Programming Model 
The principle usage model for the SCC platform is to load an operating system onto the 

cores and then load your application. The operating system loaded onto the cores is a version 

of Linux modified specifically for SCC. I/O system calls are routed to the FPGA.  

You can also choose to build your application with the RCCE library. With RCCE, you can 

access the many-core features of the SCC through the RCCE API. 

RCCE provides the “greatest common denominator” for SCC applications. You can start 

your development with the RCCE software emulator that runs on any standard Windows or 

Linux system. This emulator uses OpenMP to simulate RCCE calls. Then, you can take your 

RCCE application and run it on an SCC platform whose cores are running the SCC version 

of Linux. Figure 8   RCCE Applications illustrates these two ways of running RCCE 

applications. 

 

 
Figure 8   RCCE Applications 

 

 

9 The Management Console 
The Management Console is a 64-bit PC that usually sits in the lab right beside the SCC 

platform. Users typically VNC into the Management Console from their own workstation. 

The Management Console is a generic PC with a PCIe interface running Ubuntu 10.04. It is 

augmented with some Intel-provided software tools. The Management Console 

communicates with the SCC platform over a PCIe bus. The PCIe bus connects to a System 

FPGA interface on the SCC board which connects to a System Interface on the SCC itself.  

Figure 1   SCC Top-Level Architecture illustrates the Management Console connecting to 

the SCC. 

The directory /shared on the Management Console is NFS-mounted on the cores. You can 

place your SCC executable in that /shared directory and then use rccerun to load and run 

it on the cores. The utility rccerun was written to load a RCCE application on the cores, but 

you can also use it to load non-RCCE applications. You could also choose to load your 
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application directly with pssh (http://freshmeat.net/projects/pssh/). rccerun is a bash shell 

script that calls pssh. 

9.1  Software that runs on the Management Console 

The Intel-provided software tools that run on the Management Console consist of sccKit, 

RCCE, a Linux image to load onto the cores, and some tools that will aid you in building 

your own Linux image for the SCC cores.  

You can download the Intel-provided software tools from http://marcbug.scc-

dc.com/svn/repository . These tools are available for anonymous svn checkout. 

9.1.1 sccKit 

You can put the sccKit software anywhere on the Management Console you like, but 

typically, it is in the directory /opt/sccKit/current where current is a link to the latest 

version stored as a directory in /opt/sccKit. 

With the sccKit, you can boot Linux on one or more cores, read and write core memory 

locations and registers, open as ssh connection to one of more cores, and monitor core 

performance. sccKit has both a GUI interface and a command-line interface. This section 

gives an overview of using sccKit. It is not intended to completely document sccKit. 

Figure 9   The sccGui shows how the sccGui looks when it starts up. To invoke the sccGui, 

issue the command sccGui&. 

 

Figure 9   The sccGui 

One of the most common uses of the sccGUI will be to boot Linux on the cores. To do that, 

click on the Settings menu item, select Choose Linux image, and browse to the location 

of the Linux image. Then, click on the menu item Boot Linux. 

Another typical use is to read and write core configuration registers. To do that, click on the 

Widget menu item and select Flit Widget. Figure 10  Reading the TILEID SCC Register 

shows the screen that results. You have dropdowns that select the tile, the base address (in 

this example, this is CRB for the control register buffer), and the specific configuration 

register. 

http://freshmeat.net/projects/pssh/
http://marcbug.scc-dc.com/svn/repository
http://marcbug.scc-dc.com/svn/repository
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Figure 10  Reading the TILEID SCC Register 

 

Figure 10 shows the value of TILEID for (x,y)=(5,0). The value is 0x2d = 00101101. The 

value of x is contained in bits 6:3 of TILEID; the value of y is in bits 10:7. 

You can also access some of the sccKit features from the command line. You can boot Linux 

on one or more cores with sccBoot. Figure 11 shows using sccBoot to probe the status of 

the cores.  

 
Figure 11  Using sccBoot 

Another command-line sccKit feature is sccKonsole. With this command, you can open up 

a console (an ssh connection) to one or more cores. With the command-line version, you 

can specify the number of consoles you want to create. They appear as tabbed shells.  When 

you use the GUI to create consoles, you get 48 tabbed shells. 

You can create consoles either with the SccCGui or from the command line. To create 

consoles for cores 0 through 3, enter the command sccKonsole 0..3.  

A useful feature of the SCC consoles is the ability to broadcast a command to all opened 

consoles. Exactly how you do this depends on the particular Linux distribution running on 

the MCPC. Intel Labs runs Ubuntu 10.04. To have the input of one console sent to all the 

opened consoles, click on the Edit menu item on the window with the tabbed consoles. 

Then, choose Copy Input  All Tabs in Current Window. 

Figure 12 shows four tabbed consoles with the second rck01 selected. Figure 13 shows the 

execution of an ls –a command in rck01. The red exclamation point on the rck01 indicates 

that its input is broadcast to all the consoles. Figure 13 shows rck02 selected and showing 

the result of the invocation from rck01. 
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Figure 12  sccKonsole with Four Tabs 

 

 

Figure 13  sccKonsole Showing ls Command 

The sccKit also includes sccAPI. This is a library that lets you write your own code running 

on the Management Console that accesses the SCC platform. Intel Labs provides the source 

code for sccKit so that you can use it as a model when writing your own code. Typical 

sccAPI calls allow you to perform programmed I/O and DMA access to SCC memory. You 

can also connect to and send commands to the Board Management Controller. The BMC is 

an ARM processor that connects to the Management Console via a LAN port. 

 

9.1.2 Compilers 

Because the cores are P54C processors, you must use older versions of icc (Intel C) and 

ifort (Intel Fortran). You can either build your SCC executable on your own workstation or 

directly on the Management Console. Once the executable is built, copy it to the /shared 

directory on the Management Console. You need the following compiler versions. 

 For icc, you need icc-8.1.038. 

 For ifort, you need ifort-8.1.034. 

If you want to use MKL, Intel’s Math Kernel Library, you also need an older version. MKL 

is not absolutely required, but it significantly improves the performance of RCCE math 

applications. For example, it improves the performance of the High Performance Computing 

Linpack Benchmark (HPL) that comes with RCCE. 

 For MKL, you need mkl-8.1.1.004. 
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10 Programming the SCC 

10.1 RCCE 

RCCE (pronounced “rocky”) is a programming model provided with SCC.  RCCE is a small 

library for message passing tuned to the needs of many-core chips such as SCC.  RCCE 

provides  

 A basic interface, a higher level interface for the typical application.  

 A gory interface, a low level interface for expert programmers.  

 A power management API to support SCC research on power-aware applications.   

RCCE runs on the SCC chip, as well as on top of a functional emulator that runs on a Linux 

or Windows platform that supports OpenMP.  This document shows how to build the RCCE 

libraries for emulation and to run a simple example under the emulator. 

Refer to the SCC Programmer’s Guide to see an example of building the RCCE libraries for 

use on the SCC Platform itself. The SCC Programmer’s Guide also shows several examples 

of RCCE programs that run on the SCC cores. 

RCCE is a versatile library that serves as a research vehicle to understand how message 

passing APIs map onto many core chips. It is for experienced parallel programmers willing 

to work close to the hardware. 

RCCE, however, is more than a set of message-passing libraries. The RCCE API does use 

shared memory to send and receive those messages. With the gory interface, you can look at 

that implementation.  

With some additional effort, you can do shared-memory applications by using the shared 

memory support inside RCCE.  

10.1.1 Build the RCCE Emulation Library 

You can run the RCCE emulation library on any standard computer running Linux. This 

section shows how you can build the emulation library. 

RCCE is distributed as source code. You may have obtained RCCE source code from an 

Intel-provided SVN repository or downloaded a tar file. A typical name for this tar file is 

RCCEv1.04.tar.bz2. Note the version number. Your copy may have a different version 

number. 

Put the tar file in some work directory and untar it. This example uses a work directory 

called SCC. Untarring creates a directory called RCCEv1.04 with the following contents. 

Look at the README file for more information. 

tekubasx@tekubasx-desktop:~/SCC/RCCEv1.04$ ls 

apps  Change.log  configure  include  Makefile  README 

bin   common      hosts      makeall  rccerun   src 

 

Before building the RCCE library or your application, you must decide whether to use the 

icc or gcc compiler. The default is to build with icc, Intel’s commercial compiler. This 
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example chooses gcc, the opensource Gnu compiler. 

To change these defaults, edit the file common/symbols.in. Figure 14  User-Specified 

Variables in  symbols.in shows the appropriate portion of the file symbols.in. It is the area 

delimited by BEGIN/END OF USER-SPECIFIED VARIABLES. The example below specifies the use of 

g++, not icc. The g++ running on the Linux used in this example is g++ 4.4.1. 

In the directory RCCEv1.04, type ./configure emulator. This command is silent. Then, 

type ./makeall. This command builds all the emulator versions of the RCCE library. 

 

 

Figure 14  User-Specified Variables in  symbols.in 

 

10.1.2 Run a Simple RCCE Application with the RCCE Emulator 

This section shows how, starting with RCCE source code, you can run a simple example. 

The example is provided as part of the RCCE source code. The simple example is called 

pingpong. It runs on two cores. It will not load on less than two cores or more than two 

cores.  

The program sends a message back and forth between two cores MAXROUND times. One core 

is ME; the other core is !ME or YOU. ME sends MAXROUND messages and receives MAXROUND 

messages. YOU does the same. The program performs this through matching pairs of sends 

and receives as follows. 

  for (round=0; round <MAXROUND; round++) { 

    if (ME)  { 

      RCCE_send(buffer, BUFSIZE, YOU); 

      RCCE_recv(buffer, BUFSIZE, YOU); 

    } 

    else { 

      RCCE_recv(buffer, BUFSIZE, YOU); 

      RCCE_send(buffer, BUFSIZE, YOU); 

    } 

  } 
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Now build the pingpong application. Go into the directory apps/PINGPONG. Because the 

emulator runs slower than SCC hardware, edit the file RCCE_pingpong.c and change 

MAXROUND from 10000000 to a smaller number (say 100). Then, build the application by 

typing ./make pingpong. 

To run an application, use the rccerun command.  Put rccerun in your path. Enter the 

command 

rccerun –emulator –nue 2 –f ../../hosts/rc.hosts pingpong 

 

Because you configured with the emulator, the –emulator switch is the default and you 

need not specify it. The rccerun command specifies two cores or units of execution with the 

switch –nue 2. It also specifies a hosts file. This rc.hosts file is part of the RCCE 

deliverable. It is an ASCII file that contains the numbers of all the cores on the tiles, one per 

line as follows. 

01 

02 

03 

. 

. 

.  

45 

46 

47 

 

The pingpong application returns immediately without running if you specify a number of 

cores other than two. Figure 15 shows pingpong running successfully. 

 
Figure 15  The RCCE Application Running Successfully 

 

 

 

 

 

 

 

 


